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Abstract
Obesity epidemic reached the dimensions of a real global health crisis with more than one billion people worldwide living 
with obesity. Multiple obesity-related mechanisms cause structural, functional, humoral, and hemodynamic alterations with 
cardiovascular (CV) deleterious effects. A correct assessment of the cardiovascular risk in people with obesity is critical for 
reducing mortality and preserving quality of life. The correct identification of the obesity status remains difficult as recent 
evidence suggest that different phenotypes of obesity exist, each one associated with different degrees of CV risk. Diagno-
sis of obesity cannot depend only on anthropometric parameters but should include a precise assessment of the metabolic 
status. Recently, the World Heart Federation and World Obesity Federation provided an action plan for management of 
obesity-related CV risk and mortality, stressing for the instauration of comprehensive structured programs encompassing 
multidisciplinary teams. In this review we aim at providing an updated summary regarding the different obesity phenotypes, 
their specific effects on CV risk and differences in clinical management.
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1  Introduction to obesity and cardiovascular 
risk

Over the last 30 years, the epidemic of overweight and 
obesity has increased dramatically, reaching the dimension 
of a real global health crisis [1]. According to the data of 
the World Health Organization, more than 1 billion people 
worldwide are living with obesity (650 million adults, 340 
million adolescents and 39 million children) accounting for 
about 2.8 million deaths every year [2]. Adipocytes secrete 
different hormones and peptides under several physiological 
and pathological conditions, known globally as adipokines 
and playing an important role in local and systemic regula-
tion of energy homeostasis and inflammation [3–5]. Mul-
tiple obesity-related mechanisms are cause of structural, 

functional, humoral and hemodynamic alterations believed 
to underpin the development of CVD including atherothrom-
bosis, atrial fibrillation (AF) and myocardial dysfunction 
[6–8]. Thus, a correct assessment of the cardiovascular (CV) 
risk in people with obesity is critical for reducing mortality 
and preserving quality of life in this class of patients. How-
ever, the correct identification of the obesity status is still 
tricky as recent evidence suggest that different phenotypes 
of obesity exist, each one associated with different degree of 
CV risk [9, 10]. Body mass index (BMI) has been longtime 
indicated as golden standard to assess adipose depots and 
the associated cardiovascular risk, but several limitations 
apply [8]. Considerable variations occur according with sex, 
age, and race/ethnicity. In the last decade, a shift toward a 
qualitative approach led to rephrase the paradigm of obe-
sity into the concept of obesities [11]. With time, several 
other anthropometric measures have made their way along-
side or replacing BMI: mainly waist circumference (WC) 
[12, 13] but also, waist-hip ratio (WHiR), waist to height 
ratio (WHtR), bioimpedance, 3D scanning and dual energy 
x-ray absorptiometry (DEXA). Such a paradigm shift takes 
into great account qualitative differences in adiposity as 
associated with different degrees of metabolic and athero-
genic derangements and different responses to weight loss, 
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lifestyle modification or medications. Recently, the World 
Heart Federation (WHF) and World Obesity Federation 
(WOF) provided an action plan for management of obesity-
related CV risk and mortality, stressing for the institution 
of comprehensive structured programs encompassing mul-
tidisciplinary teams [14]. In this review we aim at providing 
an updated summary regarding the different obesity pheno-
types, their specific effects on CV risk and differences in 
clinical management.

2  The journey from BMI to visceral adiposity 
and obesity phenotypes

2.1  The obesity paradox

Historically, the increase in adiposity depots expressed by 
BMI is linearly associated with growing CVD risk and mor-
tality. Nevertheless, the first decade of this century saw the 
emergence of a mismatch between the awareness of excess 
body weight burden and its related metabolic consequences. 
The concept of ‘obesity paradox’ was born, and scientist 
stayed in this swamp for a decade further [15]. In several 
studies patients with obesity have indeed shown a better 
prognosis as compared with leaner ones [16]. Gruberg and 
co-workers firstly described this evidence in patients affected 
by coronary artery disease (CAD) undergoing percutaneous 
coronary intervention (PCI) [17]. Subsequently, numerous 
other conflicting data where published regarding the benefits 
of weight reduction in some high-risk CV conditions—heart 
failure (HF), atrial fibrillation (AF) or hypertension—as well 
as other non-CV conditions such as frailty, diabetes mel-
litus (DM), end-stage renal disease and chronic obstructive 
pulmonary disease [18, 19]. Notably, in patients affected by 
chronic HF, those losing more weight over time also showed 
higher mortality rate [20]. Numerous possible explanations 
to this phenomenon were provided. First, patients with 
obesity and CVD are on average younger and with better 
conserved systolic function than lean patients. Acute myo-
cardial infarction (AMI) in patients with obesity has been 
found to be associated with less severe and complex CAD 
than in non-obese subjects [21]. Moreover, patients with 
obesity have higher levels of arterial pressure, thus they 
can be exposed to higher dosages of anti-ischemic and anti-
remodeling medications. Nevertheless, the higher survival 
after AMI in this population was found to be independent of 
their younger age and more intensive medication treatment 
[22]. Other clinical features may in part explain the reduc-
tion of hospitalization time, as well as short- and long-term 
mortality [21, 23]. Different confounding factors (e.g. smok-
ing, chronic illness, lung disease, cancer) as well as reverse 
causality were also pointed out as possible explanations for 
the OP. Indeed, the severity of the disease could strongly 

impact the weight loss trajectory. On the other hand, unin-
tentional weight loss is often marked by relative reduction of 
muscle mass and peripheral fat, rather than central fat [24]. 
This phenomenon cannot be discriminate by the use of BMI 
[25]. The predictive role of WHR seems to be higher for CV 
risk stratification in those patients [26, 27]. In a recent study, 
WHR and WC better correlate with the severity of CAD 
in patients undergoing PCI while BMI only showed a low 
predictive value [28]. Markers of central fat should be con-
sidered better indicators of future risk in this context [29].

2.2  “Adiposopathy” and “diabesity”

Adipocyte hypertrophy in visceral adipose tissue and ectopic 
fat accumulation leads to cellular dysfunction, metabolic 
abnormalities and endocrine disturbances [30]. Adipose 
tissue dysfunction also known as “adiposopathy” is a root 
cause of some of the most common metabolic diseases 
observed in clinical practice, including DM, hypertension 
and dyslipidemia [31]. While classically related to the vis-
ceral fat, growing evidence suggest a role for dysfunctional 
stimulation of the subcutaneous adipose tissue in obesity 
[32]. Metabolic consequences of adiposopathy have been 
traditionally clustered in the general term metabolic syn-
drome (MetS) accounting for central obesity, hyperglyce-
mia, hypertriglyceridemia, low levels of HDL and hyperten-
sion [33]. Shift toward visceral adipose tissue distribution, 
ectopic fat deposition and inflammatory/adipokines dysregu-
lation are now considered the central tenets of adiposopa-
thy [34]. Hypertrophic adipocytes showed an unbalanced 
adipokines production, promoting insulin resistance (IR), 
inflammation, fatty liver, increased LDL-cholesterol, oxi-
dative stress, endothelial dysfunction and pro-thrombotic 
state [35]. Among adipokines, leptin levels were shown to 
be directly proportional to obesity and body fat levels, while 
its counter-hormone adiponectin resulted reduced [36]. 
This imbalance is thought to enhance atherogenesis, fibro-
sis, hyperglycemia and inflammation [37, 38]. Chemerin, a 
newly characterized chemoattractant released by adipocytes, 
is gaining more and more attention as a potential MetS bio-
marker being related with adipogenesis, angiogenesis and 
glucose metabolism [39, 40]. In humans, chemerin posi-
tively correlates with adiposity [41, 42], independently from 
WC or BMI [42], and strongly predicts MetS development 
[43]. Adipocyte hypertrophy also leads to ischemic dysfunc-
tion and hypoxia-related signaling. The surrounding micro-
environment then modifies its architecture. Inflammatory 
cells from both innate and adaptive immunity infiltrate the 
dysfunctional adipose tissue and activate inflammatory path-
ways that further sustain such pathophysiological processes. 
Among the other, the upstream mediator osteopontin (OPN) 
seems also to be strongly associated with adiposopathy and 
cardiometabolic consequences. Released by macrophage 
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within dysfunctional adipose tissue, OPN sustains adipo-
cyte and metabolic dysregulation in both experimental and 
clinical studies [44–46]. Lipolysis and insulin resistance 
finally characterize such a dysfunctional microenvironment 
and reach peripheral tissues (e.g., skeletal muscle and liver) 
[47, 48]. Especially within the skeletal muscle, decrease in 
GLUT-4 translocation reduces glucose uptake and facili-
tates glycogenolysis [49]. In the liver, FFAs promote glu-
coneogenesis and lipogenesis further increasing insulin 
levels. Again, within pancreas islets, FFAs exert lipotoxic 
effect on beta cells leading to reduced insulin secretion and 
a failure of compensation [50]. Since adiposity and DM are 
strictly related, the term “diabesity” was coined to describe 
the superadded effects of DM and obesity on CV risk [51].

3  Obesity phenotypes

Pitfalls in the characterization of body fat distribution 
through the BMI and distinction of fat vs. lean tissue have 
provided a critical contribution to explain the non-unique 
subdivision of obesity phenotypes among studies. Based on 
current knowledge, “obesities” may be categorized across 

four groups: i) metabolic unhealthy normal weight (MUNW), 
ii) metabolically healthy overweight/obese (MHO), iii) 
metabolically unhealthy overweight/obese (MUO), and iv) 
sarcopenic obesity (SO) (Table 1). MHO and MUO are the 
most representative categories, including patients with a 
BMI > 25 kg/m [2] but very different metabolic profile [52] 
(Table 2). Alterations in body fat distribution is the key factor 
characterizing those two phenotypes. MUO encompasses the 
old features of MetS, which translates in a higher cardiometa-
bolic risk [53]. In addition to age and higher WC, reduced 
subcutaneous fat and shift toward a visceral and dysfunc-
tional/pro-inflammatory hypertrophic adipose tissue distri-
bution characterize MUO. Impaired fat storage and ectopic 
visceral fat deposition in liver and skeletal muscle further 
characterize this prototypic phenotype of adiposopathy [54, 
55]. Contrariwise, the healthier MHO phenotype is less 
common among European population, with a prevalence of 
10–30% [56]. They are more often young, female, physically 
active people with a better nutritional status [57]. Although 
a definition of MHO is not standardized yet [58], this group 
would include people with high BMI and healthy metabolic 
profile: preserved insulin sensitivity, favorable lipid profile 
and low plasma levels of pro-inflammatory cytokines [59]. 

Table 1  Summary of defining criteria of different obesity phenotypes

Underweight MHNW MUNW MHO MUO SO
Waist circumference normal normal Normal/high normal high High WC

and/or
BMI>25

BMI (kg/m2) <18.5 18.5 – 24.9 18.5 – 24.9 >25 >25

Visceral adipose tissue Low Low High fat mass Low High High fat mass
Lean mass – – – High – Low
Metabolic abnormalities – Absent Present Absent Present Present

Normal values are in green, pathological ones are in red, and the intermediate ones in orange. Waist circumference categorized as normal 
(men < 102 cm and women < 88 cm) or high (men ≥ 102 cm and women ≥ 88 cm). Visceral adipose tissue and lean mass are a non-standardized 
measure actually. Metabolic abnormalities refer to the metabolic syndrome defining criteria
BMI body mass index, MHNW metabolically healthy normal weight, MUNW metabolically unhealthy normal weight, MHO metabolically 
healthy overweight/obese, MUO metabolically unhealthy overweight/obese, SO sarcopenic obese

Table 2  Over time development and controversies in definition of metabolically healthy/unhealthy overweight/obese

IFG impaired fasting glucose, IGT impaired glucose tolerance, T2DM type 2 diabetes mellitus, BP blood pressure, TAG  triglycerides, HDL high-
density lipoprotein, WC waist circumference, BMI body mass index, CAD coronary artery disease, HOMA-IR homeostasis model assessment 
for insulin resistance, hsCRP high-sensitivity C-reactive protein, MHO metabolically healthy overweight/obese, MUO metabolically unhealthy 
overweight/obese

Wildman et al. [90] BioSHaRE-EU Healthy Obese Project [56] Lavie et al. [91]

Less strict Stricter

IFG/IGT/T2DM FPG > 126 mg/dL FPG > 110 mg/dL FPG > 100 mg/dL
BP ≥ 130/85 mmHg BP > 140/90 mmHg BP > 130/85 mmHg BP > 130/85 mmHg
TAG > 150 mg/dL
HDL < 40 (W) or < 35 (M) mg/dL
WC > 88 cm (W), > 102 cm (M)
HOMA-IR [92]
hsCRP
BMI > 25 or > 30 kg/m [2] None (MHO) or ≥ 1 (MUO) 0–1 (MHO) or ≥ 1 (MUO)
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Nevertheless, even the alleged lower CV risk associated 
with MHO has been questioned [60]. Although CV risk did 
not differ from normal weight individuals, MHO had sig-
nificantly higher risk to develop MetS over time and then 
increase by about 60% the chance of suffering major CV 
events in the MESA study [61, 62].

Similarly, a recent report from a UK biobank includ-
ing > 380.000 people characterized MHO as at increased 
risk of HF (76%), respiratory diseases, all-cause mortal-
ity, and atherosclerotic CVD (20%) as compared to normal 
weight/MHO individuals [63]. Despite a lower baseline CV 
risk, MHO then develops atherosclerotic CVD risk factors 
earlier than lean individuals. Moreover, overweight itself is 
a non-negligible adverse factor that affects the natural his-
tory of several comorbidities such as respiratory, renal, and 
orthopedic ones [64, 65]. The MUNW group is another para-
digm of the prevalent qualitative – rather than quantitative 
– relevance of adiposity (Table 3). They share similar CV 
risk factors [66] and metabolic alterations with traditionally 
patients with obesity, including chronic low-grade inflam-
mation [67, 68]. MUNW has the highest rate of underdi-
agnoses among obesity phenotypes due to both the lack of 
consensus definition and the limited access to diagnostic 

tools for discriminating increased visceral adiposity and/
or unbalanced fat/lean mass ratio [69, 70]. Its prevalence 
is estimated in high as 67% [71]. MUNW may or not be 
associated with changes in other anthropometric parameters, 
such as WC, WHiR, WHtR. The threshold of body fat mass 
applied in MUNW diagnosis varies among different stud-
ies, ranging from 19 to 32% for men and from 29 to 44% 
for women [72]. MUNW usually includes older and seden-
tary individuals [73] with generally a very low amount of 
gluteo-femoral fat mass compared with the visceral one [74]. 
Cardiometabolic risk associated with MUNW is high and 
high risk of CVD independently of elevated trunk fat mass 
as reported in lean women from Women’s Health Initiative 
Study [75]. MUO and MUNW phenotypes genetically dif-
fer: a variability in loci regulating food intake is reported 
in MUO, whereas genetic characterization of MUNW has 
highlighted a prevalence in genes regulating adipocyte dif-
ferentiation, lipogenesis, and lipolysis (e.g. IRS1, GRB14, 
PPARG, LYPLAL1) [76, 77].

As additional phenotype, SO is characterized by low 
skeletal muscle mass due to metabolic changes second-
ary to a sedentary lifestyle, adipose tissue derangements or 
chronic comorbidities [78]. Loss of skeletal muscle mass 

Table 3  Over time development and controversies in definition of metabolically unhealthy normal weight
Ruderman et al.93 Wildman et al.90 Combined models

Metabolic/biochemical MetS criteria94, 95

UA >8 mg/dL
IFG (110-125 mg/dL); IGT/T2DM HOMA-IR 93 IFG/IGT/T2DM

TyG
96

BP 125-140/85-90 mmHg; BP ≥130/85 mmHgBP >140/90 mmHg

TAG 100-150 mg/dL150 mg/dL HDL<50 (W) or 35 (M) 
mg/dL

VAI
97 CMI

98

TAG >150 mg/dL TAG >150 mg/dLTAG>150+HDL <35 mg/dL

LAP
99

hsCRP

Anthropometric indexes/Adipose 
tissue

WC >71, >76cm (W) and >86, >91cm 
(M)

WC >88 cm (W), >102 cm 
(M)

BMI 23-24.9 or 25-27 kg/m2 BMI<25 kg/m2100

Weight gain >4, 8 or 12 kg
WHtR
WHR

DXA101-103

Family history
Hypertension/CAD (under 60yrs)

T2DM/hyper-TAG

Predisposing factors
Low birth weight (<2.5 kg); inactivity

Polycystic ovaries

Ethnic group at high risk

Multivariable score BMI<25 kg/m2 + >2 metabolic/biochemical criteria

UA uric acid, IFG impaired fasting glucose, IGT impaired glucose tolerance, T2DM type 2 diabetes mellitus, BP blood pressure, TAG  triglyc-
erides, HDL high-density lipoprotein, WC waist circumference, BMI body mass index, CAD coronary artery disease, HOMA-IR homeostasis 
model assessment for insulin resistance, WHtR waist-to height ratio, WHR waist-to-hip-ratio, DXA dual-energy X-ray absorptiometry, LAP lipid 
accumulation product; VAI visceral adiposity index, CMI cardiometabolic index, TyG triglycerides-glucose index [90, 93–103]
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and function generally occurs with ageing and is com-
monly paralleled by relative or absolute body fat gain, 
favoring the potential development of SO. Adipose tissue 
has indeed a negative impact on muscle mass both directly 
through metabolic derangements (i.e. inflammation and 
IR) [79] and indirectly through increased prevalence of 
obesity-related chronic diseases with a negative impact on 
muscle metabolism (i.e., orthopedic disorders). Of interest, 
the skeletal muscle is now increasingly considered as an 
endocrine organ secreting a large number of factors, termed 
myokines, that favour the metabolic dialogue between the 
muscle and other organs, including the adipose tissue [80]. 
Although diagnostic criteria are variable among studies, 
SO is usually diagnosed when parameters of altered skel-
etal muscle strength coexist with altered body composition, 
in particular increased fat mass and reduced muscle mass 
[81]. Preclinical and clinical studies suggest the existence 
of a biological connection between IR, obesity and sarco-
penia, mediated by the impaired function of the growth dif-
ferentiation factor myostatin [82]. Such mediator, histori-
cally recognized among most important negative regulators 
of muscle mass, recently gains notoriety due to its role on 
glucose and fat metabolism including inhibition of insulin 
signaling, lipid oxidation and energy expenditure [83]. In 
addition to myostatin, sarcopenia and sarcopenic obesity 
are associated with a dysregulation of other myokines with 
important cardiometabolic functions, such as IL-6, FNDC5/
irisin, fibroblast growth factor 21 or brain-derived neuro-
trophic factor, which play a critical role in skeletal muscle 
mass and function as well as metabolic homeostasis [84]. 
In SO, obesity and sarcopenia may therefore synergistically 
enhance each another with a vicious cycle facilitating weight 
gain and muscle loss through reduced mobility, dependency 
and disability [85]. As a consequence, such individuals show 
higher rate of adverse health consequences including falls 
and fractures, decreased mobility [86], poor quality of life 
and hospitalization [87] as compared to patients with iso-
lated obesity or sarcopenia. Furthermore, systematic reviews 
and metanalysis report SO as a strongly predictor for all-
cause mortality [88, 89].

4  How does obesity affect the heart?

4.1  Inflamm‑aging and metaflammation

The term “inflamm-aging” merges two words “inflamma-
tion” and “aging” to describe the chronic, sterile, low-grade 
inflammation characterizing elderly individuals and play-
ing fundamental roles in different age-dependent chronic 
diseases or conditions [5, 104–107]. Increased body fat 
composition and IR strongly associates with aging through 
several cellular and molecular mechanisms including 

cellular senescence, mitochondrial dysfunction, impaired 
autophagy and dysbiosis [108]. Moreover, the impaired 
crosstalk between adipocytes and the immune cells infil-
trating the adipose tissue as well as the degeneration of 
self- and non-self-receptors is thought to contribute to the 
establishment of inflamm-aging itself [109]. Of interest, 
the innate immune response activates after food ingestion 
[110]. The so-called “postprandial inflammation” is part 
of the adaptive response to meals and causes the release of 
several pro-inflammatory mediators [111]. Therefore, the 
excess nutrients intake characterizing obesity associates 
with higher levels of inflammatory hormones (i.e. leptin) 
secreted by adipose tissue, leading to a metabolic repro-
gramming of immune cells, in particular macrophages, 
towards a pro-inflammatory phenotype. Such condition 
– known as “metaflammation” – synergistically works with 
accelerated inflammaging to create a dysregulated energetic 
environment, whose metabolic hallmarks are high levels 
of lipids, free fatty acids, glucose, and reactive oxygen 
species (ROS). Prolonged mitogenic signal induced by 
chronic hyperinsulinemia leads dysfunctional hypertrophic 
adipocytes to activate a post-mitotic cell cycle that initi-
ate a senescent cell program. This process is associated to 
a pro-inflammatory secretome, which sustains and further 
contributes to low-grade chronic inflammation [112]. Mac-
rophages and adipocytes demonstrate remarkable functional 
overlap, as both cell types secrete cytokines and can be acti-
vated by bacterial products (i.e. lipopolysaccharide) [113]. 
Furthermore, pre-adipocytes can transdifferentiate into 
macrophages. Of interest, whereas inflammation-resolving 
M2 macrophages dominate insulin-sensitive adipose tissue 
in the lean, pro-inflammatory M1 macrophages accumulate 
in parallel to adiposity in individuals with obesity, promot-
ing inflammation and IR. Indeed, M1/M2 ratio indirectly 
correlates with both tissue-specific and whole-body insu-
lin sensitivity [114]. Dysfunctional adipocytes induce M1 
phenotype shifting by altering several intracellular path-
ways including IKK, JNK1, HIF and TLR signals against 
IL-4- and IL-13-mediated phosphorylation of STAT6 and 
expression of the lipid-sensing nuclear factors PPAR-γ and 
PPAR-δ [115, 116] M1 macrophages produce IL-1β, IL-6, 
TNFα and ROS further reducing insulin signaling in adipo-
cytes. As a result, the number of M1 macrophages parallels 
the expansion of adipose tissue, exacerbating inflammation 
and IR. Many of those mediators may be clustered in the 
emerging concept of senescence-associated secretory pat-
terns (SASP), increasingly considered leading driver of 
age-related disorders [117]. Among different molecules 
our research group has long time focused on the role of 
OPN – above described as upstream mediators of adipo-
cyte dysfunction – is an interesting candidate bridge with 
cardiometabolic risk [118, 119]. Finally, gut microbiota 
also plays central roles in energetic homeostasis, as it can 
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release inflammatory and anti-inflammatory products con-
tributing to metaflammation [120]. Patients with obesity 
present a characteristically overgrowth of Firmicutes phyla 
(i.e. Lactobacillus and Faecalibacterium) and Escherichia 
coli against Bacteroidetes [121]. Such “obese microbiota” 
showed higher ability to extract calories from the diet [122] 
as well as being associated with increased gut permeabil-
ity, leading to increased absorption of bacterial endotox-
ins [123]. The gut microbiota produces a wide variety of 
metabolites because of the anaerobic fermentation of undi-
gested food [124]. Short-chain fatty acids (SCFAs) includ-
ing acetate, propionate and butyrate are main metabolites 
of gut microbiota providing important anti-inflammatory 
effects. Studies showed that a reduction in the levels of 
SCFAs generate intestinal inflammation and foam cell for-
mation, contributing to gut barrier disruption and favoring 
bacterial translocation including mobilization of lipopoly-
saccharides (LPS), trimethylamine N-oxide (TMAO) and 
phenylacetyl glutamine (PAGIn) which, in general circula-
tion, induce systemic inflammation, macrophage activation 
and favor atherosclerosis [125].

4.2  Cardiac fibrosis

The strong association between obesity and CVD directly 
involves the heart, independent of the atherosclerotic 
process. Several stress factors are involved in substantial 
changes at molecular, cellular, and interstitial levels in 
obese hearts including dysregulated activation of different 
neuro-hormonal systems, hyperinsulinemia and inflam-
mation [126]. Cardiac cells respond to such an environ-
ment eliciting the hypertrophic growth response through 
secretion of cytokines, growth factors (GFs), vasoactive 
peptides, and hormones [127]. Although considered an 
adaptation mechanism, such response associates with cell 
death, fibrosis, and microvascular dysfunction. Cardiac 
fibrosis plays an important role in the pathogenesis of 
heart disease in patients with obesity causing impaired 
diastolic function, altered contraction, atrial and ventric-
ular remodeling eventually leading to heart failure with 
preserved ejection fraction (HFpEF), atrial and ventricular 
tachyarrhythmias and increased incidence of sudden death 
[128]. Cardiac fibroblasts are the most abundant interstitial 
cells in myocardium and are responsible for the forma-
tion and preservation of the matrix network [129]. Cardiac 
fibroblasts can influence cardiac function through direct 
and indirect effects on cardiomyocytes [130]. While in 
young individuals, cardiac fibroblasts maintain quiescence 
exhibiting limited inflammatory or proliferative activity, in 
aging hearts cardiomyocyte loss parallels the expansion of 
the interstitium and increased collagen content due to acti-
vation of fibroblasts [131, 132]. Documentation of cardiac 
fibrosis in the isolated obesity is challenging considering 

its common association with conditions affecting the car-
diac interstitium (such as hypertension and DM). Effects 
of the activation of the renin–angiotensin–aldosterone 
system (RAAS) is consistently noted in the fibrotic myo-
cardium of these patients. Several cellular pathways are 
involved in the fibrogenic program [133]. The link between 
an overactive TGF-β cascade and cardiac fibrosis is well-
established and mediated through effects involving Smad 
signaling [134, 135]. TGF- β stimulates different other 
GFs (i.e. epidermal GF, insulin-like GF-1, growth differ-
entiation factor-11 and CTGF) involved in the inhibition of 
myofibroblast apoptosis leading to a vicious circle of sus-
tained and progressive fibrotic response [136]. The altered 
adipokine balance also play a role in cardiac fibrosis and 
dysfunction. Impaired leptin/adiponectin ratio was impli-
cated in the pathogenesis of cardiac remodeling in obesity 
and metabolic dysfunction being a marker of inflammation 
[137]. Elevated circulating leptin levels were associated 
with left ventricular hypertrophy and fibrosis [138, 139]. 
On the contrary, adiponectin exerts anti-fibrotic and anti-
inflammatory effects on cardiac fibroblasts, presumably 
mediated by PPAR-α activation [140, 141]. OPN has been 
widely associated with cardiac remodeling in both experi-
mental and clinical studies [142, 143].

Although not listed among adipokines, neprilysin is 
largely expressed on the surface of mature adipocytes in peo-
ple with obesity [144]. This molecule degrades endogenous 
natriuretic peptides increasing renal sodium reabsorption, 
aldosterone secretion from the adrenal gland, cardiac inflam-
mation and fibrosis. In subjects with obesity and HFpEF 
soluble neprilysin levels and its inhibition decreased ven-
tricular overload and improved LA overfilling [145].

Matricellular proteins are upregulated in remodeled 
hearts and regulate inflammatory, fibrotic and angiogenic 
responses [146]. Thrombospondins (TSP), tenascins, Cilp-1, 
secreted protein acidic and rich in cysteine (SPARC), osteo-
pontin and members of the CCN family are involved in a 
variety of cardiac pathophysiologic conditions such as MI, 
cardiac hypertrophy, aging, diabetic cardiomyopathy and 
valvular disease. TSP-1 is the best-characterized matricel-
lular protein in obesity, DM and MetS and it is potently 
induced by hyperglycemia [147]. The role of TSP-1 in car-
diac remodeling was largely explored in clinical and pre-
clinical studies, confirming its regulatory effect in fibrotic 
response of injured myocardium, deposition of collagen 
and angiogenesis [148-150]. Accordingly, such mediator is 
increasingly seen as a potential target for novel drugs in this 
context (Fig. 1).

4.3  Ectopic adipose tissue

Obesity-related vascular dysfunction is not only character-
ized by increased collagen deposition within the vascular 
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wall and progressive arterial thickening but also by perivas-
cular fat accumulation and inflammatory infiltrate [151]. 
Perivascular adipose tissue (PVAT) is located around most 
large blood vessels close to the vasculature and direct con-
tact with the adventitia, providing mechanical protection and 
regulation of blood vessel tone via paracrine and vasocrine 
pathways [152, 153]. PVAT’s phenotype is heterogeneous 
and strongly location-dependent [154, 155]. In lean indi-
viduals, PVAT is mostly thermogenic brown and beige, 
located in the cervical, supraclavicular, axillary, paraspi-
nal, renal and epicardial regions [156, 157]. Instead, the 
abdominal aorta and mesenteric vasculature are surrounded 
by white adipocytes, also found in visceral and subcutaneous 
adipose depots [158]. Functional PVAT secrets a number 
of adipokines (i.e. adiponectin and angiotensin 1–7) with 
antithrombotic and vasodilating effect on the vasculature 
[159, 160]. Moreover, PVAT is populated with different 
immune cells important for vascular homeostasis (i.e. regu-
latory T-cells) [161]. Obesity induces changes in the vasoac-
tive factors in which the beneficial paracrine effect of PVAT 
is shifted to a pro-oxidant, pro-inflammatory, contractile and 
trophic environment [162]. Furthermore, the dysfunctional 
PVAT promote endothelial dysfunction, atherogenesis, vas-
cular IR, impaired relaxation, and vascular stiffness. Quite 
different from PVAT, the interest to the epicardial one (EAT) 
has grown rapidly in the past decade after the discovery of its 

role in physiological and pathological modulation of coro-
nary homeostasis. EAT is located on the surface of the myo-
cardium in direct contact with coronaries and accounts for 
≈5% to 20% of the heart weight [163]. Age, WC, ethnicity, 
and cardiac mass are independent determinants of EAT vol-
ume [164]. Of interest, EAT volume is a known risk factor 
for CAD, HFpEF and AF [165]. Specifically, EAT thickness 
has been correlated with the presence of high-risk/unstable 
coronary plaques [166] and coronary microvascular impair-
ment [167, 168]. Similarly to PVAT, EAT releases factors 
(i.e. adiponectin, leptin omentin-1, nitric oxide, palmitic 
acid methyl ester prostacyclin) and cytokines that affect 
both vascular and myocardial homeostasis through paracrine 
and vasocrine pathways [169]. Recent studies focused on the 
role of EAT-released exosomes, through which EAT carries 
lipids, proteins, ribonucleic acids (RNAs), and microRNAs, 
facilitating intercellular signaling. According to these stud-
ies, EAT’s exosomes may be implicated in a number of CVD 
such as MI, adverse cardiac remodeling and atrial fibrillation 
(AF) and are currently investigated for their potential role in 
modulation of myocardium healing [170, 171].

Although not close to myocardial tissue, ectopic 
fat accumulation in the liver, skeletal muscle, and kid-
ney belong to the central tenets of adiposopathy [172]. 
Macrovesicular steatosis involving more than 5% of 
hepatocytes is considered the cut-off point triggering a 

• Dysmetabolism
• MetS
• Hyperinsulinemia
• Inflammation
• Hypertension

Secretion of:
- Cytokines
- Growth Factors
- Vasoactive peptides
- Hormones

Myofibroblasts in
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Perimysial, 
perivascular, 
and endomysial
fibrosis

Hypertrophic
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Causing:
- Cells death
- Fibrosis
- Microvascular dysfunction

Clinically:
- HFpEF
- Arrhythmias
- Sudden death

Cardiac fibrosis in
dysmetabolic subjects

Fig. 1  Cardiac fibrosis in dysmetabolic subjects. Patients with dysme-
tabolism are at higher risk of developing cardiac fibrosis. The long-
term exposure to inflammatory, oxidative, and hyper-insulinemic 
environment causes the secretion of several molecules that concur 
in causing cardiac fibrosis. Microscopically, this process causes cells 

deaths, microvascular damages, and deposition of excessive extra-
cellular matrix. Consequently, patients frequently experience heart 
failure, especially HFpEF, eventually arrhythmias, and even sudden 
death. HFpEF, heart failure with preserved ejection fraction; TGF-β, 
transforming growth factor beta; TSP-1, tronbospondin-1
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multiple-hit cascade is mainly characterized by lipotox-
icity, but would also include mitochondrial dysfunction, 
endoplasmic reticulum stress, hypoxia. Those mechanisms 
would include cytokine unbalance, hypothalamic signal-
ing modifications and changes in microbiota. Although far 
from myocardial tissue, non-alcoholic fatty liver disease 
has been associated with right ventricular dysfunction 
and right bundle branch block, AF and QTc prolonga-
tion [173]. Although less is known about other ectopic fat 
depots, increasing data are describing those within skeletal 
muscle. They are highly expressed in diabetic patients and 
associated with cardiovascular risk and poor outcome after 
cardiovascular events [174]. Similarly, peri-renal fat has 
been demonstrated an index of sub-clinical atherosclerosis.

5  Obesity phenotypes and cardiovascular risk

Obesity phenotypes have been shown to impact on CV 
diseases differently (Table 4 and Fig. 2). For coronary vas-
cular and microvascular disease risk increases in MUO 
is proportional to the number of MetS defining criteria 
(hypertension, dyslipidemia, glucose intolerance and the 
degree of WC) [175, 176]. Direct negative effects of ener-
getic dysmetabolism related to MUO and NUNW on car-
diac structure are diverse and fall within the broad family 
of metabolic cardiomyopathies [177]. The hallmark of this 
condition is the development of left ventricle hypertrophy 
(LVH), independently related to the predominance of obe-
sity, hypertension, and diabetes [178, 179]. The pathway 

Table 4  Summary of studies linking cardiometabolic disease with different obesity phenotypes

Waist circumference categorized as normal (men < 102 cm and women < 88 cm) or high (men ≥ 102 cm and women ≥ 88 cm). Visceral adipose 
tissue and lean mass are non-standardized measures. Metabolic abnormalities refer to the metabolic syndrome defining criteria
BMI body mass index, MONW metabolically obese normal weight, NOW normal weight obese, MHO metabolically healthy obese, MO meta-
bolically obese, SO sarcopenic obese

MUNW MHO MUO SO

MetS – ↑ risk insulin resistance
↑ risk hyper-TAG 
↑ risk low HDL
↑ risk hypertension
vs. normal weight lean [217]

–

Atherosclerosis ↑ vascular inflammation [203]
↑ PWV
↑ soft plaques [201]
↑ CACS 218vs. normal weight 

lean

↑ peripheral microvascular 
dysfunction (PMID: 
28,275,071)

↑ cIMT [219, 220]
↑ CACS [218]
vs. normal weight lean
↑ cIMT [221]
vs. MUNW < 60y old

↑ peripheral 
microvascular 
dysfunction [222]

↑ cIMT [220]
↑ CACS [218]
vs. normal weight lean
↑ cIMT [221]
vs. MUNW < 60y old

↑ arterial stiffness [223]
↑ CACS [224]
vs. non-sarcopenic
↑ cIMT [225]
vs. non-sarcopenic elderly

HF ↑ LVsD
↑ LVdD [226, 227]
↑ risk [228]
vs. normal weight lean
↑ risk [183]
vs. normal weight lean post-

menopausal woman
↑ LVH [178]
vs. MHO

↑ risk [199, 229, 230]
vs. normal weight lean
↑ LVdD [231]
vs. MUNW
↑ risk [230]
over time
 = risk than normal weight lean 

in post-menopausal woman 
(PMID: 33775111)

↑ risk [183]
vs. normal weight lean 

post-menopausal 
woman

↑ LVH [178, 179, 232, 
233] vs. MHO

↓ CRF [216, 234]
vs. non-sarcopenic HFrEF

AF ↑ risk [228]
vs. normal weight lean

↑ risk [186, 199, 229, 235]
vs. normal weight lean
↓ risk [236]
vs. MUO

↑ risk [186]
vs. normal weight lean

↑ risk [225]
vs. non-sarcopenic elderly

CV events/mortality ↑ risk [204, 230, 237] vs. 
normal weight lean

↑ risk [238]
vs. obese (MHO/MUO)

↑ risk [199, 229, 237, 239, 
240]

vs. normal weight lean
↑ risk [206, 241]
vs. MUNW

↑ risk [204, 230, 242]
vs. normal weight lean

↑ risk [216, 243, 244]
vs. non-sarcopenic HF and 

elderly
↑ risk [213]
vs. non-sarcopenic after STEMI
↑ MI risk
vs. non-sarcopenic elderly
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from LVH to overt HF is complex and still partially unex-
plored, despite LVH being clearly recognized as an inde-
pendent predictor of CV mortality [180], stroke, and renal 
outcomes [181]. Increased left ventricle stiffness and mass 
impairs the relaxation phase of the cardiac cycle leading 
to diastolic dysfunction, potentially leading to HF with 
preserved ejection fraction (HFpEF) [182]. To be noted, 
HF with reduced ejection fraction (HFrEF) is reported 
less frequently in patients with MUO and MUNW, and 
mostly associates with acute CV events (e.g., acute MI) 
[183]. Such negative structural and energetic remodeling 
is—together with inflammation and neuro-hormonal acti-
vation—a well-established substrate for arrhythmias [184]. 
In MUO, cardiac arrhythmias are frequent and precipi-
tated by several co-factors including hypoxia, hypercapnia, 
electrolyte imbalances due to diuretic therapy, CAD and 
obstructive sleep apnea [185]. AF is the most common 
sustained cardiac arrhythmia diagnosed in individuals 
with obesity being an important determinant of stroke, 
HF, MI, dementia, and death in such population [186]. 
Of interest, positive correlations were found between the 
cumulative metabolic affliction and the risk of incident 
AF [187]. Of paramount, DM and hypertension are well-
known independent risk factor of AF as well as criteria of 
the CHA2DS2-VASc-score [188]. As for the relationship 
between elevated TG and the risk of AF, reports remain 
controversial. While the Multi-Ethnic Study of Athero-
sclerosis (MESA) and the Framingham Heart Study (FHS) 
reported an association between hypertriglyceridemia and 
AF [189], this was not confirmed by the Niigata Preventive 
Medicine Study and by post-hoc analysis from the ARIC 
study [187, 190]. Obesity has been identified as the most 
common nonischemic cause of SCD [191]. Indeed, its 
association with SCD is well established [192] and every 
5-unit increment in BMI indeed confers a 16% higher risk 
of SCD [193]. Cardiac fibrosis due to LVH, QRS fragmen-
tation, QT prolongation, premature ventricular complexes, 
autonomic imbalance and increased EAT [194, 195] may 
explain the greater risk of ventricular tachycardia/ven-
tricular fibrillation in such population [196].

Few studies explored and compared the different mecha-
nisms involved in the development of CV disease (CVD) 
in MHO and MUNW with respect to MUO and metaboli-
cally healthy individuals. Several studies suggested MHO 
as a pre-MUO condition with an intermediate risk of CVD 
between MUO and the healthy phenotype [197, 198]. How-
ever, this relationship may vary depending on the definition 
of MHO, the lack of adjustment for some confounding fac-
tors such as age, sex or a history of smoking, and the lack 
of separate analyses of the different subtypes of incident 
CV events. Individuals with MHO do not appear to carry a 
higher risk of MI, ischemic stroke, or CV death than healthy 
individuals. On the opposite, they show an increased risk HF 

and AF [199]. Similarly, in a nationwide analysis conducted 
in South Korea, Lee et al. reported a non-increased risk of 
ischemic stroke in MHO individuals [200].

On the contrary, MUNW is historically defined as a “fat 
mass disease” due to its higher risk of developing MetS and 
CVD despite normal weight [68]. Several large studies sug-
gested the absence of correlation between normal weight and 
unhealthy status in patients with CV events, pointing out the 
possible role of other risk factors. MUNW individuals carry 
a higher incidence of subclinical atherosclerosis assessed by 
coronary computed tomography angiography as compared 
with healthy individuals [201]. Moreover, MUNW associ-
ates with soft atherosclerotic plaques [202] and subclinical 
vascular inflammation [203], known predictors of plaque 
rupture and ischemic events. The characterization of CV risk 
in such patients is far from being yet compete. Few clinical 
studies explored the incidence of CVD in this subgroup of 
obesity, reporting an increased risk of myocardial infarction 
in Chines [204] and Mexican American [205] populations. 
Of interest, a single study evaluated the incidence of HF in 
MUNW compared with MHO so far, reporting a twofold risk 
over 6 years [206]. Regarding AF, MUNW carries twofold 
increased risk as compared with healthy people or to MHO/
MUO individuals [207].

Sarcopenia may promote atherogenesis due to relative 
fat mass increase in response to loss of muscle mass and 
replacement of myocytes by adipocytes. Hence, an even 
greater effect on CVD is expected for such a derangement 
with respect to obesity or sarcopenia alone [208]. Despite 
evidence on the relationships between SO and cardiovascu-
lar risk factors, its association with CVD is far from being 
clarified [209]. Cross-sectional studies have often yielded 
inconsistent results while prospective studies reported 
higher CV events in SO groups compared with the nor-
mal body composition groups only when SO was defined 
by using grip strength and WC criteria [86, 210]. In the 
Cardiovascular Health Study, a large prospective study 
of community-dwelling older men and women, SO based 
on WC and muscle strength was associated with the high-
est risk of CVD and HF over 8 years as compared with 
healthy subjects [211]. Few studies reported also higher 
incidence of myocardial infarction and AF, particularly in 
elderly [212]. Furthermore, patients with SO showed poor 
prognosis after STEMI, characterized by increased rate of 
all-cause death, MI, ischemic stroke, hospitalization for HF 
and unplanned revascularization [213]. The role of body 
composition in the development and progression of HF has 
recently received intense scrutiny [214]. In fact, in addition 
to cardiac dysfunction patients with HF also present abnor-
malities in body composition such as sarcopenia, SO and 
cachexia [215] with direct negative impact on their quality 
of life and survival. The FRAGILE-HF trial reported an 
high predictive role of SO in predicting mortality in adults 
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with HF [216]. However, the lack of universally recognized 
diagnostic criteria remained a non-negligible factor which 
affects patient identification, reliable assessment of SO 
prevalence and outcomes. In 2022, the European Society for 
Clinical Nutrition and Metabolism (ESPEN) and the Euro-
pean Association for the Study of Obesity (EASO) provided 
the first consensus on SO definition, screening, diagnosis 
and staging [81]. Such consensus will help to uniform the 
selection criteria of SO patients in future studies.

6  Therapeutic management of obesity 
phenotypes

Preliminary results suggest that the different obesity phe-
notypes also have different responses to weight loss inter-
ventions, including diets, medications, devices, and surgery 
[245]. Yet, by now no randomized controlled trials on obesity 
treatment compared cardiometabolic outcomes among indi-
viduals with different obesity phenotypes. However, numer-
ous studies support the need for a stratification effort in rela-
tion to the type of obesity. Weight reduction approaches are 
initially based on incremented on physical activity imple-
mentation and dietary strategies. In patients living with obe-
sity, regular physical activity and aerobic exercise provide 
a moderately reduction of risk factors for CAD, including 
body fat and body mass, blood pressure, triglycerides, and 
improved lipoprotein profile. Furthermore, physical activity 
improved insulin sensitivity and endothelial function regard-
less of weight loss. As a result, regular physical activity asso-
ciates with a sensible improvement of obesity-associated 
complications including CAd [246]. As for the diet, despite 
the scientific soundness of energy restriction approaches, 
the evidence shows only modest effects with high individual 
differences and short duration. The Mediterranean dietary 
pattern has been widely recognized for its protective effects 
on obesity, CVD and DM in addition to decreasing all-cause 
mortality [247]. In MUO phenotype, weight loss is the cor-
nerstone of the clinical management. Body weight reduction 
together with a low glycemic index diet have several ben-
eficial effects on serum glucose, LDL and blood pressure 
improving CVD risk [248]. In patients with MHO weight 
loss strategies should be recommended to preserve cardio-
metabolic risk profile and avoid MHO/MUO conversion. 
Several studies highlighted the importance of improving fat 

oxidation in patients with MHO to prevent MetS/DM [249]. 
Suitable approaches include increased aerobic activity, Medi-
terranean diet, and supplementation with catechins, capsai-
cin, or L-carnitin [250, 251]. Regarding SO, both dietary 
interventions and regular exercise are reccomended [252]. 
Aerobic activity, resistance training and their combination 
increase muscle protein synthesis in older adults despite age-
related decreases in anabolic signaling [253]. Furthermore, 
physical activity leads to the recruitment of muscle satellite 
cells located between myofibers and their surrounding basal 
lamina [254] and downregulation of inflammatory biomarker 
[255]. SO patients should be advised to follow a hypoca-
loric high-protein diet (1.2–1.4 g/kg body weight reference/
day) to preserve their muscle mass [256]. On the opposite, 
significant weight loss is not recommended for individuals 
with MUNW. These individuals have less fat mass than other 
phenotypes, therefore, therapeutic strategies should focus on 
improving metabolic health and their effects on different adi-
pose tissue compartments and on lipid accumulation in the 
liver. As an example, the Mediterranean diet reduces the risk 
of CV events by about 30%, compared with a control diet, 
despite having little effect on bodyweight [257]. Anti-obesity 
drugs have historically faced multiple issues relating to study 
design, premature termination due to safety issues or failure 
to show CV benefit [258]. Furthermore, there is no evidence 
on obesity phenotype‐specific effects of such medications 
to date. Metabolic/bariatric surgery remains the most effec-
tive strategy to accomplish a significant (≥ 30%) and durable 
(at ≥ 5 years) weight loss leading to reduced all-cause and 
CV mortality and lower incidence of several CVD [259]. 
However, this approach remains strictly recommended only 
for patients with complicated severe obesity.

7  Conclusions

Guidelines from major European and American Societies 
highlight the importance of effective diagnosis and treatment 
of obesity in preventing CVD in clinical practice [8, 260, 
261]. Obesity diagnosis may not be as simple as previously 
thought. Specifically, it cannot depend only on anthropomet-
ric parameters but should include a precise assessment of the 
metabolic status. Under this point of view different pheno-
types of obesity have been proposed each one with specific 
effects on the CV system and with different responses to 
anti-obesity interventions. The current lack of standardized 
definitions reflects on a general paucity of experimental 
evidence impacting on the daily ability to provide person-
alized prescriptions to patients living with obesity. Such a 
complexity requires a multidisciplinary approach including 
specialists in obesity medicine, internal medicine, cardiol-
ogy, psychology, as well as dieticians, family doctors, and 
bariatric surgeons. Accordingly, the therapeutic management 

Fig. 2  Obesity phenotypes and cardiovascular risk. This figure sum-
marizes the close relationship between the different obesity phe-
notypes and the CV risk. AF, atrial fibrillation; CV, cardiovascular; 
EAT, epicardial adipose tissue; HF, heart failure; LVH, left ventricu-
lar hypertrophy; MetS, metabolic syndrome; MHO, metabolically 
healthy obese; MI, myocardial infarction; MUNW, metabolically 
unhealthy normal weight; MUO, metabolically unhealthy obese; 
ROS, reactive oxygen species; SO, sarcopenic obese

◂
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of adiposopathy and its CV sequelae should be based on 
combination approaches encompassing surgery, pharmaco-
therapy, and lifestyle interventions.
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