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Abstract
Obesity is a common complex trait that elevates the risk for various diseases, including type 2 diabetes and cardiovascular 
disease.	A	combination	of	environmental	and	genetic	factors	influences	the	pathogenesis	of	obesity.	Advances	in	genomic	
technologies	 have	 driven	 the	 identification	 of	multiple	 genetic	 loci	 associated	with	 this	 disease,	 ranging	 from	 studying	
severe	onset	cases	to	investigating	common	multifactorial	polygenic	forms.	Additionally,	findings	from	epigenetic	analy-
ses	of	modifications	 to	 the	genome	 that	do	not	 involve	changes	 to	 the	underlying	DNA	sequence	have	emerged	as	key	
signatures	in	the	development	of	obesity.	Such	modifications	can	mediate	the	effects	of	environmental	factors,	including	
diet	and	lifestyle,	on	gene	expression	and	clinical	presentation.	This	review	outlines	what	is	known	about	the	genetic	and	
epigenetic	contributors	to	obesity	susceptibility,	along	with	the	albeit	limited	therapeutic	options	currently	available.	Fur-
thermore,	we	delineate	the	potential	mechanisms	of	actions	through	which	epigenetic	changes	can	mediate	environmental	
influences	and	the	related	opportunities	they	present	for	future	interventions	in	the	management	of	obesity.
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1 Introduction

Obesity	is	a	phenotype	in	which	the	percentage	of	body	fat	
is	 increased	 to	 the	 point	where	 health	 and	well-being	 are	
impaired. The World Health Organization has declared obe-
sity a “global epidemic” given its alarming prevalence both 
in developed and developing countries. In the US, the prev-
alence	 of	 obesity	 between	 2017	 and	 2020	was	 41.9%	 for	
adults	over	20	years	old,	with	19.7%	being	approximately	
14.7 million children and adolescents aged 2–19 years [1]. 
Obesity	is	a	driver	of	a	wide	range	of	chronic	cardio-meta-
bolic diseases, including type 2 diabetes and cardiovascular 
disease,	along	with	numerous	non-metabolic	co-morbidities	
such as several types of cancer [2]. The mechanical issues 
resulting	 from	 increased	 body	 weight	 can	 drive	 risk	 for	
osteoarthritis [3] and sleep apnea [4]. The recent COVID-19 
pandemic	revealed	that	individuals	living	with	obesity	were	
at increased risk of severe illness and hospitalization [5–7], 
highlighting its impact on communicable diseases, particu-
larly viral infection [8]. Altogether, obesity represents a sig-
nificant	health	burden	on	society,	shortening	life	expectancy	
and	reducing	life	quality.

While there is clear evidence that environmental fac-
tors contribute substantially to obesity risk, including a 
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observed	for	obesity,	which	in	turn	can	be	harnessed	to	aid	
precision therapies for this disease in the future.

2 Anthropometric parameters of obesity

2.1 BMI – a classic with limitations

Body mass index (BMI) is commonly used to measure 
excess	body	weight	and	obesity.	Adult	BMI	between	18.5	
and 25 kg/m2	 is	 considered	 average	weight,	 25–30	kg/m2 
overweight,	 and	 over	 30	 kg/m2	 is	 defined	 as	 obese.	 But	
despite	its	widespread	use,	BMI	as	a	measure	of	adiposity	
has	limitations.	Most	notably	BMI	does	not	differentiate	fat-
free	and	fat	mass	nor	consider	body	fat	distribution,	which	
can lead to misleading interpretations about an individual’s 
health	risks.	Indeed,	extensive	research	has	shown	that	fat	
distribution	 has	 a	 greater	 correlation	 with	 certain	 health	
risks, including cardiovascular disease and cancer [25, 26].

2.2 Other measurements

To establish the presence of obesity and its relation to poten-
tial	associated	diseases,	other	indices	–	waist	and	neck	cir-
cumference,	waist-to-hip	ratio	(WHR)	and	waist-to-height	
ratio	–	have	shown	to	independently	serve	as	better	indica-
tors of central obesity, predictors of cardiometabolic disease 
[26, 27]	and	more	accurately	associated	with	overall	mor-
tality [28–30].	 However,	 differences	 between	 individuals	
in	the	same	apparent	categories	persist	with	respect	to	the	
percentage	of	fat	and	lean	body	mass	observed	across	differ-
ent ancestral groups [31];	specifically,	differences	in	gynoid	
subcutaneous	adipose	tissue	between	age	groups	in	females	
[32]. Stratifying anthropometric measurements by BMI, sex 
and ethnicity have improved health risk assessment accu-
racy [33, 34].

2.3 Measuring methods

Advances in technology have enabled assessment of an 
individual’s	 anthropometric	 classification	 based	 on	 body	
fat using more accurate measurement methods, including 
magnetic dual-energy X-ray absorptiometry (DXA), air-
displacement plethysmography (BodPod), bioimpedance 
analysis (BIA), computed tomography (CT), magnetic reso-
nance imaging (MRI) and ultrasound (US). MRI, CT, DXA, 
and	ultrasounds	were	previously	used	as	reference	standards	
in	 decade-apart	 meta-analysis	 studies,	 which	 consistently	
rendered	 low	 sensitivities	 and	 relatively	 high	 specificities	
for anthropometric measures. Despite the cost, invasive-
ness	and	sparse	accessibility,	these	imaging	techniques	tri-
umphed over traditional anthropometric measurements such 

sedentary lifestyle, high-calorie/nutrient-poor food intake 
and	 reduced	 energy	 expenditure,	 it	 is	 also	widely	 known	
that genetics contribute substantially to determining an indi-
vidual’s response to an ‘obesogenic environment’ [9]. Early 
evidence from family [10–12],	twin	[13–15], and adoption 
[16] studies has estimated the heritability of obesity/BMI 
at	 70–80%.	 It	 is	 now	 feasible	 to	 characterize	 underlying	
genetic	mechanisms	that	influence	variation	in	BMI.

The genetics community typically places obesity into 
two	broad	categories:	monogenic	and	polygenic.	The	mono-
genic form is generally inherited through Mendelian inheri-
tance; the related rare traits present as relatively severe and 
early age of onset, and caused by genomic deletions or del-
eterious	variants	 in	specific	genes.	On	 the	other	hand,	 the	
common polygenic form of obesity results from hundreds of 
independent variants across the genome, each conferring a 
small	effect.	Since	the	first	2007	report,	genome	wide	asso-
ciation	studies	(GWAS)	have	revealed	multiple	new	insights	
into	obesity	and	BMI	genetics.	However,	 they	have	fallen	
short	of	defining	the	entire	repertoire	of	genetic	contributors	
to date; meta-analysis studies of multiple GWAS datasets 
have	shown	that	the	identified	variants	to	date	collectively	
only	explain	less	than	6%	of	the	observed	variability	in	BMI	
[17, 18], indicating that much of the “missing heritability” 
[19] still needs to be found. Indeed, a recent GWAS of 
height that reached saturation for discovered loci revealed 
more than 12,000 signals [20];	as	such,	one	would	expect	
that many additional BMI loci remain to be uncovered. 
Even if one could account for the missing heritability, there 
is	a	substantial	proportion	of	variability	between	individuals	
driven by gene-environment interactions contributing to the 
etiology of obesity. Non-genetic/behavioral factors, such as 
diet and exercise, can alter epigenetic signatures, and con-
sequently	influence	gene	expression.	Clinical	variables	rel-
evant	to	obesity	strongly	correlate	with	epigenetic	changes	
in cell types, such as those from skeletal muscle, liver, and 
adipose [21–24].	Moreover,	 such	epigenetic	modifications	
can be reversed, making them amenable for perturbation via 
therapeutics. Indeed, a broad range of study designs, rang-
ing from cell-based systems, rodent models to human sys-
tems,	have	revealed	multiple	factors	that	correlate	with	the	
etiology	of	human	obesity.	And	with	these	expanding	bio-
metric indicators of obesity, the phenotyping and subtyping 
of obesity has become even more complex.

To achieve precision medicine for obesity treatment, it 
is	 crucial	 to	 identify	 risk	 profiles	 for	 individuals	 through	
assessing	multiple	contributing	 factors.	This	will	not	only	
help predict obesity risk and related diseases for a given 
individual,	 but	 will	 also	 aid	 in	 determining	 treatment	
response.	This	review	summarizes	the	current	understand-
ing of genetic factors, gene-environment interactions and 
epigenetic alterations that lead to the derailed metabolism 
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rearrangements. Bardet–Biedl syndrome (BBS) is one 
such	example,	with	in	excess	of	twenty	genes	implicated	to	
date [40–42]	but	with	 the	clinical	presentation	being	rela-
tively	homogeneous.	Likewise,	Kallmann	syndrome	is	due	
to mutations in PROK2, KAL1 and FGFR1, and similarly 
presents homogeneously. In contrast, Cornelia de Lange 
syndrome	(CdLS)	behaves	quite	the	opposite;	for	instance,	
an NIPBL	c.2827delA	mosaic	can	present	with	either	severe	
or milder forms [43]. The ciliopathy, Alström syndrome, is 
driven by a range of missense and frameshift causal muta-
tions in ALMS1,	differing	almost	at	the	individual	level	[44].

Differences	 in	 ethnicity	 can	 lead	 to	 variation	 in	 clini-
cal	 presentation.	 Phenotypic	 differences	 for	 PWS	 have	
been reported in African American patients and can result 
in underdiagnosis in this population. Treatment can also 
modify clinical presentation of obesity syndromes; for 
instance,	growth	hormone	treatment	for	PWAS	can	improve	
symptoms [45]. The role of epigenetics in human dis-
eases, including obesity, is still being actively investigated, 
e.g.,	 monozygotic	 twins	 have	 shown	 discordancy	 for	 the	
ROHHAD	phenotype	(‘Rapid	Onset	obesity	with	Hypotha-
lamic dysfunction, Hypoventilation, and Autonomic Dys-
regulation’),	with	just	one	of	the	twins	presenting	with	the	
syndrome [46].

3.1.2 Diagnostic challenges due to phenotypic similarities

The	 clinical	 presentation	 of	 identified	 obesity	 syndromes	
is	 frequently	 similar,	making	 diagnosis/phenotyping	 chal-
lenging.	 For	 example,	 the	 majority	 of	 such	 syndromes	
present	 with	 mental	 retardation,	 while	 microcephaly	 and	
macrocephaly are also a common feature [36]. Both clinical 
differences	 and	 commonalities	 features	 lead	 to	 diagnostic	
challenges.	An	 eight-year-old	 patient	 was	 first	 diagnosed	
with	BBS	but	 later	correctly	diagnosed	with	Alström	syn-
drome at fourteen years old after updated clinical and 
genetic analysis. Indeed both these syndromes are ciliopa-
thies, and have similar presentations including obesity and 
retinal degeneration, but their respective genetic etiologies 
are distinct [47].

3.1.3 Evolving clinical picture of syndromes

Studies	 of	 patients	 with	 specific	 obesity	 syndromes	 can	
help	refine	diagnosis	and	treatment	options	but	are	limited	
by	 small	 sample	 sizes	 and	 overlap	 of	 symptoms	 between	
syndromes. For instances, an investigation of seven Kabuki 
syndrome	 patients	 identified	 ocular	 anomalies	 from	 three	
cases as novel features for diagnosis and treatment options 
[48].	Macrosomia	was	 suggested	 to	be	excluded	 from	 the	
MOMO syndrome (‘Macrocephaly, Obesity, Mental dis-
ability,	Ocular	abnormalities’)	after	two	additional	reported	

as BMI, WC, and WHR in predicting obesity-related health 
risks.

3 Genetic determinants of obesity

Monogenic	obesity	 is	 the	 consequence	of	 a	mutation	 in	 a	
given gene and can present as either syndromic or non-syn-
dromic;	indeed,	this	setting	has	blazed	the	trail	with	respect	
to	 the	 first	 obesity	 genes	 discovered.	 The	 most	 common	
form of obesity is the polygenic version, driven by hundreds 
to possibly thousands of independent single nucleotide poly-
morphisms (SNPs) distributed across the human genome 
and therefore has a complex mode of inheritance typical 
of common traits. The expression of mutations driving the 
pathogenesis of monogenic obesity can be partly impacted 
by	polygenic	obesity	susceptibility	in	a	given	subject	[35].

3.1 Syndromic and monogenic obesity

This	rare	form	of	obesity	typically	presents	with	various	co-
morbidities, such as cognitive delay [36]. Currently, of the 
almost	eighty	obesity	syndromes	that	have	been	identified	
to date, only a minority have been either fully or partially 
defined,	with	the	remainder	just	mapped	to	an	approximate	
genomic location or not characterized at all [36]. The best-
known	 syndromes	 include	 Prader-Willi	 syndrome	 (PWS)	
caused by an imprinting change on chromosome 15, the 
related Prader-Willi-like syndrome driven by deletion 
events on chromosome 16 impacting genes such as SIM1 
(which	encodes	a	crucial	transcription	factor	for	hypothala-
mus paraventricular and supraoptic nuclei development) 
[37], Fragile X syndrome, Bardet-Biedl syndrome (BBS, 
caused	 by	multiple	 different	 genes),	Albright’s	 hereditary	
osteodystrophy caused by mutations in GNAS, and Wilms-
Tumor-Aniridia-Syndrome (WAGR) driven by deletion 
events on chromosome 11) [38].	Given	how	rare	these	pre-
sentations are, they remain challenging to be distinguished 
from conventional obesity [39].

3.1.1 Heterogeneity of clinical features

Twenty	 three	 obesity	 syndromes	 display	wide	 phenotypic	
heterogeneity [36]. Studying such heterogeneity in syn-
dromic	obesity	 is	 challenging	due	 to	 limited	cases	world-
wide.	Some	contributing	 factors	 include	genetic	 or	 allelic	
heterogeneity, the impact of the environment, including diet 
and	 medication,	 ancestral	 differences,	 gene-gene	 interac-
tions	 and	 gene-environment	 interactions	 affecting	 epigen-
etic patterning.

Genetic heterogeneity includes structural vari-
ants like deletions, insertions, inversions and complex 

1 3

779



Reviews in Endocrine and Metabolic Disorders (2023) 24:775–793

define	 syndromic	 obesity	 should	 aid	 efficiency,	 enhance	
classification	and	 improve	 the	diagnosis	process,	manage-
ment and treatment.

3.2 Monogenic (non-syndromic) obesity

Some	causal	genes	for	obesity	exert	substantial	effects	and	
are	 inherited	 in	 a	Mendelian	 pattern,	 whose	 predominant	
trait is excess adiposity. Endocrine disorders and hyper-
phagia typically characterize them. Most genes and path-
ways	 causal	 for	 monogenic	 obesity	 were	 first	 discovered	
in	 transgenic	 mice	 presenting	 with	 spontaneous	 obesity	
and hyperphagia. ‘Reverse genetics’ could identify causal 
mutations in the ob (encoding leptin), and db (encoding the 
leptin receptor) genes [60, 61]. These discoveries in mice 
were	quickly	followed	with	multiple	human	genes	encoding	
components	of	the	leptin–melanocortin	pathway,	crucial	for	
control of appetite. Figure 1	summarizes	the	known	genes	
and factors involved in this key circuit.

3.2.1 LEP

Congenital	 leptin	 deficiency	 is	 inherited	 recessively	 and	
was	initially	characterized	in	two	Pakistani	cousins	present-
ing	with	obesity	due	to	a	frameshift	mutation	in	LEP [62]. 
Since then, ten other mutations in LEP have been described 
[63–73].	 Symptoms	 include	 rapid	 weight	 gain,	 severe	
early-onset obesity and intense hyperphagia [74]. Recom-
binant leptin can be used to improve adiposity and restore 
related functions [73, 75]. Myalept (metreleptin) is an FDA-
approved	therapeutic	for	treatment	of	congenital	leptin	defi-
ciency [76].

3.2.2 LEPR

Subjects	 with	 leptin	 receptor	 (LEPR) mutations present 
with	comparable	symptoms	to	those	with	leptin	deficiency,	
but	 lack	 the	 signature	 of	 serum	 hormone	 deficiency	 [77]. 
Advances	 in	DNA	sequencing	have	 enabled	detections	of	
mutations in LEPR,	which	can	affect	2–3%	of	a	given	pop-
ulation.	 Some	 patients	 also	 develop	 growth	 hormone	 and	
thyroid	function	deficiency;	however,	homozygous	carriers	
of LEPR mutations do not respond to recombinant leptin.

3.2.3 POMC

Autosomal	 recessive	 inheritance	 of	 deficiency	 in	 POMC	
leads	 to	 a	 lack	 of	ACTH,	 α-MSH	and	 β-endorphins	 [78]. 
This	can	cause	red	hair	and	severe	obesity	via	an	α-MSH	
influence	 on	 both	 pigmentation	 and	 appetite.	A	 rare	 defi-
ciency	of	ACTH	causes	 adrenal	 insufficiency.	Early	diag-
nosis	 combined	 with	 glucocorticoid	 replacement	 therapy	

cases [49]. The endocrine manifestations of ROHHADNET 
syndrome	were	studied	in	six	patients	and	varied	hypotha-
lamic-pituitary	 endocrine	dysregulation	was	 found,	deem-
ing it crucial to be considered during the diagnosis process 
for	all	obesity	cases	with	early	onset	[50]. Such character-
ization,	which	does	not	just	entail	medical	records,	is	expen-
sive	with	respect	expertise	and	time	required.

3.1.4 Combining and separating syndromes

Advances	 in	 genetics	 have	 led	 to	 the	 reclassification	 of	
syndromes to aid improved understanding and diagnostic 
approaches.	Prior	to	genetic	testing,	diagnoses	were	based	
principally on physical characteristics. For example, Car-
penter,	Goodman,	 and	 Summit	 syndromes	were	 proposed	
to be combined into one due to their similarities in symp-
toms	including	obesity	features;	however,	variation	in	these	
given	 symptoms	have	now	be	attributed	 to	genetic	differ-
ences [51]. Recently, genetic evidence has been used to 
subdivide	 WAGR	 syndrome	 into	 two	 separate	 disorders,	
WAGR	and	WAGRO	(WARG	with	Obesity),	with	the	latter	
characterized	by	obesity	and	molecular	testing	confirmation	
of BDNF deletions [52, 53].

3.1.5 Advances in genetic elucidation

Genetic elucidation of syndromes is critical for understand-
ing the underlying molecular mechanisms and improving 
diagnosis,	 treatment,	and	care.	Techniques	such	as	whole-
exome	sequencing	(WES),	linkage	mapping,	candidate	gene	
assessments and cytogenetics have been leveraged to reveal 
critical	chromosomal	regions	and	genes	associated	with	syn-
dromic obesity. For example, the multiple genes causal for 
BBS have been determined using various methods [40–42].

3.1.6 Complex patterns of genetic inheritance

With an expanding genetic picture of obesity syndrome 
drivers, complexities of inheritance are being observed. 
Kallmann syndrome can be caused by mutations in auto-
somal genes PROK2, KAL1 and FGFR1, or KAL1 on the X 
chromosome,	each	presenting	with	different	heterozygous,	
homozygous and compound states [54]. Studies have also 
suggested that BBS may be a complex disorder caused by 
a combination of three mutant alleles [55, 56], though this 
is	considered	a	rare	phenomenon.	Genetic	factors	that	influ-
ence the manifestation of a syndrome include mosaicism 
[57],	skewed	X	inactivation	[58] and deletion/duplication of 
multiple	adjacent	genes	[59].

The	 current	 classification	of	 syndromes	was	developed	
principally	 based	 on	 cardinal	 features,	 which	 may	 need	
to be updated or already is. Leveraging genetic testing to 
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the melanocortin-4 receptor, has the potential as a treatment 
for	POMC	deficiency	[81].

is	 vital	 for	 efficient	 treatment.	A	 few	 studies	 have	 found	
POMC	mutations	 in	 individuals	with	obesity,	but	with	no	
other symptoms [79, 80].	 Setmelanotide,	 which	 activates	

Fig. 1	 Leptin-melanocortin	 pathway.	 Leptin	 is	 an	 anorexigenic	 hor-
mone	 produced	 by	 white	 adipocytes,	 with	 its	 levels	 driven	 by	 the	
degree	of	fat	mass	present,	and	influences	food	consumption	together	
with	energy	balance	[112].	When	its	circulating	levels	become	lower	
in	the	fasting	state	and	rise	when	feeding	takes	place,	leptin	influences	
appetite via the hypothalamus [113, 114]. The arcuate nucleus is a 
component	of	the	hypothalamus,	where	a	key	isoform	of	leptin	recep-
tor	 resides	 in	 two	 types	 of	 neurons,	 one	 expressing	 POMC	and	 the	

other expressing agouti-related protein (AGRP) [115]. Leptin stimu-
lates	neurons	expressing	POMC,	which	is	subsequently	processed	to	
various active melanocortin peptides [116]. The POMC-expressing 
neurons contact MC4R neurons in the paraventricular nucleus (PVN) 
where	these	melanocortin	peptides	influence	a	reduction	in	intake	of	
food [115],	whereas	AGRP	antagonizes	MC4R	to	do	the	opposite	[115, 
117];	as	such	representing	a	finely	tuned	balance	in	the	regulation	of	
appetite
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influence	 on	 leptin	 signaling	 [97]. Deletions in BDNF as 
part of the WAGRO syndrome have been linked to early-
onset obesity [53]. Furthermore, multiple missense muta-
tions	within	BDNF drive the pathogenesis of severe obesity 
[98–101].

3.2.9 SH2B1

‘Src homology 2 B adapter protein’ (SH2B1) helps regulate 
sensitivity to leptin [102]. Autosomal dominantly inherited 
SH2B1	 mutations	 are	 known	 to	 lead	 to	 severe	 childhood	
obesity [103],	along	with	features	of	developmental	delay.	
It	has	been	shown	that	the	effects	of	each	mutation	can	vary	
[104].

3.2.10 Other genes

Kinase suppressor of Ras 2 (KSR2) mutations can cause 
hyperphagia,	 low	 heart	 rate,	 and	 insulin	 resistance,	 with	
metformin being used as treatment [105]. Mutations in the 
genes PCSK1 encoding proprotein convertase-1/3 (PC1/3) 
result in a range of diabetes-related traits and extreme child-
hood obesity [106]. The gene products represent attractive 
therapeutic targets, but no treatments have been developed 
to date. A homozygous frameshift mutation in TUB	 was	
found	in	a	subject	with	obesity	and	vision	disorders	[107]. 
A truncating mutation in the carboxypeptidase (CPE) gene 
was	found	in	one	subject	with	severe	obesity	[108]. A trun-
cating mutation in the retinoic acid induced 1 (RAI1) gene 
was	 linked	 to	 hypoventilation,	 developmental	 disability	
and severe obesity [109]. Melanocortin receptor acces-
sory protein 2 (MRAP2) variants have been reported to 
increase obesity risk [110]. And PHIP mutations correlate 
with	developmental	delay,	intellectual	disability	and	being	
overweight.	The	mechanism	by	which	these	genes	contrib-
ute to obesity is principally through repression of POMC 
expression	or	interference	with	leptin-melanocortin	signal-
ing [111].

3.2.11 Whole exome sequencing and the future

Newer	 comprehensive	 sequencing	 methods	 can	 aid	 new	
genetic	insights	into	obesity,	and	new	discoveries	are	hap-
pening	 nearly	 every	 day.	 For	 instance,	 twenty-two	GNAS 
mutations	(encoding	the	Gαs	protein,	and	involved	in	sig-
naling through G protein-coupled receptors) have been 
found	with	WES,	resulting	in	children	with	severe	obesity,	
reduced	growth	and	developmental	delay	[118].

And like syndromic, non-syndromic monogenic obe-
sity	is	approaching	the	era	where	diseases	are	better	classi-
fied	by	genetic	profiles	rather	than	the	underlying	cardinal	
symptoms.

3.2.4 MC4R

Mutations in MC4R, both autosomal dominant [82] and 
recessive, drive increased appetite and feeding behavior in 
children,	 along	 with	 additional	 co-morbidities	 principally	
related	to	growth	[83, 84].

MC4R	 heterozygous	 mutations	 are	 the	 most	 frequent	
drivers of monogenic childhood obesity, being observed in 
as	many	as	5%	of	pediatric	patients	[83, 85, 86] and caused 
by an array of nonsynonymous variants across the gene [87–
89].	Furthermore,	the	impact	of	such	mutations	can	be	influ-
enced by polygenic risk scores for common obesity [35]. 
Researchers	are	currently	exploring	ways	to	perturb	MC4R	
to improve satiety circuits, given that no such treatments are 
currently available [90–92].

3.2.5 ADCY3

A WES study on consanguineous families from Paki-
stan	 identified	 four	 children	 suffered	 from	 severe	 obesity	
with	 extremely	 rare	 homozygous	ADCY3 mutations. The 
encoded cyclase catalyzes the synthesis of cyclic AMP from 
ATP. Such loss-of-function mutations are hypothesized to 
interfere	with	several	anorexigenic	signaling	cascades	[93]. 
The main clinical features are early onset hyperphagia and 
obesity.

3.2.6 SIM1

Loss-of-function mutations in the gene encoding the tran-
scription factor ‘Single-minded homolog of drosophila’ 
(SIM1) lead to changes in feeding behavior and extreme 
obesity [37, 94]. Furthermore, a novel SIM1 variant, 
p.D134N, has been recently implicated in monogenic pedi-
atric obesity [95].

3.2.7 NTRK2

Neurotrophins contribute to the development, maintenance 
and function of nerves in the peripheral and central nervous 
system.	Studies	on	animals	have	shown	that	the	tropomyo-
sin receptor kinase B (TrkB, encoded by NTRK2), and its 
ligand BDNF, play a role in regulating food intake and body 
weight.	A	dominantly	inherited	mutation	that	results	in	loss	
of function of NTRK2	 was	 reported	 in	 one	 subject	 with	
severe obesity but no other related symptoms [96].

3.2.8 BDNF

Brain-derived	neurotrophic	factor	(BDNF)	exerts	its	influ-
ence in the hypothalamus. It plays a key role in control-
ling feeding behavior and energy balance, partly due to its 
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Associations	 with	 abdominal	 visceral	 adipose	 tis-
sue	 (VAT)	 and	 WC	 were	 found	 near	 THNSL2 only in 
women	 [130], near BBS9 and CYCSP30 [131]. A more 
recent study found the UBE2E2	 locus	associated	with	 the	
VAT:subcutaneous	 fat	 ratio	 [132],	 with	 loss	 of	 function	
mutations	 in	 a	 mouse	 model	 impacting	 differentiation	 of	
adipocytes.

The genetics of ectopic fat deposition has also been 
investigated. A previous study found moderate genetic cor-
relations	among	six	ectopic	fat	depots,	where	ENSA, TRIB2, 
and EBF1	 were	 associated	 with	 heart	 deposition	 specifi-
cally,	suggesting	common	and	depot-specific	genetic	deter-
minants [132]. Another study found several genetic variants 
associated	with	liver	fat	levels,	including	at	UGT1A, SOCS2, 
RAMP3, PNPLA3 and SUGP1 [133].

3.3.3 Childhood obesity loci

GWAS has been conducted to study the genetics of obesity 
by integrating demographic factors such as sex and age. The 
Early	Growth	Genetics	(EGG)	consortium	and	other	inves-
tigative	teams	have	studied	birth	weight,	pediatric	BMI	and	
childhood	obesity.	Most	of	the	identified	loci	are	also	asso-
ciated	with	obesity	and/or	BMI	 in	adults,	 including	at	 the	
FTO locus across multiple ancestries, highlighting that the 
genetics of obesity is relatively consistent over the lifecycle. 
However,	a	distinct	genetic	signature	for	peak	BMI	during	
infancy has also been reported [134].

3.3.4 Sex as confounding factor

A	number	of	loci	have	been	reported	for	waist-related	traits,	
such	as	waist-to-hip	ratio,	that	are	stronger	or	exclusive	to	
women	[120, 135, 136].	No	interaction	was	found	between	
sex and BMI loci in those studies. By contrast, another 
study	 in	 subjects	 of	Asian	 ancestry	 found	 that	 four	 BMI	
loci	were	more	 strongly	 associated	 in	males	 [137]. A tar-
geted analysis of BMI, WC, and WHR variants in Chinese 
subjects	found	that	specific	loci	 like	MC4R and LYPLAL1 
were	associated	with	female	visceral	fat	area,	and	ALDH2 in 
males [138].	Several	BMI	and	waist-hip	ratio	loci	revealed	
sexual	dimorphism	in	subjects	of	African	ancestry	[139]. As 
such, obesity genetic associations can be impacted by sex in 
an ethnicity/population-dependent manner.

3.3.5 Ethnicity as cofounding factor

Most GWAS for obesity have been conducted in popula-
tions	of	European	ancestry.	However,	additional	 loci	have	
been uncovered in other ethnicities [139–142],	albeit	with	
much smaller sample sizes. These loci often demonstrate 
good transferability across other ancestries, but the allele 

3.3 Polygenic obesity

Most	individuals	with	obesity	develop	the	common/multi-
factorial form, caused by a combination of multiple genetic 
variations	 (polygenic),	 each	with	modest	 effects.	The	dis-
covery of genes contributing to this type of obesity has 
been	a	slow	process,	starting	with	candidate	gene	studies	in	
the 1990s, then family-based linkage studies leading up to 
genome-wide	association	studies	(GWAS).

3.3.1 GWAS

The discovery of genes contributing to common diseases 
accelerated	 with	 the	 advent	 of	 GWAS.	 The	 first	 GWAS	
for	BMI	was	published	in	2007,	where	it	reported	the	FTO 
locus as being strongest association signal [119]. To date, 
GWAS	has	identified	more	than	a	thousand	loci	associated	
with	BMI/obesity	 and	 its	 related	 comorbidities.	However,	
despite	the	identification	of	a	myriad	of	loci,	in	combination,	
these	 signals	 only	 explain	 approximately	 5%	 of	 the	 vari-
ance in BMI [18]. Given the limitation of BMI as a proxy 
for overall adiposity, as discussed above, GWAS has also 
been	performed	on	more	 specifically-defined	obesity	phe-
notypes, including WHR [120], body fat percentage [121, 
122] and circulating leptin and leptin receptor levels [123, 
124].	These	more	specific	studies	are	often	smaller	in	size,	
and	therefore	lacking	in	relative	statistical	power,	but	reveal	
more direct biological relevance underpinning obesity.

3.3.2 GWAS and fat distribution

Genetic	 components	 characterize	 30–55%	 of	 fat	 distribu-
tion.	Three	major	studies	have	shown	that	the	WHR	has	a	
significant	 genetic	 component	 [120, 125, 126]. With their 
increasing	 sample	 sizes,	 a	 growing	 number	 of	 significant	
loci	have	been	reported,	with	a	subset	exhibiting	sex	dimor-
phism. Furthermore, it has been reported recently that the 
genetics	of	sexually	dimorphism	influence	human	adipose	
distribution,	where	genetic-mediated	process	were	found	to	
underpin	adipose	distribution	specifically	in	females	leading	
to	metabolic	dysfunction	in	women	[127].

A	study	of	subjects	from	five	different	ancestries	found	
protein-coding	variants	 influencing	variations	 in	 fat	distri-
bution.	Fifty-six	significant	coding	variants	were	identified,	
with	forty-three	being	common,	and	twenty-five	also	associ-
ated	with	BMI.	The	remaining	thirty-one	influenced	adipose	
tissue	topography.	Nineteen	had	sex-specific	effects,	where	
sixteen	were	more	strongly	associated	with	WHR	in	women	
[128].	Unlike	BMI	loci,	there	was	no	evidence	that	genetic	
variants near genes related to central nervous system regula-
tion had any impact on the distribution of fat [129].
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As such, a full functional appraisal of such GWAS loci 
can reveal novel understanding of the genetic etiology of 
obesity;	 however,	 the	 vast	 majority	 of	 BMI/obesity	 loci	
remain	 to	 be	 fully	 characterized	 with	 respect	 to	 precise	
mechanism of action. Determining the causal variant(s) at 
each of these loci, and then connecting them to the causal 
effector	 gene(s)	 remains	 challenging.	 Various	 methods	
have been used to achieve this, including SNP enrichment 
analysis,	molecular	 trait	 profiling,	 colocalization	 analysis,	
transcriptome-wide	association	studies	(TWAS),	regulome-
wide	association	studies	(RWAS),	integrating	polygenic	risk	
scores	with	functional	annotations,	and	the	use	of	different	
types	of	quantitative	 traits	 (eQTLs,	 sQTLs,	3′aQTLs)	and	
tissue types. More recently, machine learning and AI net-
works	have	also	been	used	to	predict	effector	genes.	These	
findings	then	require	further	functional	validation,	such	as	
with	CRISPR-based	 approaches.	 Furthermore,	 using	 gene	
ontology to analyze gene overlap across co-morbidities for 
obesity,	 including	diabetes	and	hypertension,	new	insights	
into	key	pathways	can	be	revealed	[160].

Emerging high-throughput methods to aid mapping of 
regulatory elements, multi-omics databases and advanced 
computational	 techniques	 are	 expected	 to	 accelerate	 the	
process of understanding the biology behind GWAS loci.

3.3.8 The genetic architecture of monogenic versus 
polygenic obesity

Recent	 GWAS	 have	 identified	 loci	 harboring	 genes	 that	
were	 initially	 uncovered	 in	 studies	 of	 extreme	 and	 early-
onset obesity, including MC4R [161, 162] and POMC [163]. 
Many of these gene products operate in the BDNF–TrkB 
and	 leptin–melanocortin	 signaling	 pathways.	 Severe	 obe-
sity	can	present	when	these	pathways	are	disrupted,	while	
common susceptibility variants colocalized nearby the same 
genes	can	influence	an	individual’s	BMI.	While	many	genes	
were	initially	identified	in	studies	of	extreme	obesity,	some,	
like ADCY3,	were	 first	 found	 in	 studies	 of	 common	 obe-
sity [147], and later linked to extreme obesity [143]. Given 
larger	GWAS	efforts	 for	BMI	and	obesity	are	expected	 in	
the	future,	one	would	expect	this	list	of	converging	genes	to	
continue	to	grow.

4 Gene-environment interaction: emerging 
role of epigenetics

Studies	 suggest	 that	 people	 with	 genetic	 susceptibility	
to obesity are also more susceptible to adverse environ-
ments.	This	 is	known	as	gene-by-environment	 interaction,	
transmitted via epigenetic processes. The agouti mouse 
model	demonstrates	the	influence	of	epigenetics	on	obesity	

frequencies	and	effect	sizes	are	often	substantially	different.	
Genetic correlation assessments across populations point 
to	 yet-to-be-discovered	 loci	 for	 BMI	 in	 specific	 ancestral	
groups.	To	 address	 this	 point,	 increasing	 statistical	 power	
by	 including	 additional	 subjects	 in	 GWAS	 of	 specific	
ancestries	 have	 been	 conducted,	 along	with	 searching	 for	
specific	high-impact	variants	conferring	effects	specifically	
in population isolates. Examples include CREBRF discov-
ered in Samoans and ADCY3	first	detected	in	Greenlanders	
[143–145].

3.3.6 Low frequency and rare variants

Microarray arrays leveraged for GWAS initially provided 
strong coverage for common variation (MAF >	5%),	but	as	
the technology has developed and informed by more fully 
sequenced	 human	 genomes,	 detection	 of	 lower	 frequency	
variation (MAF =	1–5%)	and	even	rare	variants	(MAF	<	1%)	
has become increasingly feasible; indeed, such variants are 
more likely to reside in coding and regulatory elements 
and therefore plausibly pathogenic. Furthermore, such 
genotyping data can be leveraged to detect copy number 
variants	 (CNVs)	contributing	 to	obesity	 risk,	with	a	num-
ber reported to date. Rare (MAF <	1%)	and	low	frequency	
(MAF =	1–5%)	variants	generally	impact	coding	and	regu-
latory	elements	more	frequently	[146].	An	effort	conducted	
in	approximately	700,000	subjects	to	uncover	rare	variants	
contributing to variation in BMI, revealed coding mutations 
across 13 genes [147]. Despite these successes, the haul of 
variants at this scale of sample size is considered modest, 
with	more	expected	 to	be	found	as	collections	 increase	 in	
number even further.

3.3.7 Target genes and functional annotation

Although GWAS has been very successful in detecting com-
mon	variants	associated	with	complex	traits,	understanding	
the underlying mechanisms of action has remained elusive. 
GWAS makes no inference of either the causal variant(s) or 
the	corresponding	effector	gene(s)	at	a	given	locus.	These	
variants typically reside in non-coding genomic regions, 
which	 are	 important	 for	 gene	 regulation,	 and	 these	 regu-
latory elements in turn can provide clues about potential 
mechanisms	via	pathway-based	analyses.	Besides	the	hypo-
thalamus	and	pituitary	gland	being	key	players	within	 the	
brain in appetite regulation, the limbic system, hippocam-
pus and substantia nigra likely play a role in the genetic eti-
ology of obesity [17, 140, 148, 149].

Only a relative handful of GWAS-implicated obesity loci 
have	been	 functionally	 followed	up	 to	date.	Figure	2 out-
lines	 four	different	mechanistic	examples	of	how	 loci	can	
contribute to obesity etiology.
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4.1 Epigenetic and obesity

4.1.1 DNA methylation

DNA methylation is an epigenetic feature that contributes to 
obesity pathogenesis. This process involves adding a methyl 
group	 to	 a	 cytosine	 residue	 in	 DNA,	 specifically	 at	 CpG	
sites.	This	chemical	modification	can	prevent	transcription	
factors	interacting	with	DNA,	thereby	interfering	with	gene	
transcription.

Studies have found mixed results for global DNA hypo-
methylation	 in	 obesity,	 but	 more	 consistent	 findings	 for	

through an Avy mutation. The mutation leads to the dis-
ruption of MC4R and triggers obesity, but can be reversed 
by	feeding	the	mice	with	food	rich	in	methyl	donors.	This	
establishes	a	link	between	obesity	and	epigenetic	alterations	
driven by environmental factors [164]. DNA methylation, 
histone	modifications	and	non-coding	RNAs	represent	 the	
most	frequent	and	well-studied	epigenetic	changes.

Fig. 2	 Four	 functional	 follow-up	 strategies	 of	 different	 GWAS-
implicated obesity loci. (A).	 A	 specific	 variant	 embedded	 within	
the FTO	 gene	 is	 located	 in	 an	ARID5B	 regulatory	 element,	 which	
in turn impacts the expression of the neighboring genes, IRX3 and 
IRX5,	which	 play	 a	 role	 in	 adipose	 biology	 [150]. (B). One of the 
strongest	 obesity	 loci	 coincides	with	 the	TMEM18 gene [151, 152], 
which	encodes	a	poorly	characterized	 transmembrane	protein.	Work	
with	a	Drosophila	melanogaster	knock-out	model	implicates	TMEM18 
in	 influencing	lipid	and	carbohydrate	 levels	via	disruption	of	 insulin	
and glucagon signaling [153],	 while	 knock-out	 in	 a	 mouse	 model	
leads	to	increased	body	weight	due	to	elevated	food	intake,	with	over-
expression	of	the	gene	showing	an	opposite	effect	[154]. (C). CADM1 
and CADM2 encode cell-adhesion proteins in the brain. The associ-

ated	variants	 influence	 the	expression	of	 the	 respective	genes	 in	 the	
hypothalamus,	 leading	 to	 increased	 body	weight,	 insulin	 sensitivity	
and energy expenditure. Loss of function of these genes promotes 
weight	loss.	Keto	diet	(“green”	food	cube)	showed	lower	expression	
of	 these	 genes	 and	 promoted	weight	 loss	 [155, 156]. (D). Deletion 
variants	 located	 just	 upstream	of	NEGR1 impacts a binding site for 
the strong transcriptional repressor NKX6.1. When NKX6.1 binding 
is lost, increased NEGR1 expression is observed. NEGR1 is expressed 
in	the	brain.	Studies	in	mice	have	found	that	NEGR1	deficiency	low-
ers	 body	weight	 via	 a	 reduction	 in	 lean	mass	 [157], although other 
studies have found opposite results [158, 159]. High-fat diet seemed to 
accelerate	weight	loss.
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obesity,	while	upregulation	of	miR221	has	been	observed	in	
diet-induced obese mice. Silencing these miRNAs can lead 
to reductions in adipogenesis, triglyceride accumulation 
and	alterations	 to	BMI.	Multiple	miRNAs	have	now	been	
uncovered	 that	 show	differences	 in	 expression	 in	 subjects	
with	obesity,	including	those	operating	within	adipogenesis,	
insulin signaling and hypoxia [177].

Several lncRNAs, including GYG2P1, lncRNAp21015 
and lncRNA-p5549, have reduced expression levels in 
obesity [178, 179]. RP11-20G13.3, lnc-dPrm16 and MIST 
are among the lncRNAs that impact metrics of adipogen-
esis [180, 181]. As such there is increasing evidence that 
lncRNAs	 place	 a	 specific	 role	 in	 conferring	 obesity	 risk	
[182].

4.2 Environment and Lifestyle impact epigenetics

Epigenetic processes are nimble in responding to lifestyle 
and	the	environment,	enabling	a	subject	to	respond	to	exter-
nal factors and to then return to the original state once that 
factor is no longer present. This includes endocrine disrupt-
ing chemicals exposures, dietary including high-fat, high/
low-carb,	sugar/oil-rich	and	micronutrients,	physical	activ-
ity including short/long-term training, sleep disturbance and 
deprivation,	 alcohol	 intake,	 weight	 loss	 interventions	 and	
the use of epigenetic drugs [183]. Figure 3 summarizes the 
identified	genes	affected	by	different	environmental	factors.

The	 following	 section	 will	 look	 at	 two	 environmental	
exposures that take place before an individual is born.

4.2.1 Inheritance of epigenetic susceptibility to obesity

A birth cohort study in the Netherlands reported a relation-
ship	 between	 parental	 nutrition	 prior	 to	 conception	 and	
inherited epigenetic patterns [184]. This can be potentially 
exacerbated	by	assortative	mating,	which	can	increase	pre-
disposition	to	obesity	in	offspring	[185]. Recent studies have 
shown	 that	 obesity	 can	 influence	 modifications	 of	 DNA,	
histones and ncRNAs in both sperm and the oocyte [186]. 
The	negative	effect	of	obesity	on	oocytes	has	been	studied	
mainly	in	model	organisms	for	obesity,	where	alterations	in	
histone	modifications	and	DNA	methylation	in	this	setting	
are observed [186–188].

Research	 is	growing	on	how	epigenetics	can	be	passed	
down	via	the	sperm	of	men	and	affect	the	next	generation.	
Studies	have	shown	high-fat,	low-protein	diets	and	bariatric	
surgery can cause changes in the expression of certain types 
of RNA and DNA methylation patterns in the sperm, lead-
ing	to	insulin	resistance	and	weight	changes	in	the	offspring	
[189, 190].

specific	candidate	genes	methylation.	For	example,	a	nega-
tive	 association	 has	 been	 found	 between	 body	 weight	 in	
adults	with	obesity	[165]	and	BMI	in	subjects	with	obesity	
and methylation at the LEP promoter and adiponectin gene 
[166–168].	Positive	association	was	found	for	methylation	
status	of	members	of	the	insulin	signaling	pathway,	includ-
ing INS, IRS1 and PIK3R1 [23, 169, 170],	 with	 obesity	
and metabolic disease. Increased POMC	 and	 lower	NPY 
methylation	has	been	reported	for	subjects	presenting	with	
resistance	to	weight	loss	[171]. TNF, IL6 and TFAM exhibit 
changes	 in	 DNA	methylation	 in	 subjects	 presenting	 with	
obesity.

Collectively,	DNA	methylation	differences	are	observed	
in	 obesity	 and	 may	 offer	 new	 avenues	 for	 diagnostic	
approaches and therapeutic interventions. Imbalances in 
the activity of enzymes responsible for methylation and 
demethylation, such as DNA Methyltransferases (DNMTs) 
and Tet methylcytosine dioxygenases (TETs) may cause 
these	changes.	However,	more	studies	are	required	to	fully	
understand the mechanisms behind such changes.

4.1.2 Histone modifications

Histones help to compact DNA into chromatin. Histone alter-
ations by mechanisms such as methylation and acetylation 
can	impact	how	compact	DNA	becomes	and	subsequently	
influence	 gene	 expression.	 Enzymes	 that	modify	 histones	
include histone methyltransferases, histone demethylases, 
histone deacetylases (HDACs) and histone acetyltransfer-
ases. Changes in the levels of these enzymes have been 
linked	to	obesity,	and	specific	enzymes,	such	as	HDACs	and	
Jhdm2a,	have	been	shown	to	accelerate	the	progression	of	
obesity in clinical studies [172–174].

Histone	modifications	have	been	shown	to	regulate	gene	
expression related to adipogenesis, including C/EBPB, C/
EBPA, Pref-1, aP2 and PPARG, appetite control, includ-
ing NPY and POMC [175]. Changes in histone acetylation 
caused by high-fat diets have been linked to obesity.

4.1.3 Non-coding RNAs

Non-coding RNAs do not encode proteins but can have a 
crucial impact on gene expression. MicroRNAs (miRNAs) 
and long non-coding RNAs (lncRNAs) have both been 
implicated in the pathogenesis of obesity.

Several miRNAs involved in adipogenesis have been 
shown	to	be	expressed	both	in	subjects	and	mice	with	obe-
sity	 that	were	placed	on	a	high	fat	diet.	Additionally,	spe-
cific	miRNAs	have	been	reported	to	be	expressed	at	higher	
levels	in	visceral	fat	tissue	derived	from	subjects	with	obe-
sity [176]. miR21 and miR221 have been reported to have 
higher	 expression	 in	 the	 white	 adipose	 of	 subjects	 with	
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process	can	lead	to	issues	with	fetal	growth,	causing	hepato-
metabolic and cardiovascular diseases [191, 192].

Increased LEPR methylation is linked to poor maternal 
weight	gain	during	pregnancy,	affecting	newborns’	protein	

4.2.2 Epigenetic changes during pregnancy

The placenta regulates nutrients, oxygen and hormonal sup-
ply	between	the	mother	and	fetus.	Any	abnormalities	in	this	

Fig. 3	 Genes	affected	by	environmental	factors	through	epigenetic	mechanisms.	Genes	are	color-coded	by	mechanism.	The	genes	within	each	
section	are	specific	for	each	factor,	and	genes	placed	in	the	middle	space	are	common	between	at	least	two	factors
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the	relationship	between	changes	in	environmental	factors	
such as diet, physical activity, sleep and alcohol consump-
tion	with	epigenetic	changes.	The	modifiable	nature	of	epi-
genetics makes it a promising avenue for obesity prevention 
and treatment.

Insights	 from	 genetic	 and	 epigenetic	 discovery	 efforts	
represent	exciting	advances	toward	precision	medicine,	and	
which	should	directly	affect	health	outcomes	in	the	decades	
to	follow.
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