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Abstract
Obesity is a common complex trait that elevates the risk for various diseases, including type 2 diabetes and cardiovascular 
disease. A combination of environmental and genetic factors influences the pathogenesis of obesity. Advances in genomic 
technologies have driven the identification of multiple genetic loci associated with this disease, ranging from studying 
severe onset cases to investigating common multifactorial polygenic forms. Additionally, findings from epigenetic analy-
ses of modifications to the genome that do not involve changes to the underlying DNA sequence have emerged as key 
signatures in the development of obesity. Such modifications can mediate the effects of environmental factors, including 
diet and lifestyle, on gene expression and clinical presentation. This review outlines what is known about the genetic and 
epigenetic contributors to obesity susceptibility, along with the albeit limited therapeutic options currently available. Fur-
thermore, we delineate the potential mechanisms of actions through which epigenetic changes can mediate environmental 
influences and the related opportunities they present for future interventions in the management of obesity.
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1  Introduction

Obesity is a phenotype in which the percentage of body fat 
is increased to the point where health and well-being are 
impaired. The World Health Organization has declared obe-
sity a “global epidemic” given its alarming prevalence both 
in developed and developing countries. In the US, the prev-
alence of obesity between 2017 and 2020 was 41.9% for 
adults over 20 years old, with 19.7% being approximately 
14.7 million children and adolescents aged 2–19 years [1]. 
Obesity is a driver of a wide range of chronic cardio-meta-
bolic diseases, including type 2 diabetes and cardiovascular 
disease, along with numerous non-metabolic co-morbidities 
such as several types of cancer [2]. The mechanical issues 
resulting from increased body weight can drive risk for 
osteoarthritis [3] and sleep apnea [4]. The recent COVID-19 
pandemic revealed that individuals living with obesity were 
at increased risk of severe illness and hospitalization [5–7], 
highlighting its impact on communicable diseases, particu-
larly viral infection [8]. Altogether, obesity represents a sig-
nificant health burden on society, shortening life expectancy 
and reducing life quality.

While there is clear evidence that environmental fac-
tors contribute substantially to obesity risk, including a 
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observed for obesity, which in turn can be harnessed to aid 
precision therapies for this disease in the future.

2  Anthropometric parameters of obesity

2.1  BMI – a classic with limitations

Body mass index (BMI) is commonly used to measure 
excess body weight and obesity. Adult BMI between 18.5 
and 25 kg/m2 is considered average weight, 25–30 kg/m2 
overweight, and over 30  kg/m2 is defined as obese. But 
despite its widespread use, BMI as a measure of adiposity 
has limitations. Most notably BMI does not differentiate fat-
free and fat mass nor consider body fat distribution, which 
can lead to misleading interpretations about an individual’s 
health risks. Indeed, extensive research has shown that fat 
distribution has a greater correlation with certain health 
risks, including cardiovascular disease and cancer [25, 26].

2.2  Other measurements

To establish the presence of obesity and its relation to poten-
tial associated diseases, other indices – waist and neck cir-
cumference, waist-to-hip ratio (WHR) and waist-to-height 
ratio – have shown to independently serve as better indica-
tors of central obesity, predictors of cardiometabolic disease 
[26, 27] and more accurately associated with overall mor-
tality [28–30]. However, differences between individuals 
in the same apparent categories persist with respect to the 
percentage of fat and lean body mass observed across differ-
ent ancestral groups [31]; specifically, differences in gynoid 
subcutaneous adipose tissue between age groups in females 
[32]. Stratifying anthropometric measurements by BMI, sex 
and ethnicity have improved health risk assessment accu-
racy [33, 34].

2.3  Measuring methods

Advances in technology have enabled assessment of an 
individual’s anthropometric classification based on body 
fat using more accurate measurement methods, including 
magnetic dual-energy X-ray absorptiometry (DXA), air-
displacement plethysmography (BodPod), bioimpedance 
analysis (BIA), computed tomography (CT), magnetic reso-
nance imaging (MRI) and ultrasound (US). MRI, CT, DXA, 
and ultrasounds were previously used as reference standards 
in decade-apart meta-analysis studies, which consistently 
rendered low sensitivities and relatively high specificities 
for anthropometric measures. Despite the cost, invasive-
ness and sparse accessibility, these imaging techniques tri-
umphed over traditional anthropometric measurements such 

sedentary lifestyle, high-calorie/nutrient-poor food intake 
and reduced energy expenditure, it is also widely known 
that genetics contribute substantially to determining an indi-
vidual’s response to an ‘obesogenic environment’ [9]. Early 
evidence from family [10–12], twin [13–15], and adoption 
[16] studies has estimated the heritability of obesity/BMI 
at 70–80%. It is now feasible to characterize underlying 
genetic mechanisms that influence variation in BMI.

The genetics community typically places obesity into 
two broad categories: monogenic and polygenic. The mono-
genic form is generally inherited through Mendelian inheri-
tance; the related rare traits present as relatively severe and 
early age of onset, and caused by genomic deletions or del-
eterious variants in specific genes. On the other hand, the 
common polygenic form of obesity results from hundreds of 
independent variants across the genome, each conferring a 
small effect. Since the first 2007 report, genome wide asso-
ciation studies (GWAS) have revealed multiple new insights 
into obesity and BMI genetics. However, they have fallen 
short of defining the entire repertoire of genetic contributors 
to date; meta-analysis studies of multiple GWAS datasets 
have shown that the identified variants to date collectively 
only explain less than 6% of the observed variability in BMI 
[17, 18], indicating that much of the “missing heritability” 
[19] still needs to be found. Indeed, a recent GWAS of 
height that reached saturation for discovered loci revealed 
more than 12,000 signals [20]; as such, one would expect 
that many additional BMI loci remain to be uncovered. 
Even if one could account for the missing heritability, there 
is a substantial proportion of variability between individuals 
driven by gene-environment interactions contributing to the 
etiology of obesity. Non-genetic/behavioral factors, such as 
diet and exercise, can alter epigenetic signatures, and con-
sequently influence gene expression. Clinical variables rel-
evant to obesity strongly correlate with epigenetic changes 
in cell types, such as those from skeletal muscle, liver, and 
adipose [21–24]. Moreover, such epigenetic modifications 
can be reversed, making them amenable for perturbation via 
therapeutics. Indeed, a broad range of study designs, rang-
ing from cell-based systems, rodent models to human sys-
tems, have revealed multiple factors that correlate with the 
etiology of human obesity. And with these expanding bio-
metric indicators of obesity, the phenotyping and subtyping 
of obesity has become even more complex.

To achieve precision medicine for obesity treatment, it 
is crucial to identify risk profiles for individuals through 
assessing multiple contributing factors. This will not only 
help predict obesity risk and related diseases for a given 
individual, but will also aid in determining treatment 
response. This review summarizes the current understand-
ing of genetic factors, gene-environment interactions and 
epigenetic alterations that lead to the derailed metabolism 
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rearrangements. Bardet–Biedl syndrome (BBS) is one 
such example, with in excess of twenty genes implicated to 
date [40–42] but with the clinical presentation being rela-
tively homogeneous. Likewise, Kallmann syndrome is due 
to mutations in PROK2, KAL1 and FGFR1, and similarly 
presents homogeneously. In contrast, Cornelia de Lange 
syndrome (CdLS) behaves quite the opposite; for instance, 
an NIPBL c.2827delA mosaic can present with either severe 
or milder forms [43]. The ciliopathy, Alström syndrome, is 
driven by a range of missense and frameshift causal muta-
tions in ALMS1, differing almost at the individual level [44].

Differences in ethnicity can lead to variation in clini-
cal presentation. Phenotypic differences for PWS have 
been reported in African American patients and can result 
in underdiagnosis in this population. Treatment can also 
modify clinical presentation of obesity syndromes; for 
instance, growth hormone treatment for PWAS can improve 
symptoms [45]. The role of epigenetics in human dis-
eases, including obesity, is still being actively investigated, 
e.g., monozygotic twins have shown discordancy for the 
ROHHAD phenotype (‘Rapid Onset obesity with Hypotha-
lamic dysfunction, Hypoventilation, and Autonomic Dys-
regulation’), with just one of the twins presenting with the 
syndrome [46].

3.1.2  Diagnostic challenges due to phenotypic similarities

The clinical presentation of identified obesity syndromes 
is frequently similar, making diagnosis/phenotyping chal-
lenging. For example, the majority of such syndromes 
present with mental retardation, while microcephaly and 
macrocephaly are also a common feature [36]. Both clinical 
differences and commonalities features lead to diagnostic 
challenges. An eight-year-old patient was first diagnosed 
with BBS but later correctly diagnosed with Alström syn-
drome at fourteen years old after updated clinical and 
genetic analysis. Indeed both these syndromes are ciliopa-
thies, and have similar presentations including obesity and 
retinal degeneration, but their respective genetic etiologies 
are distinct [47].

3.1.3  Evolving clinical picture of syndromes

Studies of patients with specific obesity syndromes can 
help refine diagnosis and treatment options but are limited 
by small sample sizes and overlap of symptoms between 
syndromes. For instances, an investigation of seven Kabuki 
syndrome patients identified ocular anomalies from three 
cases as novel features for diagnosis and treatment options 
[48]. Macrosomia was suggested to be excluded from the 
MOMO syndrome (‘Macrocephaly, Obesity, Mental dis-
ability, Ocular abnormalities’) after two additional reported 

as BMI, WC, and WHR in predicting obesity-related health 
risks.

3  Genetic determinants of obesity

Monogenic obesity is the consequence of a mutation in a 
given gene and can present as either syndromic or non-syn-
dromic; indeed, this setting has blazed the trail with respect 
to the first obesity genes discovered. The most common 
form of obesity is the polygenic version, driven by hundreds 
to possibly thousands of independent single nucleotide poly-
morphisms (SNPs) distributed across the human genome 
and therefore has a complex mode of inheritance typical 
of common traits. The expression of mutations driving the 
pathogenesis of monogenic obesity can be partly impacted 
by polygenic obesity susceptibility in a given subject [35].

3.1  Syndromic and monogenic obesity

This rare form of obesity typically presents with various co-
morbidities, such as cognitive delay [36]. Currently, of the 
almost eighty obesity syndromes that have been identified 
to date, only a minority have been either fully or partially 
defined, with the remainder just mapped to an approximate 
genomic location or not characterized at all [36]. The best-
known syndromes include Prader-Willi syndrome (PWS) 
caused by an imprinting change on chromosome 15, the 
related Prader-Willi-like syndrome driven by deletion 
events on chromosome 16 impacting genes such as SIM1 
(which encodes a crucial transcription factor for hypothala-
mus paraventricular and supraoptic nuclei development) 
[37], Fragile X syndrome, Bardet-Biedl syndrome (BBS, 
caused by multiple different genes), Albright’s hereditary 
osteodystrophy caused by mutations in GNAS, and Wilms-
Tumor-Aniridia-Syndrome (WAGR) driven by deletion 
events on chromosome 11) [38]. Given how rare these pre-
sentations are, they remain challenging to be distinguished 
from conventional obesity [39].

3.1.1  Heterogeneity of clinical features

Twenty three obesity syndromes display wide phenotypic 
heterogeneity [36]. Studying such heterogeneity in syn-
dromic obesity is challenging due to limited cases world-
wide. Some contributing factors include genetic or allelic 
heterogeneity, the impact of the environment, including diet 
and medication, ancestral differences, gene-gene interac-
tions and gene-environment interactions affecting epigen-
etic patterning.

Genetic heterogeneity includes structural vari-
ants like deletions, insertions, inversions and complex 
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define syndromic obesity should aid efficiency, enhance 
classification and improve the diagnosis process, manage-
ment and treatment.

3.2  Monogenic (non-syndromic) obesity

Some causal genes for obesity exert substantial effects and 
are inherited in a Mendelian pattern, whose predominant 
trait is excess adiposity. Endocrine disorders and hyper-
phagia typically characterize them. Most genes and path-
ways causal for monogenic obesity were first discovered 
in transgenic mice presenting with spontaneous obesity 
and hyperphagia. ‘Reverse genetics’ could identify causal 
mutations in the ob (encoding leptin), and db (encoding the 
leptin receptor) genes [60, 61]. These discoveries in mice 
were quickly followed with multiple human genes encoding 
components of the leptin–melanocortin pathway, crucial for 
control of appetite. Figure 1 summarizes the known genes 
and factors involved in this key circuit.

3.2.1  LEP

Congenital leptin deficiency is inherited recessively and 
was initially characterized in two Pakistani cousins present-
ing with obesity due to a frameshift mutation in LEP [62]. 
Since then, ten other mutations in LEP have been described 
[63–73]. Symptoms include rapid weight gain, severe 
early-onset obesity and intense hyperphagia [74]. Recom-
binant leptin can be used to improve adiposity and restore 
related functions [73, 75]. Myalept (metreleptin) is an FDA-
approved therapeutic for treatment of congenital leptin defi-
ciency [76].

3.2.2  LEPR

Subjects with leptin receptor (LEPR) mutations present 
with comparable symptoms to those with leptin deficiency, 
but lack the signature of serum hormone deficiency [77]. 
Advances in DNA sequencing have enabled detections of 
mutations in LEPR, which can affect 2–3% of a given pop-
ulation. Some patients also develop growth hormone and 
thyroid function deficiency; however, homozygous carriers 
of LEPR mutations do not respond to recombinant leptin.

3.2.3  POMC

Autosomal recessive inheritance of deficiency in POMC 
leads to a lack of ACTH, α-MSH and β-endorphins [78]. 
This can cause red hair and severe obesity via an α-MSH 
influence on both pigmentation and appetite. A rare defi-
ciency of ACTH causes adrenal insufficiency. Early diag-
nosis combined with glucocorticoid replacement therapy 

cases [49]. The endocrine manifestations of ROHHADNET 
syndrome were studied in six patients and varied hypotha-
lamic-pituitary endocrine dysregulation was found, deem-
ing it crucial to be considered during the diagnosis process 
for all obesity cases with early onset [50]. Such character-
ization, which does not just entail medical records, is expen-
sive with respect expertise and time required.

3.1.4  Combining and separating syndromes

Advances in genetics have led to the reclassification of 
syndromes to aid improved understanding and diagnostic 
approaches. Prior to genetic testing, diagnoses were based 
principally on physical characteristics. For example, Car-
penter, Goodman, and Summit syndromes were proposed 
to be combined into one due to their similarities in symp-
toms including obesity features; however, variation in these 
given symptoms have now be attributed to genetic differ-
ences [51]. Recently, genetic evidence has been used to 
subdivide WAGR syndrome into two separate disorders, 
WAGR and WAGRO (WARG with Obesity), with the latter 
characterized by obesity and molecular testing confirmation 
of BDNF deletions [52, 53].

3.1.5  Advances in genetic elucidation

Genetic elucidation of syndromes is critical for understand-
ing the underlying molecular mechanisms and improving 
diagnosis, treatment, and care. Techniques such as whole-
exome sequencing (WES), linkage mapping, candidate gene 
assessments and cytogenetics have been leveraged to reveal 
critical chromosomal regions and genes associated with syn-
dromic obesity. For example, the multiple genes causal for 
BBS have been determined using various methods [40–42].

3.1.6  Complex patterns of genetic inheritance

With an expanding genetic picture of obesity syndrome 
drivers, complexities of inheritance are being observed. 
Kallmann syndrome can be caused by mutations in auto-
somal genes PROK2, KAL1 and FGFR1, or KAL1 on the X 
chromosome, each presenting with different heterozygous, 
homozygous and compound states [54]. Studies have also 
suggested that BBS may be a complex disorder caused by 
a combination of three mutant alleles [55, 56], though this 
is considered a rare phenomenon. Genetic factors that influ-
ence the manifestation of a syndrome include mosaicism 
[57], skewed X inactivation [58] and deletion/duplication of 
multiple adjacent genes [59].

The current classification of syndromes was developed 
principally based on cardinal features, which may need 
to be updated or already is. Leveraging genetic testing to 
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the melanocortin-4 receptor, has the potential as a treatment 
for POMC deficiency [81].

is vital for efficient treatment. A few studies have found 
POMC mutations in individuals with obesity, but with no 
other symptoms [79, 80]. Setmelanotide, which activates 

Fig. 1  Leptin-melanocortin pathway. Leptin is an anorexigenic hor-
mone produced by white adipocytes, with its levels driven by the 
degree of fat mass present, and influences food consumption together 
with energy balance [112]. When its circulating levels become lower 
in the fasting state and rise when feeding takes place, leptin influences 
appetite via the hypothalamus [113, 114]. The arcuate nucleus is a 
component of the hypothalamus, where a key isoform of leptin recep-
tor resides in two types of neurons, one expressing POMC and the 

other expressing agouti-related protein (AGRP) [115]. Leptin stimu-
lates neurons expressing POMC, which is subsequently processed to 
various active melanocortin peptides [116]. The POMC-expressing 
neurons contact MC4R neurons in the paraventricular nucleus (PVN) 
where these melanocortin peptides influence a reduction in intake of 
food [115], whereas AGRP antagonizes MC4R to do the opposite [115, 
117]; as such representing a finely tuned balance in the regulation of 
appetite
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influence on leptin signaling [97]. Deletions in BDNF as 
part of the WAGRO syndrome have been linked to early-
onset obesity [53]. Furthermore, multiple missense muta-
tions within BDNF drive the pathogenesis of severe obesity 
[98–101].

3.2.9  SH2B1

‘Src homology 2 B adapter protein’ (SH2B1) helps regulate 
sensitivity to leptin [102]. Autosomal dominantly inherited 
SH2B1 mutations are known to lead to severe childhood 
obesity [103], along with features of developmental delay. 
It has been shown that the effects of each mutation can vary 
[104].

3.2.10  Other genes

Kinase suppressor of Ras 2 (KSR2) mutations can cause 
hyperphagia, low heart rate, and insulin resistance, with 
metformin being used as treatment [105]. Mutations in the 
genes PCSK1 encoding proprotein convertase-1/3 (PC1/3) 
result in a range of diabetes-related traits and extreme child-
hood obesity [106]. The gene products represent attractive 
therapeutic targets, but no treatments have been developed 
to date. A homozygous frameshift mutation in TUB was 
found in a subject with obesity and vision disorders [107]. 
A truncating mutation in the carboxypeptidase (CPE) gene 
was found in one subject with severe obesity [108]. A trun-
cating mutation in the retinoic acid induced 1 (RAI1) gene 
was linked to hypoventilation, developmental disability 
and severe obesity [109]. Melanocortin receptor acces-
sory protein 2 (MRAP2) variants have been reported to 
increase obesity risk [110]. And PHIP mutations correlate 
with developmental delay, intellectual disability and being 
overweight. The mechanism by which these genes contrib-
ute to obesity is principally through repression of POMC 
expression or interference with leptin-melanocortin signal-
ing [111].

3.2.11  Whole exome sequencing and the future

Newer comprehensive sequencing methods can aid new 
genetic insights into obesity, and new discoveries are hap-
pening nearly every day. For instance, twenty-two GNAS 
mutations (encoding the Gαs protein, and involved in sig-
naling through G protein-coupled receptors) have been 
found with WES, resulting in children with severe obesity, 
reduced growth and developmental delay [118].

And like syndromic, non-syndromic monogenic obe-
sity is approaching the era where diseases are better classi-
fied by genetic profiles rather than the underlying cardinal 
symptoms.

3.2.4  MC4R

Mutations in MC4R, both autosomal dominant [82] and 
recessive, drive increased appetite and feeding behavior in 
children, along with additional co-morbidities principally 
related to growth [83, 84].

MC4R heterozygous mutations are the most frequent 
drivers of monogenic childhood obesity, being observed in 
as many as 5% of pediatric patients [83, 85, 86] and caused 
by an array of nonsynonymous variants across the gene [87–
89]. Furthermore, the impact of such mutations can be influ-
enced by polygenic risk scores for common obesity [35]. 
Researchers are currently exploring ways to perturb MC4R 
to improve satiety circuits, given that no such treatments are 
currently available [90–92].

3.2.5  ADCY3

A WES study on consanguineous families from Paki-
stan identified four children suffered from severe obesity 
with extremely rare homozygous ADCY3 mutations. The 
encoded cyclase catalyzes the synthesis of cyclic AMP from 
ATP. Such loss-of-function mutations are hypothesized to 
interfere with several anorexigenic signaling cascades [93]. 
The main clinical features are early onset hyperphagia and 
obesity.

3.2.6  SIM1

Loss-of-function mutations in the gene encoding the tran-
scription factor ‘Single-minded homolog of drosophila’ 
(SIM1) lead to changes in feeding behavior and extreme 
obesity [37, 94]. Furthermore, a novel SIM1 variant, 
p.D134N, has been recently implicated in monogenic pedi-
atric obesity [95].

3.2.7  NTRK2

Neurotrophins contribute to the development, maintenance 
and function of nerves in the peripheral and central nervous 
system. Studies on animals have shown that the tropomyo-
sin receptor kinase B (TrkB, encoded by NTRK2), and its 
ligand BDNF, play a role in regulating food intake and body 
weight. A dominantly inherited mutation that results in loss 
of function of NTRK2 was reported in one subject with 
severe obesity but no other related symptoms [96].

3.2.8  BDNF

Brain-derived neurotrophic factor (BDNF) exerts its influ-
ence in the hypothalamus. It plays a key role in control-
ling feeding behavior and energy balance, partly due to its 
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Associations with abdominal visceral adipose tis-
sue (VAT) and WC were found near THNSL2 only in 
women [130], near BBS9 and CYCSP30 [131]. A more 
recent study found the UBE2E2 locus associated with the 
VAT:subcutaneous fat ratio [132], with loss of function 
mutations in a mouse model impacting differentiation of 
adipocytes.

The genetics of ectopic fat deposition has also been 
investigated. A previous study found moderate genetic cor-
relations among six ectopic fat depots, where ENSA, TRIB2, 
and EBF1 were associated with heart deposition specifi-
cally, suggesting common and depot-specific genetic deter-
minants [132]. Another study found several genetic variants 
associated with liver fat levels, including at UGT1A, SOCS2, 
RAMP3, PNPLA3 and SUGP1 [133].

3.3.3  Childhood obesity loci

GWAS has been conducted to study the genetics of obesity 
by integrating demographic factors such as sex and age. The 
Early Growth Genetics (EGG) consortium and other inves-
tigative teams have studied birth weight, pediatric BMI and 
childhood obesity. Most of the identified loci are also asso-
ciated with obesity and/or BMI in adults, including at the 
FTO locus across multiple ancestries, highlighting that the 
genetics of obesity is relatively consistent over the lifecycle. 
However, a distinct genetic signature for peak BMI during 
infancy has also been reported [134].

3.3.4  Sex as confounding factor

A number of loci have been reported for waist-related traits, 
such as waist-to-hip ratio, that are stronger or exclusive to 
women [120, 135, 136]. No interaction was found between 
sex and BMI loci in those studies. By contrast, another 
study in subjects of Asian ancestry found that four BMI 
loci were more strongly associated in males [137]. A tar-
geted analysis of BMI, WC, and WHR variants in Chinese 
subjects found that specific loci like MC4R and LYPLAL1 
were associated with female visceral fat area, and ALDH2 in 
males [138]. Several BMI and waist-hip ratio loci revealed 
sexual dimorphism in subjects of African ancestry [139]. As 
such, obesity genetic associations can be impacted by sex in 
an ethnicity/population-dependent manner.

3.3.5  Ethnicity as cofounding factor

Most GWAS for obesity have been conducted in popula-
tions of European ancestry. However, additional loci have 
been uncovered in other ethnicities [139–142], albeit with 
much smaller sample sizes. These loci often demonstrate 
good transferability across other ancestries, but the allele 

3.3  Polygenic obesity

Most individuals with obesity develop the common/multi-
factorial form, caused by a combination of multiple genetic 
variations (polygenic), each with modest effects. The dis-
covery of genes contributing to this type of obesity has 
been a slow process, starting with candidate gene studies in 
the 1990s, then family-based linkage studies leading up to 
genome-wide association studies (GWAS).

3.3.1  GWAS

The discovery of genes contributing to common diseases 
accelerated with the advent of GWAS. The first GWAS 
for BMI was published in 2007, where it reported the FTO 
locus as being strongest association signal [119]. To date, 
GWAS has identified more than a thousand loci associated 
with BMI/obesity and its related comorbidities. However, 
despite the identification of a myriad of loci, in combination, 
these signals only explain approximately 5% of the vari-
ance in BMI [18]. Given the limitation of BMI as a proxy 
for overall adiposity, as discussed above, GWAS has also 
been performed on more specifically-defined obesity phe-
notypes, including WHR [120], body fat percentage [121, 
122] and circulating leptin and leptin receptor levels [123, 
124]. These more specific studies are often smaller in size, 
and therefore lacking in relative statistical power, but reveal 
more direct biological relevance underpinning obesity.

3.3.2  GWAS and fat distribution

Genetic components characterize 30–55% of fat distribu-
tion. Three major studies have shown that the WHR has a 
significant genetic component [120, 125, 126]. With their 
increasing sample sizes, a growing number of significant 
loci have been reported, with a subset exhibiting sex dimor-
phism. Furthermore, it has been reported recently that the 
genetics of sexually dimorphism influence human adipose 
distribution, where genetic-mediated process were found to 
underpin adipose distribution specifically in females leading 
to metabolic dysfunction in women [127].

A study of subjects from five different ancestries found 
protein-coding variants influencing variations in fat distri-
bution. Fifty-six significant coding variants were identified, 
with forty-three being common, and twenty-five also associ-
ated with BMI. The remaining thirty-one influenced adipose 
tissue topography. Nineteen had sex-specific effects, where 
sixteen were more strongly associated with WHR in women 
[128]. Unlike BMI loci, there was no evidence that genetic 
variants near genes related to central nervous system regula-
tion had any impact on the distribution of fat [129].
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As such, a full functional appraisal of such GWAS loci 
can reveal novel understanding of the genetic etiology of 
obesity; however, the vast majority of BMI/obesity loci 
remain to be fully characterized with respect to precise 
mechanism of action. Determining the causal variant(s) at 
each of these loci, and then connecting them to the causal 
effector gene(s) remains challenging. Various methods 
have been used to achieve this, including SNP enrichment 
analysis, molecular trait profiling, colocalization analysis, 
transcriptome-wide association studies (TWAS), regulome-
wide association studies (RWAS), integrating polygenic risk 
scores with functional annotations, and the use of different 
types of quantitative traits (eQTLs, sQTLs, 3′aQTLs) and 
tissue types. More recently, machine learning and AI net-
works have also been used to predict effector genes. These 
findings then require further functional validation, such as 
with CRISPR-based approaches. Furthermore, using gene 
ontology to analyze gene overlap across co-morbidities for 
obesity, including diabetes and hypertension, new insights 
into key pathways can be revealed [160].

Emerging high-throughput methods to aid mapping of 
regulatory elements, multi-omics databases and advanced 
computational techniques are expected to accelerate the 
process of understanding the biology behind GWAS loci.

3.3.8  The genetic architecture of monogenic versus 
polygenic obesity

Recent GWAS have identified loci harboring genes that 
were initially uncovered in studies of extreme and early-
onset obesity, including MC4R [161, 162] and POMC [163]. 
Many of these gene products operate in the BDNF–TrkB 
and leptin–melanocortin signaling pathways. Severe obe-
sity can present when these pathways are disrupted, while 
common susceptibility variants colocalized nearby the same 
genes can influence an individual’s BMI. While many genes 
were initially identified in studies of extreme obesity, some, 
like ADCY3, were first found in studies of common obe-
sity [147], and later linked to extreme obesity [143]. Given 
larger GWAS efforts for BMI and obesity are expected in 
the future, one would expect this list of converging genes to 
continue to grow.

4  Gene-environment interaction: emerging 
role of epigenetics

Studies suggest that people with genetic susceptibility 
to obesity are also more susceptible to adverse environ-
ments. This is known as gene-by-environment interaction, 
transmitted via epigenetic processes. The agouti mouse 
model demonstrates the influence of epigenetics on obesity 

frequencies and effect sizes are often substantially different. 
Genetic correlation assessments across populations point 
to yet-to-be-discovered loci for BMI in specific ancestral 
groups. To address this point, increasing statistical power 
by including additional subjects in GWAS of specific 
ancestries have been conducted, along with searching for 
specific high-impact variants conferring effects specifically 
in population isolates. Examples include CREBRF discov-
ered in Samoans and ADCY3 first detected in Greenlanders 
[143–145].

3.3.6  Low frequency and rare variants

Microarray arrays leveraged for GWAS initially provided 
strong coverage for common variation (MAF > 5%), but as 
the technology has developed and informed by more fully 
sequenced human genomes, detection of lower frequency 
variation (MAF = 1–5%) and even rare variants (MAF < 1%) 
has become increasingly feasible; indeed, such variants are 
more likely to reside in coding and regulatory elements 
and therefore plausibly pathogenic. Furthermore, such 
genotyping data can be leveraged to detect copy number 
variants (CNVs) contributing to obesity risk, with a num-
ber reported to date. Rare (MAF < 1%) and low frequency 
(MAF = 1–5%) variants generally impact coding and regu-
latory elements more frequently [146]. An effort conducted 
in approximately 700,000 subjects to uncover rare variants 
contributing to variation in BMI, revealed coding mutations 
across 13 genes [147]. Despite these successes, the haul of 
variants at this scale of sample size is considered modest, 
with more expected to be found as collections increase in 
number even further.

3.3.7  Target genes and functional annotation

Although GWAS has been very successful in detecting com-
mon variants associated with complex traits, understanding 
the underlying mechanisms of action has remained elusive. 
GWAS makes no inference of either the causal variant(s) or 
the corresponding effector gene(s) at a given locus. These 
variants typically reside in non-coding genomic regions, 
which are important for gene regulation, and these regu-
latory elements in turn can provide clues about potential 
mechanisms via pathway-based analyses. Besides the hypo-
thalamus and pituitary gland being key players within the 
brain in appetite regulation, the limbic system, hippocam-
pus and substantia nigra likely play a role in the genetic eti-
ology of obesity [17, 140, 148, 149].

Only a relative handful of GWAS-implicated obesity loci 
have been functionally followed up to date. Figure 2 out-
lines four different mechanistic examples of how loci can 
contribute to obesity etiology.
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4.1  Epigenetic and obesity

4.1.1  DNA methylation

DNA methylation is an epigenetic feature that contributes to 
obesity pathogenesis. This process involves adding a methyl 
group to a cytosine residue in DNA, specifically at CpG 
sites. This chemical modification can prevent transcription 
factors interacting with DNA, thereby interfering with gene 
transcription.

Studies have found mixed results for global DNA hypo-
methylation in obesity, but more consistent findings for 

through an Avy mutation. The mutation leads to the dis-
ruption of MC4R and triggers obesity, but can be reversed 
by feeding the mice with food rich in methyl donors. This 
establishes a link between obesity and epigenetic alterations 
driven by environmental factors [164]. DNA methylation, 
histone modifications and non-coding RNAs represent the 
most frequent and well-studied epigenetic changes.

Fig. 2  Four functional follow-up strategies of different GWAS-
implicated obesity loci. (A). A specific variant embedded within 
the FTO gene is located in an ARID5B regulatory element, which 
in turn impacts the expression of the neighboring genes, IRX3 and 
IRX5, which play a role in adipose biology [150]. (B). One of the 
strongest obesity loci coincides with the TMEM18 gene [151, 152], 
which encodes a poorly characterized transmembrane protein. Work 
with a Drosophila melanogaster knock-out model implicates TMEM18 
in influencing lipid and carbohydrate levels via disruption of insulin 
and glucagon signaling [153], while knock-out in a mouse model 
leads to increased body weight due to elevated food intake, with over-
expression of the gene showing an opposite effect [154]. (C). CADM1 
and CADM2 encode cell-adhesion proteins in the brain. The associ-

ated variants influence the expression of the respective genes in the 
hypothalamus, leading to increased body weight, insulin sensitivity 
and energy expenditure. Loss of function of these genes promotes 
weight loss. Keto diet (“green” food cube) showed lower expression 
of these genes and promoted weight loss [155, 156]. (D). Deletion 
variants located just upstream of NEGR1 impacts a binding site for 
the strong transcriptional repressor NKX6.1. When NKX6.1 binding 
is lost, increased NEGR1 expression is observed. NEGR1 is expressed 
in the brain. Studies in mice have found that NEGR1 deficiency low-
ers body weight via a reduction in lean mass [157], although other 
studies have found opposite results [158, 159]. High-fat diet seemed to 
accelerate weight loss.
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obesity, while upregulation of miR221 has been observed in 
diet-induced obese mice. Silencing these miRNAs can lead 
to reductions in adipogenesis, triglyceride accumulation 
and alterations to BMI. Multiple miRNAs have now been 
uncovered that show differences in expression in subjects 
with obesity, including those operating within adipogenesis, 
insulin signaling and hypoxia [177].

Several lncRNAs, including GYG2P1, lncRNAp21015 
and lncRNA-p5549, have reduced expression levels in 
obesity [178, 179]. RP11-20G13.3, lnc-dPrm16 and MIST 
are among the lncRNAs that impact metrics of adipogen-
esis [180, 181]. As such there is increasing evidence that 
lncRNAs place a specific role in conferring obesity risk 
[182].

4.2  Environment and Lifestyle impact epigenetics

Epigenetic processes are nimble in responding to lifestyle 
and the environment, enabling a subject to respond to exter-
nal factors and to then return to the original state once that 
factor is no longer present. This includes endocrine disrupt-
ing chemicals exposures, dietary including high-fat, high/
low-carb, sugar/oil-rich and micronutrients, physical activ-
ity including short/long-term training, sleep disturbance and 
deprivation, alcohol intake, weight loss interventions and 
the use of epigenetic drugs [183]. Figure 3 summarizes the 
identified genes affected by different environmental factors.

The following section will look at two environmental 
exposures that take place before an individual is born.

4.2.1  Inheritance of epigenetic susceptibility to obesity

A birth cohort study in the Netherlands reported a relation-
ship between parental nutrition prior to conception and 
inherited epigenetic patterns [184]. This can be potentially 
exacerbated by assortative mating, which can increase pre-
disposition to obesity in offspring [185]. Recent studies have 
shown that obesity can influence modifications of DNA, 
histones and ncRNAs in both sperm and the oocyte [186]. 
The negative effect of obesity on oocytes has been studied 
mainly in model organisms for obesity, where alterations in 
histone modifications and DNA methylation in this setting 
are observed [186–188].

Research is growing on how epigenetics can be passed 
down via the sperm of men and affect the next generation. 
Studies have shown high-fat, low-protein diets and bariatric 
surgery can cause changes in the expression of certain types 
of RNA and DNA methylation patterns in the sperm, lead-
ing to insulin resistance and weight changes in the offspring 
[189, 190].

specific candidate genes methylation. For example, a nega-
tive association has been found between body weight in 
adults with obesity [165] and BMI in subjects with obesity 
and methylation at the LEP promoter and adiponectin gene 
[166–168]. Positive association was found for methylation 
status of members of the insulin signaling pathway, includ-
ing INS, IRS1 and PIK3R1 [23, 169, 170], with obesity 
and metabolic disease. Increased POMC and lower NPY 
methylation has been reported for subjects presenting with 
resistance to weight loss [171]. TNF, IL6 and TFAM exhibit 
changes in DNA methylation in subjects presenting with 
obesity.

Collectively, DNA methylation differences are observed 
in obesity and may offer new avenues for diagnostic 
approaches and therapeutic interventions. Imbalances in 
the activity of enzymes responsible for methylation and 
demethylation, such as DNA Methyltransferases (DNMTs) 
and Tet methylcytosine dioxygenases (TETs) may cause 
these changes. However, more studies are required to fully 
understand the mechanisms behind such changes.

4.1.2  Histone modifications

Histones help to compact DNA into chromatin. Histone alter-
ations by mechanisms such as methylation and acetylation 
can impact how compact DNA becomes and subsequently 
influence gene expression. Enzymes that modify histones 
include histone methyltransferases, histone demethylases, 
histone deacetylases (HDACs) and histone acetyltransfer-
ases. Changes in the levels of these enzymes have been 
linked to obesity, and specific enzymes, such as HDACs and 
Jhdm2a, have been shown to accelerate the progression of 
obesity in clinical studies [172–174].

Histone modifications have been shown to regulate gene 
expression related to adipogenesis, including C/EBPB, C/
EBPA, Pref-1, aP2 and PPARG, appetite control, includ-
ing NPY and POMC [175]. Changes in histone acetylation 
caused by high-fat diets have been linked to obesity.

4.1.3  Non-coding RNAs

Non-coding RNAs do not encode proteins but can have a 
crucial impact on gene expression. MicroRNAs (miRNAs) 
and long non-coding RNAs (lncRNAs) have both been 
implicated in the pathogenesis of obesity.

Several miRNAs involved in adipogenesis have been 
shown to be expressed both in subjects and mice with obe-
sity that were placed on a high fat diet. Additionally, spe-
cific miRNAs have been reported to be expressed at higher 
levels in visceral fat tissue derived from subjects with obe-
sity [176]. miR21 and miR221 have been reported to have 
higher expression in the white adipose of subjects with 
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process can lead to issues with fetal growth, causing hepato-
metabolic and cardiovascular diseases [191, 192].

Increased LEPR methylation is linked to poor maternal 
weight gain during pregnancy, affecting newborns’ protein 

4.2.2  Epigenetic changes during pregnancy

The placenta regulates nutrients, oxygen and hormonal sup-
ply between the mother and fetus. Any abnormalities in this 

Fig. 3  Genes affected by environmental factors through epigenetic mechanisms. Genes are color-coded by mechanism. The genes within each 
section are specific for each factor, and genes placed in the middle space are common between at least two factors
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the relationship between changes in environmental factors 
such as diet, physical activity, sleep and alcohol consump-
tion with epigenetic changes. The modifiable nature of epi-
genetics makes it a promising avenue for obesity prevention 
and treatment.

Insights from genetic and epigenetic discovery efforts 
represent exciting advances toward precision medicine, and 
which should directly affect health outcomes in the decades 
to follow.
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