Skip to main content

Advertisement

Log in

Targeting aging with the healthy skeletal system: The endocrine role of bone

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Aging is an inevitable biological process, and longevity may be related to bone health. Maintaining strong bone health can extend one’s lifespan, but the exact mechanism is unclear. Bone and extraosseous organs, including the heart and brain, have complex and precise communication mechanisms. In addition to its load bearing capacity, the skeletal system secretes cytokines, which play a role in bone regulation of extraosseous organs. FGF23, OCN, and LCN2 are three representative bone-derived cytokines involved in energy metabolism, endocrine homeostasis and systemic chronic inflammation levels. Today, advanced research methods provide new understandings of bone as a crucial endocrine organ. For example, gene editing technology enables bone-specific conditional gene knockout models, which allows the study of bone-derived cytokines to be more precise. We systematically evaluated the various effects of bone-derived cytokines on extraosseous organs and their possible antiaging mechanism. Targeting aging with the current knowledge of the healthy skeletal system is a potential therapeutic strategy. Therefore, we present a comprehensive review that summarizes the current knowledge and provides insights for futures studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Adeno-Associated Virus:

AAV

Adenosine 5‘-Monophosphate (AMP)-Activated Protein Kinase:

AMPK

Alzheimer'sDisease:

AD

Autosomal Dominant Hypophosphatemic Rickets:

ADHR

Blood-Brain Barrier:

BBB

Bone Mineral Density:

BMD

Bone Morphogenetic Protein:

BMP

Brain-Derived Neurotrophic Factor:

BDNF

Chondrocyte:

CH

Chronic Obstructive Pulmonary Disease:

COPD

Dentin Matrix Protein 1:

DMP1

Fibroblast Growth Factor 23:

FGF23

GrowthDifferentiation Factor-11:

GDF11

Grancalcin:

GCA

Homeobox A3:

HOXA3

Hypoxia-Inducible Factor 1Α:

HIF-1Α

Insulin-Like Growth Factor 1:

IGF 1

Interleukin-6:

IL-6

Lipocalin-2:

LCN2

Long-Term Potentiation:

LTP

Macrophage Colony Stimulating Factor:

M-CSF

Melanocorticoid 4 Receptor:

MC4R

Mouse Vascular Smooth Muscle Cells:

MOVAS

Neuromuscular Junctions:

Nmjs

Nuclear Factor:

NFAT

Nucleotide- Binding Oligomerization Domain, Leucine- Rich Repeat And Pyrin Domain-Containing 3:

NLRP3

Oligodendrocyte:

OL

Osteoblast:

OB

Osteocalcin:

OCN

Osteopontin:

OPN

Osteoprotegerin:

OPG

Parathyroid Hormone:

PTH

Parkinson'sDisease:

PD

Peripheral Blood Mononuclear Cells:

Pbmcs

Phosphate-Regulating Endopeptidase Homolog:

X-Linked, PHEX

Phospholipase CΓ:

PLCΓ

Platelet-Derived Growth Factor Subunit B:

PDGF-BB

Receptor Activator For Nuclear Factor-Κ B Ligand:

RANKL

Reticulocalbin-2:

RCN2

TransformingGrowth Factor:

TGF

Vascular Endothlial Growth Factor:

VEGF

Wnt Family Member 10B:

WNT10B

References

  1. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013.

  2. Bernardes de Jesus B, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012.

  3. Mojiri A, Walther BK, Jiang C, Matrone G, Holgate R, Xu Q, et al. Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice. Eur Heart J. 2021.

  4. Zhang C, Feng J, Wang S, Gao P, Xu L, Zhu J, et al. Incidence of and trends in hip fracture among adults in urban China: a nationwide retrospective cohort study. PLoS Med. 2020.

  5. Cauley JA, Lui LY, Barnes D, Ensrud KE, Zmuda JM, Hillier TA, et al. Successful skeletal aging: a marker of low fracture risk and longevity. The study of osteoporotic fractures (SOF). J Bone Miner Res. 2009.

  6. Dayer SR, Mears SC, Pangle AK, Mendiratta P, Wei JY, Azhar G. Does Superior Bone Health Promote a Longer Lifespan? Geriatr Orthop Surg Rehabil. 2021.

  7. Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J, et al. Reduced expression of MYC increases longevity and enhances healthspan. Cell. 2015.

  8. Center JR, Lyles KW, Bliuc D. Bisphosphonates and lifespan. Bone. 2020.

  9. Colón-Emeric CS, Mesenbrink P, Lyles KW, Pieper CF, Boonen S, Delmas P, et al. Potential mediators of the mortality reduction with zoledronic acid after hip fracture. J Bone Miner Res. 2010.

  10. Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone - the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018.

  11. Robling AG, Bonewald LF. The osteocyte: New Insights. Annu Rev Physiol. 2020.

  12. Wang H, Zheng X, Zhang Y, Huang J, Zhou W, Li X, et al. The endocrine role of bone: Novel functions of bone-derived cytokines. Biochem Pharmacol [Internet]. Elsevier Inc. 2021;183:114308. Available from: https://doi.org/10.1016/j.bcp.2020.114308.

  13. DiGirolamo DJ, Clemens TL, Kousteni S. The skeleton as an endocrine organ. Nat Rev Rheumatol. 2012.

  14. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997.

  15. Pieralice S, Vigevano F, Del Toro R, Napoli N, Maddaloni E. Lifestyle Management of Diabetes: implications for the bone-vascular Axis. Curr Diab Rep. 2018.

  16. Zhang C, Zhang Z, Li J, Deng L, Geng J, Jin K, et al. Association between Dietary Inflammatory Index and serum Klotho concentration among adults in the United States. BMC Geriatr England. 2022;22:528.

    Article  Google Scholar 

  17. Neves RVP, Corrêa HDL, De Sousa Neto IV, Souza MK, Costa F, Haro AS, et al. Renoprotection Induced by Aerobic training is dependent on nitric oxide bioavailability in obese Zucker rats. Oxid Med Cell Longev. 2021.

  18. Li DJ, Fu H, Zhao T, Ni M, Shen FM. Exercise-stimulated FGF23 promotes exercise performance via controlling the excess reactive oxygen species production and enhancing mitochondrial function in skeletal muscle. Metabolism. 2016.

  19. Chen G, Liu Y, Goetz R, Fu L, Jayaraman S, Hu MC, et al. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature [Internet]. Nature Publishing Group; 2018;553:461–6. Available from: https://doi.org/10.1038/nature25451.

  20. Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren Ö, Tenenhouse HS, et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the α1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology. 2004.

  21. Shimada T, Urakawa I, Yamazaki Y, Hasegawa H, Hino R, Yoneya T, et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun. 2004.

  22. Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taguchi T, Erben RG, et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 2004.

  23. Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD. Pathogenic role of Fgf23 in hyp mice. Am J Physiol - Endocrinol Metab. 2006.

  24. Clinkenbeard EL, Cass TA, Ni P, Hum JM, Bellido T, Allen MR, et al. Conditional deletion of murine Fgf23: interruption of the normal skeletal responses to phosphate challenge and rescue of genetic hypophosphatemia. J Bone Miner Res. 2016.

  25. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004.

  26. Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, et al. A bacterium that can grow by using arsenic instead of phosphorus. Science (80-). 2011.

  27. Mitchell HH, Hamilton TS, Steggerda FR, Bean HW. The chemical composition of the adult human body and its bearing on the biochemistry of growth. J Biol Chem. 1945.

  28. Hu MC, Moe OW. Phosphate and Cellular Senescence. Adv Exp Med Biol. 2022.

  29. Peacock M. Phosphate metabolism in Health and Disease. Calcif Tissue Int. 2021.

  30. Buchanan S, Combet E, Stenvinkel P, Shiels PG. Klotho, Aging, and the failing kidney. Front Endocrinol (Lausanne). 2020.

  31. Tsuchiya K, Akihisa T. The importance of phosphate control in chronic kidney disease. Nutrients. 2021.

  32. Noonan ML, Ni P, Solis E, Marambio YG, Agoro R, Chu X, et al. Osteocyte Egln1/Phd2 links oxygen sensing and biomineralization via FGF23. Bone Res China. 2023;11:7.

    Article  CAS  Google Scholar 

  33. Christov M, Waikar SS, Pereira RC, Havasi A, Leaf DE, Goltzman D, et al. Plasma FGF23 levels increase rapidly after acute kidney injury. Kidney Int. 2013.

  34. Vervloet M. Renal and extrarenal effects of fibroblast growth factor 23. Nat Rev Nephrol. 2019.

  35. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007.

  36. Kuro- OM. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol. 2013.

  37. Udell JA, Morrow DA, Jarolim P, Sloan S, Hoffman EB, O’Donnell TF, et al. Fibroblast growth factor (FGF)-23, cardiovascular prognosis, and benefit of angiotensin-converting enzyme inhibition in patients with stable coronary artery disease. Circulation. 2013.

  38. Udell JA, Morrow DA, Jarolim P, Sloan S, Hoffman EB, O’Donnell TF, et al. Fibroblast growth factor-23, cardiovascular prognosis, and benefit of angiotensin-converting enzyme inhibition in stable ischemic heart disease. J Am Coll Cardiol. 2014.

  39. Bergmark BA, Udell JA, Morrow DA, Cannon CP, Steen DL, Jarolim P, et al. Association of fibroblast growth factor 23 with recurrent cardiovascular events in patients after an acute coronary syndrome a secondary analysis of a randomized clinical trial. JAMA Cardiol. 2018.

  40. Panwar B, Judd SE, Wadley VG, Jenny NS, Howard VJ, Safford MM, et al. Association of fibroblast growth factor 23 with risk of incident coronary heart disease in community-living adults. JAMA Cardiol. 2018;3:318–25.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lindner M, Mehel H, David A, Leroy C, Burtin M, Friedlander G et al. Fibroblast growth factor 23 decreases PDE4 expression in heart increasing the risk of cardiac arrhythmia; Klotho opposes these effects. Basic Res Cardiol [Internet]. Springer, Berlin Heidelberg; 2020;115:1–19. Available from: https://doi.org/10.1007/s00395-020-0810-6.

  42. Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA, Correa-Rotter R, et al. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Circulation. 2015;132:27–39.

    Article  CAS  PubMed  Google Scholar 

  43. Bergmark BA, Udell JA, Morrow DA, Jarolim P, Kuder JF, Solomon SD, et al. Klotho, fibroblast growth factor-23, and the renin–angiotensin system — an analysis from the PEACE trial. Eur J Heart Fail. 2019.

  44. Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, et al. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 2015;22:1020–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Scialla JJ, Lau WL, Reilly MP, Isakova T, Yang HY, Crouthamel MH, et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 2013.

  46. Lindberg K, Olauson H, Amin R, Ponnusamy A, Goetz R, Taylor RF, et al. Arterial Klotho expression and FGF23 Effects on vascular calcification and function. PLoS ONE. 2013.

  47. Huang C, Zhan JF, Chen YX, Xu CY, Chen Y. LncRNA-SNHG29 inhibits vascular smooth muscle cell calcification by downregulating miR-200b-3p to activate the α-Klotho/FGFR1/FGF23 axis. Cytokine. 2020.

  48. Zhu D, Mackenzie NCW, Millan JL, Farquharson C, MacRae VE. A protective role for FGF-23 in local defence against disrupted arterial wall integrity? Mol Cell Endocrinol. 2013.

  49. Cancela AL, Santos RD, Titan SM, Goldenstein PT, Rochitte CE, Lemos PA, et al. Phosphorus is associated with coronary artery disease in patients with preserved renal function. PLoS One. 2012.

  50. Roos M, Lutz J, Salmhofer H, Luppa P, Knauß A, Braun S, et al. Relation between plasma fibroblast growth factor-23, serum fetuin-A levels and coronary artery calcification evaluated by multislice computed tomography in patients with normal kidney function. Clin Endocrinol (Oxf). 2008.

  51. Luo Y, Lu W, Li X. Unraveling endocrine FGF signaling complex to Combat Metabolic Diseases. Trends Biochem Sci. 2018.

  52. Drew DA, Tighiouart H, Scott TM, Lou KV, Fan L, Shaffi K, et al. FGF-23 and cognitive performance in hemodialysis patients. Hemodial Int. 2014;18:78–86.

    Article  PubMed  Google Scholar 

  53. Wright CB, Dong C, Stark M, Silverberg S, Rundek T, Elkind MSV, et al. Plasma FGF23 and the risk of stroke: the Northern Manhattan Study (NOMAS). Neurology. 2014;82:1700–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McGrath ER, Himali JJ, Levy D, Conner SC, Pase MP, Abraham CR, et al. Circulating fibroblast growth factor 23 levels and incident dementia: the Framingham heart study. PLoS ONE. 2019;14:1–15.

    Article  Google Scholar 

  55. Li B, Zhou M, Peng J, Yang Q, Chu J, Li R, et al. Mechanism of the Fibroblast Growth Factor 23/α-Klotho Axis in Peripheral Blood Mononuclear Cell Inflammation in Alzheimer’s Disease. Immunol Invest [Internet]. Taylor & Francis; 2021;00:1–14. Available from: https://doi.org/10.1080/08820139.2021.1970180.

  56. Hensel N, Schön A, Konen T, Lübben V, Förthmann B, Baron O, et al. Fibroblast growth factor 23 signaling in hippocampal cells: impact on neuronal morphology and synaptic density. J Neurochem. 2016.

  57. Liu P, Chen L, Bai X, Karaplis A, Miao D, Gu N. Impairment of spatial learning and memory in transgenic mice overexpressing human fibroblast growth factor-23. Brain Res. 2011.

  58. Laszczyk AM, Nettles D, Pollock TA, Fox S, Garcia ML, Wang J, et al. FGF-23 deficiency impairs hippocampal-Dependent cognitive function. eNeuro. 2019.

  59. Kunert SK, Hartmann H, Haffner D, Leifheit-Nestler M. Klotho and fibroblast growth factor 23 in cerebrospinal fluid in children. J Bone Miner Metab. 2017.

  60. Liberale L, Montecucco F, Tardif JC, Libby P, Camici GG. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur Heart J. 2020.

  61. Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016.

  62. Holecki M, Chudek J, Owczarek A, Olszanecka-Glinianowicz M, Bozentowicz-Wikarek M, Duława J, et al. Inflammation but not obesity or insulin resistance is associated with increased plasma fibroblast growth factor 23 concentration in the elderly. Clin Endocrinol (Oxf). 2015.

  63. Krick S, Helton ES, Hutcheson SB, Blumhof S, Garth JM, Denson RS, et al. FGF23 induction of O-Linked N-Acetylglucosamine regulates IL-6 secretion in human bronchial epithelial cells. Front Endocrinol (Lausanne). 2018.

  64. Krick S, Grabner A, Baumlin N, Yanucil C, Helton S, Grosche A, et al. Fibroblast growth factor 23 and Klotho contribute to airway inflammation. Eur Respir J. 2018.

  65. Gulati S, Wells JM, Urdaneta GP, Balestrini K, Vital I, Tovar K, et al. Fibroblast growth factor 23 is associated with a frequent exacerbator phenotype in COPD: a cross-sectional pilot study. Int J Mol Sci. 2019.

  66. McKnight Q, Jenkins S, Li X, Nelson T, Marlier A, Cantley LG, et al. IL-1β drives production of FGF-23 at the onset of chronic kidney disease in mice. J Bone Miner Res. 2020.

  67. Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 2016.

  68. Otani T, Mizokami A, Hayashi Y, Gao J, Mori Y, Nakamura S, et al. Signaling pathway for adiponectin expression in adipocytes by osteocalcin. Cell Signal. 2015.

  69. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocr Regul Energy Metabolism Skelet Cell. 2007.

  70. Zhou R, Guo Q, Xiao Y, Guo Q, Huang Y, Li C, et al. Endocrine role of bone in the regulation of energy metabolism. Bone Res. 2021.

  71. Kanazawa I, Tanaka K, Ogawa N, Yamauchi M, Yamaguchi T, Sugimoto T. Undercarboxylated osteocalcin is positively associated with free testosterone in male patients with type 2 diabetes mellitus. Osteoporos Int. 2013.

  72. Karsenty G, Oury F. Regulation of male fertility by the bone-derived hormone osteocalcin. Mol Cell Endocrinol 2014.

  73. Yeap BB, Alfonso H, Chubb SAP, Byrnes E, Beilby JP, Ebeling PR, et al. Proportion of undercarboxylated osteocalcin and serum P1NP predict incidence of myocardial infarction in older men. J Clin Endocrinol Metab. 2015;100:3934–42.

    Article  CAS  PubMed  Google Scholar 

  74. Gössl M, Mödder UI, Atkinson EJ, Lerman A, Khosla S. Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis. J Am Coll Cardiol. 2008;52:1314–25.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Flammer AJ, Gössl M, Widmer RJ, Reriani M, Lennon R, Loeffler D, et al. Osteocalcin positive CD133+/CD34-/KDR + progenitor cells as an independent marker for unstable atherosclerosis. Eur Heart J. 2012;33:2963–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rashdan NA, Sim AM, Cui L, Phadwal K, Roberts FL, Carter R, et al. Osteocalcin regulates arterial calcification Via altered wnt signaling and glucose metabolism. J Bone Miner Res. 2020;35:357–67.

    Article  CAS  PubMed  Google Scholar 

  77. Tacey A, Qaradakhi T, Brennan-Speranza T, Hayes A, Zulli A, Levinger I. Potential role for osteocalcin in the development of atherosclerosis and blood vessel disease. Nutrients. 2018.

  78. Millar SA, Patel H, Anderson SI, England TJ, O’Sullivan SE. Osteocalcin, vascular calcification, and atherosclerosis: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2017.

  79. Dou J, Li H, Ma X, Zhang M, Fang Q, Nie M, et al. Osteocalcin attenuates high fat diet-induced impairment of endothelium-dependent relaxation through Akt/eNOS-dependent pathway. Cardiovasc Diabetol. 2014.

  80. Shan C, Ghosh A, Guo XZ, Wang SM, Hou YF, Li ST, et al. Roles for osteocalcin in brain signalling: implications in cognition- and motor-related disorders. Mol Brain. 2019.

  81. Berggren S, Andersson O, Hellström-Westas L, Dahlgren J, Roswall J. Serum osteocalcin levels at 4 months of age were associated with neurodevelopment at 4 years of age in term-born children. Acta Paediatr Int J Paediatr. 2022;111:338–45.

    Article  CAS  Google Scholar 

  82. Oury F, Khrimian L, Denny CA, Gardin A, Chamouni A, Goeden N, et al. XMaternal and offspring pools of osteocalcin influence brain development and functions. Cell [Internet] Elsevier. 2013;155:228. https://doi.org/10.1016/j.cell.2013.08.042.

    Article  CAS  Google Scholar 

  83. Qian Z, Li H, Yang H, Yang Q, Lu Z, Wang L, et al. Osteocalcin attenuates oligodendrocyte differentiation and myelination via GPR37 signaling in the mouse brain. Sci Adv. 2021;7.

  84. Bradburn S, Mcphee JS, Bagley L, Sipila S, Stenroth L, Narici MV, et al. Association between osteocalcin and cognitive performance in healthy older adults. Age Ageing. 2016;45:844–9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Duchowny K. Do nationally representative cutpoints for clinical muscle weakness predict mortality? Results from 9 years of follow-up in the health and retirement study. Journals Gerontol - Ser A Biol Sci Med Sci. 2019. https://doi.org/10.1093/gerona/gly169. Annex: PMID: 30052779; PMCID: PMC6580687.

  86. Hou Y, Shan C, Zhuang S, yue, Zhuang Q, qian, Ghosh A, Zhu K, cheng, et al. Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a mouse model of Parkinson’s disease. Microbiome Microbiome. 2021;9:1–17.

    Google Scholar 

  87. Khrimian L, Obri A, Ramos-Brossier M, Rousseaud A, Moriceau S, Nicot AS, et al. Gpr158 mediates osteocalcin’s regulation of cognition. J Exp Med. 2017;214:2859–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kosmidis S, Polyzos A, Harvey L, Youssef M, Denny CA, Dranovsky A, et al. RbAp48 protein is a critical component of GPR158/OCN signaling and ameliorates age-related memory loss. Cell Rep ElsevierCompany. 2018;25:959-973.e6. https://doi.org/10.1016/j.celrep.2018.09.077.

    Article  CAS  Google Scholar 

  89. Khrimian L, Obri A, Karsenty G. Modulation of cognition and anxiety-like behavior by bone remodeling. Mol Metab [Internet]. Elsevier GmbH; 2017;6:1610–5. Available from: https://doi.org/10.1016/j.molmet.2017.10.001.

  90. Sun D, Milibari L, Pan JX, Ren X, Yao LL, Zhao Y, et al. Critical roles of embryonic born dorsal dentate granule neurons for activity-dependent increases in BDNF, adult hippocampal neurogenesis, and antianxiety-like behaviors. Biol Psychiatry Soc Biol Psychiatry. 2021. https://doi.org/10.1016/j.biopsych.2020.08.026.

    Article  Google Scholar 

  91. Suzuki T, Sato T, Ichikawa H. Osteocalcin- and osteopontin-containing neurons in the rat hind brain. Cell Mol Neurobiol. 2012.

  92. Rentsendorj A, Sheyn J, Fuchs DT, Daley D, Salumbides BC, Schubloom HE, et al. A novel role for osteopontin in macrophage-mediated amyloid-β clearance in Alzheimer’s models. Brain Behav Immun. 2018.

  93. Spitzer D, Puetz T, Armbrust M, Dunst M, Macas J, Croll F, et al. Anti-osteopontin therapy leads to improved edema and infarct size in a murine model of ischemic stroke. Sci Rep England. 2022;12:20925.

    Article  CAS  Google Scholar 

  94. Liao H, Zou Z, Liu W, Guo X, Xie J, Li L, et al. Osteopontin-integrin signaling positively regulates neuroplasticity through enhancing neural autophagy in the peri-infarct area after ischemic stroke. Am J Transl Res US. 2022;14:7726–43.

    CAS  Google Scholar 

  95. Ndiaye B, Lemonnier D, Sall MG, Prudhon C, Diaham B, Zeghoud F, et al. Serum osteocalcin regulation inprotein-energy malnourished children. Pediatr Res. 1995.

  96. Stounbjerg NG, Thams L, Hansen M, Larnkjær A, Clerico JW, Cashman KD et al. Effects of vitamin D and high dairy protein intake on bone mineralization and linear growth in 6-to 8-year-old children: the D-pro randomized trial. Am J Clin Nutr. 2021.

  97. Kuwabara A, Fujii M, Kawai N, Tozawa K, Kido S, Tanaka K. Bone is more susceptible to vitamin K deficiency than liver in the institutionalized elderly. Asia Pac J Clin Nutr. 2011.

  98. Krall EA, Dawson-Hughes B, Hirst K, Gallagher JC, Sherman SS, Dalsky G. Bone mineral density and biochemical markers of bone turnover in healthy elderly men and women. Journals Gerontol - Ser A Biol Sci Med Sci. 1997.

  99. Elders PJM, Lips P, Netelenbos JC, van Ginkel FC, Khoe E, van der Vijgh WJF, et al. Long-term effect of calcium supplementation on bone loss in perimenopausal women. J Bone Miner Res. 1994.

  100. Bügel S. Vitamin K and Bone Health in Adult Humans. Vitam. Horm. 2008.

  101. Johnson JL, Mistry VV, Vukovich MD, Hogie-Lorenzen T, Hollis BW, Specker BL. Bioavailability of vitamin D from fortified process cheese and effects on vitamin D status in the elderly. J Dairy Sci. 2005.

  102. Fan LM, Cahill-Smith S, Geng L, Du J, Brooks G, Li JM. Aging-associated metabolic disorder induces Nox2 activation and oxidative damage of endothelial function. Free Radic Biol Med. 2017.

  103. Curtis R, Geesaman BJ, DiStefano PS. Ageing and metabolism: drug discovery opportunities. Nat Rev Drug Discov. 2005.

  104. Smith HJ, Sharma A, Mair WB. Metabolic communication and healthy aging: Where should we focus our energy? Dev Cell. 2020.

  105. Chin KY, Ima-Nirwana S, Mohamed IN, Ahmad F, Mohd Ramli ES, Aminuddin A, et al. Serum osteocalcin is significantly related to indices of obesity and lipid profile in malaysian men. Int J Med Sci. 2014.

  106. Kord-Varkaneh H, Djafarian K, khorshidi M, Shab-Bidar S. Association between serum osteocalcin and body mass index: a systematic review and meta-analysis. Endocrine. 2017.

  107. Huang L, Yang L, Luo L, Wu P, Yan S. Osteocalcin improves metabolic profiles, body composition and arterial stiffening in an Induced Diabetic Rat Model. Exp Clin Endocrinol Diabetes. 2017.

  108. Kanazawa I. Osteocalcin as a hormone regulating glucose metabolism. World J Diabetes. 2015.

  109. Komori T. What is the function of osteocalcin? J Oral Biosci. 2020.

  110. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006.

  111. Zhao Z, Cao J, Niu C, Bao M, Xu J, Huo D, et al. Body temperature is a more important modulator of lifespan than metabolic rate in two small mammals. Nat Metab. 2022.

  112. Nogalska A, Sucajtys-Szulc E, Swierczynski J. Leptin decreases lipogenic enzyme gene expression through modification of SREBP-1c gene expression in white adipose tissue of aging rats. Metabolism. 2005.

  113. Marwarha G, Raza S, Meiers C, Ghribi O. Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway. Biochim Biophys Acta - Mol Basis Dis. 2014.

  114. Folch J, Pedrós I, Patraca I, Sureda F, Junyent F, Beas-Zarate C, et al. Neuroprotective and anti-ageing role of leptin. J Mol Endocrinol 2012.

  115. Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galán-Díez M, et al. Osteocalcin signaling in Myofibers is necessary and sufficient for Optimum Adaptation to Exercise. Cell Metab. 2016;23:1078–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mera P, Laue K, Wei J, Berger JM, Karsenty G. Osteocalcin is necessary and sufficient to maintain muscle mass in older mice. Mol Metab [Internet]. Elsevier GmbH; 2016;5:1042–7. Available from: https://doi.org/10.1016/j.molmet.2016.07.002.

  117. Moriishi T, Ozasa R, Ishimoto T, Nakano T, Hasegawa T, Miyazaki T, et al. Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass. PLoS Genet. 2020.

  118. Mosialou I, Shikhel S, Liu JM, Maurizi A, Luo N, He Z, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature. Nature Publishing Group; 2017;543:385–90. Available from: https://doi.org/10.1038/nature21697.

  119. Choi EB, Jeong JH, Jang HM, Ahn YJ, Kim KH, An HS, et al. Skeletal lipocalin-2 is associated with iron-related oxidative stress in ob/ob mice with sarcopenia. Antioxidants. 2021;10:1–14.

    Article  Google Scholar 

  120. Lim WH, Wong G, Lim EM, Byrnes E, Zhu K, Devine A, et al. Circulating lipocalin 2 levels predict fracture-related hospitalizations in Elderly Women: a prospective cohort study. J Bone Miner Res. 2015;30:2078–85.

    Article  CAS  PubMed  Google Scholar 

  121. Costa D, Lazzarini E, Canciani B, Giuliani A, Spanò R, Marozzi K, et al. Altered bone development and turnover in transgenic mice over-expressing Lipocalin-2 in bone. J Cell Physiol. 2013;228:2210–21.

    Article  CAS  PubMed  Google Scholar 

  122. Capulli M, Ponzetti M, Maurizi A, Gemini-Piperni S, Berger T, Mak TW, et al. A Complex Role for Lipocalin 2 in bone metabolism: global ablation in mice induces Osteopenia caused by an altered energy metabolism. J Bone Miner Res. 2018;33:1141–53.

    Article  CAS  PubMed  Google Scholar 

  123. Rucci N, Capulli M, Piperni SG, Cappariello A, Lau P, Frings-Meuthen P, et al. Lipocalin 2: a new mechanoresponding gene regulating bone homeostasis. J Bone Miner Res. 2015;30:357–68.

    Article  CAS  PubMed  Google Scholar 

  124. Tsai TL, Li WJ. Identification of Bone Marrow-Derived Soluble Factors Regulating Human Mesenchymal Stem Cells for Bone Regeneration. Stem Cell Reports [Internet]. ElsevierCompany. 2017;8:387–400. Available from: https://doi.org/10.1016/j.stemcr.2017.01.004.

  125. Halabian R, Tehrani HA, Jahanian-Najafabadi A, Habibi Roudkenar M. Lipocalin-2-mediated upregulation of various antioxidants and growth factors protects bone marrow-derived mesenchymal stem cells against unfavorable microenvironments. Cell Stress Chaperones. 2013.

  126. Bahmani B, Roudkenar MHabib, Halabian R, Jahanian-Najafabadi A, Amiri F. Jalili MA l. Lipocalin 2 decreases senescence of bone marrow-derived mesenchymal stem cells under sub-lethal doses of oxidative stress. Cell Stress Chaperones. 2014.

  127. Costa D, Principi E, Lazzarini E, Descalzi F, Cancedda R, Castagnola P, et al. LCN2 overexpression in bone enhances the hematopoietic compartment via modulation of the bone marrow microenvironment. J Cell Physiol. 2017;232:3077–87.

    Article  CAS  PubMed  Google Scholar 

  128. Lee S, Kim JH, Kim JH, Seo JW, Han HS, Lee WH, et al. Lipocalin-2 is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J Biol Chem. 2011.

  129. Rolando C, Parolisi R, Boda E, Schwab ME, Rossi F, Buffo A. Distinct roles of Nogo-A and nogo receptor 1 in the homeostatic regulation of adult neural stem cell function and neuroblast migration. J Neurosci. 2012.

  130. Naudé PJW, Nyakas C, Eiden E, Ait-Ali L, Heide D, Engelborghs R. S, Lipocalin 2: novel component of proinflammatory signaling in Alzheimer’s disease. FASEB J. 2012.

  131. Yan QW, Yang Q, Mody N, Graham TE, Hsu CH, Xu Z, et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes. 2007.

  132. Law IKM, Xu A, Lam KSL, Berger T, Mak TW, Vanhoutte PM, et al. Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes. 2010;59:872–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu CY, Bawa KK, Ouk M, Leung N, Yu D, Lanctôt KL, et al. Neutrophil activation in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis of protein markers in blood and cerebrospinal fluid. Ageing Res Rev. 2020.

  134. das Neves SP, Taipa R, Marques F, Soares Costa P, Monárrez-Espino J, Palha JA, et al. Association between Iron-Related protein lipocalin 2 and cognitive impairment in Cerebrospinal Fluid and serum. Front Aging Neurosci. 2021.

  135. Xing C, Wang X, Cheng C, Montaner J, Mandeville E, Leung W, et al. Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke. 2014.

  136. Kang SS, Ren Y, Liu CC, Kurti A, Baker KE, Bu G, et al. Lipocalin-2 protects the brain during inflammatory conditions. Mol Psychiatry. 2018.

  137. Dekens DW, Naudé PJW, Keijser JN, Boerema AS, De Deyn PP, Eisel ULM. Lipocalin 2 contributes to brain iron dysregulation but does not affect cognition, plaque load, and glial activation in the J20 Alzheimer mouse model 11 Medical and Health Sciences 1109 Neurosciences. J Neuroinflammation. 2018.

  138. Jin Z, Kim KE, Shin HJ, Jeong EA, Park KA, Lee JY, et al. Hippocampal lipocalin 2 is associated with neuroinflammation and iron-related oxidative stress in ob/ob mice. J Neuropathol Exp Neurol. 2020.

  139. Srivastava A, Barth E, Ermolaeva MA, Guenther M, Frahm C, Marz M, et al. Tissue-specific Gene Expression Changes Are Associated with Aging in Mice. Genomics, Proteomics Bioinforma [Internet]. Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China 2020;18:430–42. Available from: https://doi.org/10.1016/j.gpb.2020.12.001.

  140. Deis JA, Guo H, Wu Y, Liu C, Bernlohr DA, Chen X. Adipose Lipocalin 2 overexpression protects against age-related decline in thermogenic function of adipose tissue and metabolic deterioration. Mol Metab [Internet]. Elsevier GmbH 2019;24:18–29. Available from: https://doi.org/10.1016/j.molmet.2019.03.007.

  141. Mosialou I, Shikhel S, Luo N, Petropoulou PI, Panitsas K, Bisikirska B, et al. Lipocalin-2 counteracts metabolic dysregulation in obesity and diabetes. J Exp Med. 2020;217.

  142. Ponzetti M, Aielli F, Ucci A, Cappariello A, Lombardi G, Teti A, et al. Lipocalin 2 increases after high-intensity exercise in humans and influences muscle gene expression and differentiation in mice. J Cell Physiol. 2022;237:551–65.

    Article  CAS  PubMed  Google Scholar 

  143. Guidi N, Sacma M, Ständker L, Soller K, Marka G, Eiwen K, et al. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017.

  144. Young K, Eudy E, Bell R, Loberg MA, Stearns T, Sharma D, et al. Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. Cell Stem Cell. 2021.

  145. Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003.

  146. Hu K, Olsen BR. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest. 2016.

  147. Berendsen AD, Olsen BR. Regulation of adipogenesis and osteogenesis in mesenchymal stem cells by vascular endothelial growth factor A. J Intern Med. 2015.

  148. Licht T, Rothe G, Kreisel T, Wolf B, Benny O, Rooney AG, et al. VEGF preconditioning leads to stem cell remodeling and attenuates age-related decay of adult hippocampal neurogenesis. Proc Natl Acad Sci USA. 2016.

  149. Greenberg DA, Jin K. Vascular endothelial growth factors (VEGFs) and stroke. Cell Mol Life Sci. 2013.

  150. Hohman TJ, Bell SP, Jefferson AL. The role of vascular endothelial growth factor in Neurodegeneration and Cognitive decline. JAMA Neurol. 2015.

  151. Krakora D, Mulcrone P, Meyer M, Lewis C, Bernau K, Gowing G, et al. Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol Ther. 2013.

  152. Gavin TP, Kraus RM, Carrithers JA, Garry JP, Hickner RC. Aging and the skeletal muscle angiogenic response to Exercise in Women. J Gerontol - Ser A Biol Sci Med Sci. 2014.

  153. Olsen LN, Hoier B, Hansen CV, Leinum M, Carter HH, Jorgensen TS, et al. Angiogenic potential is reduced in skeletal muscle of aged women. J Physiol. 2020.

  154. Grunewald M, Kumar S, Sharife H, Volinsky E, Gileles-Hillel A, Licht T, et al. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science. 2021.

  155. McPherron AC, Lawler AM, Lee SJ. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet. 1999;22:260–4.

    Article  CAS  PubMed  Google Scholar 

  156. Chen Y, Guo Q, Zhang M, Song S, Quan T, Zhao T, et al. Relationship of serum GDF11 levels with bone mineral density and bone turnover markers in postmenopausal chinese women. Bone Res. 2016;4.

  157. Liu W, Zhou L, Zhou C, Zhang S, Jing J, Xie L, et al. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. Nat Commun Nature Publishing Group. 2016;7:1–13.

    Google Scholar 

  158. Lu Q, Tu ML, Li CJ, Zhang L, Jiang TJ, Liu T, et al. GDF11 inhibits bone formation by activating Smad2/3 in bone marrow mesenchymal stem cells. Calcif Tissue Int Springer US. 2016;99:500–9.

    Article  CAS  Google Scholar 

  159. Zhang Y, Shao J, Wang Z, Yang T, Liu S, Liu Y, et al. Growth differentiation factor 11 is a protective factor for osteoblastogenesis by targeting PPARgamma. Gene Elsevier BV. 2015;557:209–14. https://doi.org/10.1016/j.gene.2014.12.039.

    Article  CAS  Google Scholar 

  160. Suh J, Kim NK, Lee SH, Eom JH, Lee Y, Park JC, et al. GDF11 promotes osteogenesis as opposed to MSTN, and follistatin, a MSTN/GDF11 inhibitor, increases muscle mass but weakens bone. Proc Natl Acad Sci USA. 2020;117:4910–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Luo H, Guo Y, Liu Y, Wang Y, Zheng R, Ban Y, et al. Growth differentiation factor 11 inhibits adipogenic differentiation by activating TGF-beta/Smad signalling pathway. Cell Prolif. 2019;52:1–11.

    Article  Google Scholar 

  162. Katsimpardi L, Kuperwasser N, Camus C, Moigneu C, Chiche A, Tolle V, et al. Systemic GDF11 stimulates the secretion of adiponectin and induces a calorie restriction-like phenotype in aged mice. Aging Cell. 2020;19:1–11.

    Article  Google Scholar 

  163. Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. Elsevier Inc.; 2013;153:828–39. Available from: https://doi.org/10.1016/j.cell.2013.04.015.

  164. Du GQ, Shao ZB, Wu J, Yin WJ, Li SH, Wu J, et al. Targeted myocardial delivery of GDF11 gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia–reperfusion injury. Berlin Heidelberg: Springer; 2017. p. 112.

    Google Scholar 

  165. Su HH, Liao JM, Wang YH, Chen KM, Lin CW, Lee IH, et al. Exogenous GDF11 attenuates non-canonical TGF-β signaling to protect the heart from acute myocardial ischemia–reperfusion injury. Basic Res Cardiol. 2019;114:1–16.

    Article  CAS  Google Scholar 

  166. Smith SC, Zhang X, Zhang X, Gross P, Starosta T, Mohsin S, et al. GDF11 does not rescue aging-related pathological hypertrophy. Circ Res. 2015;117:926–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zimmers TA, Jiang Y, Wang M, Liang TW, Rupert JE, Au ED, et al. 4,5,6,. 112.

  168. Sako D, Grinberg AV, Liu J, Davies MV, Castonguay R, Maniatis S et al. Characterization of the ligand binding functionality of the extracellular domain of activin receptor type IIB. J Biol Chem. 2010.

  169. Poggioli T, Vujic A, Yang P, MacIas-Trevino C, Uygur A, Loffredo FS et al. Circulating growth differentiation factor 11/8 levels decline with age. Circ Res. 2016.

  170. Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, Swalley SE, et al. GDF11 increases with Age and inhibits skeletal muscle regeneration. Cell Metab. 2015.

  171. Camparini L, Kollipara L, Sinagra G, Loffredo FS, Sickmann A, Shevchuk O. Targeted Approach to Distinguish and Determine Absolute Levels of GDF8 and GDF11 in Mouse Serum. Proteomics. 2020.

  172. Seo MW, Jung SW, Kim SW, Lee JM, Jung HC, Song JK. Effects of 16 weeks of resistance training on muscle quality and muscle growth factors in older adult women with sarcopenia: a randomized controlled trial. Int J Environ Res Public Health. 2021.

  173. Saeidi A, Nouri-Habashi A, Razi O, Ataeinosrat A, Rahmani H, Mollabashi SS, et al. Astaxanthin supplemented with high-intensity functional training decreases adipokines levels and Cardiovascular Risk factors in men with obesity. Switzerland: Nutrients; 2023. p. 15.

    Google Scholar 

  174. Li CJ, Xiao Y, Sun YC, He WZ, Liu L, Huang M, et al. Senescent immune cells release grancalcin to promote skeletal aging. Cell Metab. 2021.

  175. Peng H, Hu B, Xie L-Q, Su T, Li C-J, Liu Y, et al. A mechanosensitive lipolytic factor in the bone marrow promotes osteogenesis and lymphopoiesis. Cell Metab. Elsevier Inc. 2022;1–15. Available from: https://doi.org/10.1016/j.cmet.2022.05.009.

Download references

Acknowledgments

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published. All authors report there are no conflicts of interest related to the present article.

Funding

This work was supported by the National Key Research and Development Program (2020YFC2009004, 2021YFC2501700), the National Natural Science Foundation of China (81874010, 82272554) and PKU-Baidu Fund (2020BD014).

Author information

Authors and Affiliations

Authors

Contributions

Zheng contributed as first authors. Zheng, Song had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: Zheng, Song. Acquisition, analysis, or interpretation of data: All authors. Drafting of the manuscript: Zheng, Song. Critical revision of the manuscript for important intellectual content: All authors. Statistical analysis: Zheng, Song. Obtained funding: Song. Administrative, technical, or material support: Song. Supervision: Song.

Corresponding author

Correspondence to Chun-Li Song.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of the manuscript entitled.

Role of the funder/sponsor

The sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xuan-Qi Zheng should be considered as first author.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, XQ., Lin, JL., Huang, J. et al. Targeting aging with the healthy skeletal system: The endocrine role of bone. Rev Endocr Metab Disord 24, 695–711 (2023). https://doi.org/10.1007/s11154-023-09812-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-023-09812-6

Keywords

Navigation