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Abstract
Adipose tissue develops lipids, aberrant adipokines, chemokines, and pro-inflammatory cytokines as a consequence of 
the low-grade systemic inflammation that characterizes obesity. This low-grade systemic inflammation can lead to insulin 
resistance (IR) and metabolic complications, such as type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). 
Although the CXC chemokines consists of numerous regulators of inflammation, cellular function, and cellular migration, 
it is still unknown that how CXC chemokines and chemokine receptors contribute to the development of metabolic diseases 
(such as T2D and NAFLD) during obesity. In light of recent research, the objective of this review is to provide an update on 
the linkage between the CXC chemokine, obesity, and obesity-related metabolic diseases (T2D and NAFLD). We explore 
the differential migratory and immunomodulatory potential of CXC chemokines and their mechanisms of action to better 
understand their role in clinical and laboratory contexts. Besides that, because CXC chemokine profiling is strongly linked 
to leukocyte recruitment, macrophage recruitment, and immunomodulatory potential, we hypothesize that it could be used 
to predict the therapeutic potential for obesity and obesity-related diseases (T2D and NAFLD).
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Abbreviations
T2D  Type 2 diabetes
NAFLD  Nonalcoholic fatty liver disease
CVD  Cardiovascular diseases
NKT cells  Natural killer T cells
kDa  Kilodalton
ELR  Glutamic acid, leucine, and arginine motif
cAMP  Cyclic adenosine monophosphate

AC  Adenylate cyclase
PI  Phosphatidylinositol
PLC  Phospholipase C
PIP2  Phosphatidylinositol biphosphate
DG  Diacylglycerol
IP3  Inositol 1,4,5-triphosphate
PI3K  Phosphatidylinositol 3-kinase
MAPK  Mitogen-activated protein kinase
ASCs  Adipose stromal cells
Jak  Janus kinase
STAT   Signal transducers and activators of 

transcription
SOC  Suppressor of cytokine signaling protein
IR  Insulin resistance
TNF-α  Tumor necrosis factor alpha
NF-kB  Nuclear factor-kappa B
IL-6  Interleukin 6
IL-1 β  Interleukin-1 beta
IL-8  Interleukin 8
CRP  c-reactive protein
p-AKT  Phosphorylated serine/threonine kinase
ERK  Extra
  cellular signal-regulated kinase
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p38MAP  p38 mitogen-activated protein
BRAK  Breast and kidney chemokine
BMAC  B cell- and monocyte-activating chemokine
Mip-2γ  Macrophage inflammatory protein 2γ
HFD  High-fat diet
MCP-1  Monocyte chemoattractant protein
IL-7  Interleukin − 7
TLR-4  Toll-like receptor − 4
LPS  Lipo
  polysaccharide
ox-LDL  Oxidized low-density lipoprotein uptake
ADAM10  Disintegrin and Metalloproteinase
SS  Simple steatosis
NASH  Nonalcoholic steatohepatitis
HCC  Hepatocellular carcinoma
HSCs  Hepatic stellate cells
FFA  Free fatty acid
JNK  Jun N-terminal kinase
CDAA  Choline deficient amino acid-defined
MALAT1  Metastasis-associated lung adenocarcinoma 

transcript 1
DIAMOND  Diet-induced animal model of nonalcoholic 

fatty liver disease
GCP-2  Granulocyte chemotactic protein 2
TGF-β  Transforming growth factor-beta
EGFR  Epidermal growth factor receptor
mTOR  mammalian target of rapamycin
MAFLD  Metabolic-associated fatty liver disease
MLK3  Mixed lineage kinase 3
EVs  Extracellular vesicles
LPC  Lysophosphatidylcholine
DLX6-AS1  Distal-less homeobox 6 antisense 1
EMT  Epithelial-mesenchymal transition
Gro-α  Growth-regulated protein alpha
GROβ  Growth-regulated protein beta
GROγ  Growth-regulated protein gamma
PF4  Platelet factor 4
MIG  Interferon gamma
IP-10  Interferon gamma-induced protein 10
I-TAC   Interferon-inducible T cell alpha 

chemoattractant
SDF-1  Stromal cell-derived factor 1
SR-PSOX  Scavenger receptor for phosphatidylserine 

and oxidized lipoprotein
GPCRs  G protein-coupled receptors

1 Introduction

Obesity is increasing at an alarming rate around the world. 
Statistics from around the world show an epidemic rise in 
all age groups. Obesity affects one out of every six chil-
dren aged 2 to 19, and the rate has more than tripled in the 

last 20 years. During this time, the prevalence of severe 
obesity nearly doubled, rising from 4.7 to 9.2% [1]. More-
over, obesity is a significant risk factor for several cancers, 
including insulin resistance (IR), type 2 diabetes (T2D), 
immune disorders, cardiovascular diseases (CVD), and 
nonalcoholic fatty liver disease (NAFLD). Overall, obesity 
is associated with a reduced life span, higher healthcare 
costs, and a reduced quality of life [2–6]. The overweight, 
obese individual has been found to have a spectrum of 
metabolic abnormalities, oxidative stress, mitochondrial 
dysfunction, immune dysfunction, and chronic low-grade 
inflammation [7, 8]. In addition, a recent review study 
reported that exercise prevented weight gain, weight loss, 
and maintenance of weight loss in obese individuals. 
Weight loss has been associated with improvements in 
the prevalence and severity of several obesity-associated 
comorbidities, such as IR, inflammation, dyslipidemia, 
hypertension, the metabolic syndrome, diabetes, pulmo-
nary disease, and CVD [9].

Besides that, it has been shown that chemokines coor-
dinate the recruitment of immune cells during obesity, 
T2D and CVD in both mice and humans which cause 
inflammation [10]. It has been suggested that adipocytes 
in obese adipose tissue recruit neutrophils, which then 
further promote inflammation. Adipocytes produce adi-
pokines such as leptin and chemokine such as interleukin-8 
(IL-8 or CXCL8). CXCL8 is a potent chemoattractant for 
neutrophils. Once in the adipose tissue, neutrophils can 
recruit more blood neutrophils by releasing C–X–C motif 
chemokine ligand 2 (CXCL2), another important neutro-
phil chemoattractant. This study demonstrated that CXC 
chemokines play an important role in the inflammation 
during obesity [11].

There are currently 17 CXC chemokines in humans, 
most of which plays a role in obesity and obesity-related 
diseases [12–14]. During obesity, the proinflammatory 
effects of CXCL1, CXCL5, CXCL8, and CXCL14 mainly 
lead to tumor cell growth and IR [15–20]. CXCL16/CXCR6 
axis plays an important role in the recruitment of NKT 
(Natural killer T) cell and induce inflammation in NALFD 
[21, 22]. Moreover, immune cell infiltration is stimulated 
by CXCL9, CXCL10, and CXCL11 via CXCR3 [23]; T lym-
phocyte and monocyte recruitment are mostly triggered by 
CXCL12 and CXCR4 [24]; and T cell recruitment is mainly 
promoted by CXCL16/CXCR6 [25]. CXCL17 also plays an 
important role in the development of NAFLD [26]. These 
molecules play proinflammatory and cytotoxic roles dur-
ing obesity-induced diabetes. Furthermore, CXCL13 is 
crucial for the chemotaxis and activation of leukocytes 
in diabetes [27]. Obesity and disorders related to obesity 
have been linked to CXC chemokines, which suggests that 
they play a vital role in the development of obesity-related 
disorders. As a consequence, CXC chemokines might be 
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prospective therapeutic targets for a number of obesity-
related disorders. In this article, we provide an overview 
of the numerous functions of CXC chemokines ligands 
and chemokine receptors in obesity and the obesity-related 
disorders such as T2D and NAFLD.

2  Methods

This is a narrative review supported by a PubMed and 
Google Scholar literature search. The search was conducted 
from August 2022 to February 2023. Additional information 
is provided in Table 1.

3  CXC chemokine family

Chemokines are small peptide mediators composed of a 
group of small chemotactic cytokine proteins (15 kDa). Dif-
ferent cell types secret these proteins following induction, or 
they may be constitutively expressed [28]. Chemokines affect  
the migration, proliferation, angiogenesis, survival, and gene 
expression of numerous cell types in their respective micro-
environments [28–30]. Chemokines can exert these effects 
via their respective G protein-coupled receptors (GPCRs).

Chemokines are classified into four subfamilies based 
on the location of the first two cysteines (C) in the main 
sequence, where “X” signifies an unconserved amino acid. 
CXC chemokines are further divided into ELR + and ELR- 
subtypes depending on whether the three-amino-acid motif 
ELR (glutamic acid, leucine, and arginine) is present or 
absent before the CXC sequence [31]. CXC chemokine 
ligands are related to trimeric G-proteins (Gαβγ), and the 
actions of four different types of Gα subunits determine acti-
vation effects inside cells [32–34].

Gαs and Gαi regulate cAMP levels by stimulating and 
inhibiting adenylate cyclase (AC), respectively; cAMP can 
further activate protein kinase PKA [34]. Gαq stimulates 
phosphatidylinositol (PI)-specific phospholipase C (PLC) 
and the hydrolysis of phosphatidylinositol biphosphate 

(PIP2), generating twosecond messengers, diacylglycerol 
(DG) and inositol 1,4,5-triphosphate (IP3); DG and IP3 
can activate protein kinase PKC and stimulate intracellular 
calcium release [33].  Gβγ complex has also been reported  
to trigger PLC activation. Gα12 exerts its functions pri-
marily through other small monomeric G-proteins [33]. 
Further downstream of chemokine receptor pathways, 
phosphatidylinositol 3-kinase (PI3K), mitogen-activated 
protein kinase (MAPK), signal transducer and activator of 
transcription (STAT), and nuclear factor kB (NF-kB) cas-
cades represent four major events promoting cell survival 
and chemotaxis [32].

The common receptor for ELR + CXC chemokines is 
CXCR2, except for CXCL8, which can also bind to CXCR1. 
There are three different growth-regulatory oncogenes: 
CXCL1, CXCL2, and CXCL3. The ELR- family chemokine 
CXCL14 has been shown to have a high binding affinity for 
CXCR4, which lets it interact with the CXCL12/CXCR4 axis 
[35]. Generally, CXCR2-binding  ELR+CXC chemokines can 
enhance angiogenesis by activating CXCR2 on endothelial 
cells, but CXCR3-binding  ELR− CXC chemokines have 
the inverse effect [35]. The biological roles played by CXC 
chemokines in obesity and obesity-related disorders such as 
T2D and NAFLAD are discussed further below.

3.1  Role of CXC chemokines in the development 
of obesity

Previous research has shown that chemokines can aid in 
progression of morbid obesity by promoting inflammation 
in various obesity-related disorders. As shown in Table 2, 
diseases associated with obesity have significantly higher 
levels of CXC chemokines, which promote obesity and the 
pathologies linked to it.

3.2  CXCL1 and CXCL2

In various adipose tissue depots, chemokines like CXCL1, 
CXCL5, CXCL8, and CXCL10 are upregulated in obe-
sity. Compared to lean individuals, obese people have 

Table 1  The search strategy summary

Items Specification

Date of search August 2022 – February 2023
Databases and other sources searched PubMed and Google Scholar
Search terms used CXC chemokines (CXCL1 to CXCL17), obesity, type 2 diabetes, nonalcoholic fatty liver diseases, 

simple steatosis, nonalcoholic steatohepatitis, cirrhosis, liver fibrosis, hepatocellular carcinoma,
Timeframe 1998–2023
Inclusion and exclusion criteria English language only, original studies and reviews only
Selection process West China Hospital Sichuan University
Any additional considerations, if applicable We considered clinical/ preclinical studies, original studies, as well as data from previously 

published reviews.
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Table 2  Studies on the upregulation of CXC-chemokines in obesity and obesity-related disorders

The ↑ symbol represented up-regulation of CXC-chemokines during obesity and obesity related disorders types 2 diabetes and nonalcoholic fatty 
liver diseases

Family Disease/indicators of obesity Types of study Abbreviations/ scientific 
name

Conclusion/effects References

ELR+ Ovarian cancer, Prostate 
cancer and NAFLD

In vitro, In vivo Gro-α/CXCL1 Angiogenesis in ovarian 
cancer cells. ↑

promotes prostate cancer 
progression. ↑

Promote systemic 
inflammation. ↑

[36, 15, 37, 38]

Obese oocytes, Metabolic 
syndrome, Adipose tissue 
inflammation

In vivo GROβ/CXCL2 Promote inflammation. ↑ [39–41]

Obesity, Cervical cancer In vitro, In vivo GROγ/ CXCL3 Malignancy-associated 
capacities such as migration. 
↑

Improvement obesity-related 
comorbidities. ↑

Promote systematic 
inflammation and insulin 
resistance. ↑

[42–44]

Lymphatic vasculature 
dysfunction

In vivo PF4/CXCL4 PF4 is a promising biomarker 
with lymphatic defects 
independent of the presence 
or absence of obesity. ↑

[45]

Prostate Lung Colorectal and 
Ovarian cancer and Obesity

In vivo GCP-2 /CXCL6 Worked out as an 
inflammatory biomarker. ↑

[46, 47]

NAFLD, Obese obstructive 
sleep apnea and Metabolic 
inflammation at the 
maternal–fetal interface

In vitro, In vivo IL -8 /CXCL8 Promote complex 
inflammation. ↑

[48–50, 51–54]

NASH, Obesity and Psoriasis 
with obesity

In vivo MIG/CXCL9 Promote Inflammation. ↑ [55–57]

ELR− Obesity, Ovarian 
Inflammation, Diabetes, 
Diliary inflammation

and NAFLD

In vitro, In vivo IP-10/CXCL10 and I-TAC/
CXCL11

Work as an Inhibitor of 
adipose tissue angiogenesis 
and promote inflammation. ↑

[58–62]

Breast cancer and Obesity In vitro, In vivo SDF-1α/CXCL12 Regulating metastasis of breast 
cancer. ↑

Promote inflammation. ↑

[63, 64]

Obesity models and Diabetes In vitro, In vivo BRAK/CXCL14 CXCL14 promotes the 
recruitment of M2-type 
macrophages. ↑

Promote inflammation. ↑
Regulator of glucose 

metabolism. ↑
Associated with inflammation 

or lipid metabolism. ↑

[65, 66, 19, 67–69]

Obesity, Diabetes and 
Metabolic Syndrome in 
Psoriasis

In vivo SR-PSOX/CXCL16 Accumulation and alterations 
in lipid metabolism. ↑

Associated with breast 
adipocyte hypertrophy in 
African American women. ↑

Innate lymphoid cells 
activation and tissue 
distribution in obese 
psoriatic patients. ↑

[70–72]
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significantly higher serum levels of these chemokines. 
Adipose stromal cells (ASCs) associated with obesity have 
higher levels of the chemokines CXCL1 and CXCL8, as 
well as their receptors CXCR1 and CXCR2, which regulate 
ASCs  (CD34bright CD45-CD31-) trafficking and function in 
the tumor microenvironment ( Fig. 1) [15, 16]. According 
to Hariharan et al., bladder-derived ASCs secrete CXCL1, 
which is crucial for migrating bladder cancer cells. Deplet-
ing CXCL1 in an obese patient’s conditioned media from 
ASCs prevented the migration of T24 bladder cancer cells 
[73]. A recent bioinformatics study found that the protein-
protein interaction network in obese people is controlled by 
the hub genes CXCL1, CXCL2, CXCL8, and CXCL12 [41]. 
A recent clinical study also found that the proinflamma-
tory genes CXCL1, CXCL12, and CXCL6 were significantly 
hypomethylated in the blood of obese individuals. This 
suggests that vascular dysfunction in obese adults may be 
caused by a systemic hypomethylation and increased expres-
sion of immune-related genes [47].

3.3  CXCL5 and CXCL8

CXC Ligand 5 (CXCL5) is a chemokine that suppresses insu-
lin action in muscles while also promoting IR. It is released 
by white adipose tissue during obesity [17]. In both mice 
and humans, circulating CXCL5 and its receptor CXCR2 
are significantly increased during obesity [17, 74]. CXCL5 
encodes one of the chemokines involved in the recruitment 
of immune cells. In this context, the adipose tissue of obese 
patients secretes free chemokines that enhance monocyte 

chemotaxis and macrophage infiltration [75]. In addition, 
CXCL5 blocks insulin action in muscle via stimulating the 
Janus kinase/signal transducers and activators of transcrip-
tion/ suppressor of cytokine signaling protein (Jak/STAT/
SOC) signaling pathway, suggesting its ability to cause in 
IR. IR patients have a higher CXCL5 concentration than non-
IR obese patients. Furthermore, CXCL5 is directly regulated 
by tumor necrosis factor alpha (TNF-α) in adipose tissue and 
macrophages via NF-kB activation, indicating that CXCL5 
mediates the effects of TNF-α on IR. Significantly inhibition 
of signaling from CXCR2, the CXCL5 receptor, by injec-
tion of a neutralizing anti-CXCL5 antibody or a selective 
antagonist to CXCR2 improves insulin sensitivity and glu-
cose clearance in insulin-resistant obese mice. Thus, these 
findings show that CXCL5 promotes IR, and its suppression 
and/or elimination may be considered as a therapeutic strat-
egy for treating metabolic syndrome (Fig. 2) [17, 74].

Cytokines (i.e. TNF- α, Interleukin 6 (IL-6) and Inter-
leukin-1 beta (IL-1 β) cause inflammation. They are already 
known to be released by white adipose tissue [76] also sev-
eral chemokines, including CXCL8 also known Interleukin 
8 (IL-8) and CCL2 [77, 78]. Recent studies have found 
elevated levels of CXCL8 in obese individuals [54, 79–81]. 
CXCL8 represents the α and β chemokines, respectively, 
and may contribute to the adipose tissue inflammation via 
chemotaxis of inflammatory cells such as monocytes/mac-
rophages, neutrophils and mast cells. CXCL8 is secreted by 
adipocytes, monocytes, macrophages, T-lymphocytes, and 
endothelial cells [80–82]. Furthermore, references reported 
that the level of CXCL8 in the medium and CXCL8 mRNA 

Fig. 1  The effect of CXCL1, 
CXCL8 and CXCL12 in obesity 
on adipose-derived stromal cells 
and their impact on the tumor 
cell growth environment. Dur-
ing obesity, pro-inflammatory 
chemokines CXCL1, CXCL8 
and receptors CXCR1 and 
CXCR2, as well as chemokine 
CXCL12 signaling via receptors 
CXCR4 and CXCR7, activate 
tumor cell growth and invasion 
pathways (STAT3, NF-kB, and 
AKT) in adipose stromal cells. 
Created with BioRender.com
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expression were significantly increased in human adipocytes 
after stimulation with TNF-α, IL-1β, or c-reactive protein 
(CRP) [18, 83]. CXCL8 is a key adipocytokine that leads 
to IR in adipocytes by blocking the insulin signal phospho-
rylates a serine/threonine protein kinase (p-AKT) pathway 
through the extracellular signal-regulated kinase (ERK) and 
p38 mitogen-activated protein (p38MAP) kinase pathways 
during obesity (Fig. 2) [18]. Stimulation of CXCL8 action 
could be a target for obesity intervention strategies and 
complications.

3.4  CXCL12 and CXCL14

A recent study found that the chemokine CXCL12, 
which activates tumor cell growth and invasion path-
ways (STAT3, NF-kB, and AKT) in ASCs obtained from 
white adipose tissue of obese HiMyc mice via receptors 
CXCR4 and CXCR7, is responsible for accelerated pros-
tate tumor growth in obesity (Fig. 1) [84]. Also, Su et al. 
found that CXCL12 signaling in the prostate epithelium 
from ASCs promotes prostate cancer in obese individu-
als [85]. Numerous studies have shown that CXCL12 is 
highly expressed in adipose tissue during obesity, indicat-
ing that CXCL12 and its receptors (CXCR4/CXCR7) play 
a significant role in obesity [41, 47, 85]. CXCL12 has also 
been identified as an adipokine that stimulates systemic 

IR, obesity-related inflammation, and macrophage recruit-
ment to adipose tissue (Fig. 3A) [86].

CXCL14 (also known as BRAK, BMAC, or Mip-2γ) is 
found in skeletal muscle, white adipose tissue, and brown 
adipose tissue, implying that it may be involved in myogen-
esis, adipogenesis, and metabolic regulation. CXCL14 attracts 
activated tissue macrophages and dendritic progenitor cells as 
a chemoattractant [87–93]. CXCL14 promotes visceral obe-
sity and adipose tissue inflammation in animals, leading to an 
increase in hepatic gluconeogenesis and the development of 
IR [19, 65, 94–96]. In addition, the obesity-induced upreg-
ulation of CXCL14 in white adipose tissue promotes mac-
rophage infiltration and subsequent inflammatory responses. 
Increased CXCL14 production in high-fat diet (HFD) fed mice 
modulates the expression of adipokines, including adiponec-
tin, retinol-binding protein-4, and IL-6, thereby promoting 
gluconeogenesis in the liver and inhibiting glucose uptake in 
skeletal muscle. It is susceptible that the dramatic increase in 
macrophages in white adipose tissue and the direct action of 
CXCL14 on skeletal muscle play significant roles in this dia-
betic cascade. CXCL14 also indirectly contributes to the fatty 
liver formation, which significantly affects glucose metabo-
lism (Fig. 3B) [19, 20]. In regards to simply recruiting inflam-
matory cells to visceral white adipose tissue, these studies 
demonstrated that CXC chemokines play essential roles in 
obesity-induced IR and impaired glucose metabolism.

Fig. 2  Effect of CXCL5 and CXCL8 on insulin resistance associated 
with obesity. CXCL5 is produced in response to TNF-α by adipose 
tissue-resident macrophages. Adipose tissue-resident macrophages 
also produce CXCL8 in response to TNF-α, IL-β, and CRP. CXCL5 
activates the NF/kB/Jak/STAT/SOC signaling pathways and CXCL8 
activates the ERK/p38MAP signaling pathways, which shows that 

CXCL5 and CXCL8 can induce insulin resistance inhibition of the 
insulin-induced p-Akt pathway. Inhibition of signaling from CXCR2, 
by injection of a neutralizing anti-CXCL5 antibody or a selective 
antagonist to CXCR2 improves both insulin sensitivity and glucose 
clearance in insulin-resistant obese mice. Created with BioRender.
com
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Fig. 3  CXCL12-derived macrophage recruitment in adipose tissue 
and CXCL14’s metabolic regulator functions. A  Adipocytes secrete 
CXCL12 during obesity, which recruits monocytes into adipose tissue 
via its receptor CXCR4. Mature macrophages, which have been differ-
entiated from monocytes, secrete proinflammatory mediators, which 
may lead to systemic insulin resistance. B  On the basis of the phe-

notypic abnormalities of CXCL14-deficient female mice fed an HFD, 
CXCL14 is implicated in obesity-induced insulin resistance. Organs 
and consequences of CXCL14 action are illustrated schematically. 
Created with BioRender.com. ↑ arrow symbol shows up-regulated 
while ↓ arrow show downregulated
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4  CXC chemokines and T2D

Obesity is associated with higher levels of low-grade chronic 
inflammation, which predisposes humans to a broad spec-
trum of comorbidities such as T2D, dyslipidemia, CVD, and 
NAFLD [97, 98]. T2D, also known as non-insulin-dependent 
diabetes mellitus, is distinguished by IR and pancreatic-cell 
(β cells) dysfunction attributable to hyperglycemia [99, 100]. 
IR impacts the entire diabetes pathophysiology. IR can pursue 
in the liver, muscles, and adipose tissue. Islet 𝛽 cells produce
more insulin to compensate for IR, which may exceed their 
maximum capacity and result in 𝛽 cell failure [101].

Chronic, low-grade inflammation of adipose tissue in 
regard to obesity and IR is crucial to the development of 
T2D. Popov et al. reported that inflammation is associated 
with impairment of oxidative status, carbohydrate and lipid 
metabolism in T2D complicated by NAFLD [102]. Many 
studies have been conducted in both humans and mice on 
the role of inflammation’s involvement in the develop-
ment of T2D. In human and mouse adipocytes, multiple 
pro-inflammatory mediators, such as CXCL1, CXCL10, 
and monocyte chemoattractant protein (MCP)-1, induce 
IR [103, 104]. The biological role of CXC chemokines in 
T2D development is addressed further below.

4.1  CXCL1 and CXCL2

According to previous studies, T2D patients exhibited the 
most significant increases in CXCL1 and CXCL5 levels 
[105–107]. Craig and colleagues demonstrated that CXCL1 
and CXCL5 are up-regulated in obese diabetic mice (db/db) 
compared to control mice (non-diabetic/non-obese) [108]. 
CXCL1 is highly expressed in diabetic wounds in rats and 
humans via the interleukin 17 (IL-17) pathway. In the same 
study, interleukin (IL-7) inhibitors (Huangbai liniment and 
berberine) significantly reduced IL-17 expression and its 
downstream targets, including CXCL1, in diabetic wounds 
[109]. Similarly, another study demonstrated that CXCL1 
and CXCL2 are up-regulated in diabetic wound mice, 
whereas Cryptotanshinone (inhibitor) significantly decreased 
CXCL1 and CXCL2 chemokine in Cryptotanshinone mice 
relative to vehicle mice [110]. In addition, Anuradha et al. 
found that the number of chemokines found in the plasma 
of T2D patients increased. These chemokines include 
CXCL1, CXCL2, CXCL8, CXCL9, CXCL10, and CXCL11. 
This finding suggests that the chemokine network plays a 
significant role in the progression of T2D [111]. The bio-
informatics analysis of endothelial precursor cells isolated 
from T2D patients also revealed that CXCL1 chemokine is 
up-regulated, implying that CXCL1 may play an essential 
role in the pathophysiology of endothelial precursor cells 
during T2D and stimulate an inflammatory response, which 

may be critical for the reduced number and hypofunction of 
endothelial precursor cells isolated from T2D patients [112]. 
Moreover, prior studies have demonstrated that the serine-
phosphorylated STAT1 and NF-kB (IkKB) pathways, which 
control the transcription of CXCL1 and CXCL2, are signifi-
cant contributors to the inflammatory response in β cells 
associated with islet β cell death in T2D. In both humans 
and animals with T2D, the CXCL1 and CXCL2 genes are 
regulated, encoding proteins that promote neutrophils and 
other CXCR2 + cells to migrate toward secreting tissue 
[113–115]. Single-cell RNA analysis has demonstrated that 
in diabetic macular edema, through boosting the production 
of the pro-inflammatory chemokines CXCL2 and CXCL8, 
 CD14++ monocytes predominate in inducing inflamma-
tion. These highly expressed genes for inflammation sug-
gest that immune cells in the blood of diabetic macular 
edema patients were in a proinflammatory state. This may 
have led to the destruction of vascular endothelial cells and 
retinopathy [116]. Nevertheless, the skin tissue from mice 
with a T2D-like phenotype displayed an up-regulation of 
the inflammatory gene CXCL2. These results indicate that 
CXCL2 is strongly associated with inflammation of tissues 
in mouse models of T2D [117]. In contrast, a transcriptome 
study found that CXCL2, CXCL3, CXCL5, and CXCL8 are 
down-regulated in T2D patients’ neutrophils compared 
to healthy controls, whereas CXCR1 and CXCR2 genes 
are significantly upregulated in T2D patients’ neutrophils 
compared to healthy controls. This work demonstrates that 
circulating neutrophils from T2D patients exhibit aberrant 
activation at the transcriptome level and that these neutro-
phils may also have reduced motility due to downregulated 
chemotaxis, which may help to explain why certain T2D 
patients have higher infection rates [118].

4.2  CXCL8

Previous research indicates that toll-like receptor (TLR)-4 
signaling is one of the key pro-inflammatory pathways 
induced via endogenous or exogenous molecules related to 
risk or infections. Circulation levels of the classical TLR4 
ligand lipopolysaccharide (LPS), which has been recently 
designated “metabolic endotoxmia”, are high in obese and 
T2D patients. This situation is also found in obesity/ dia-
betes model of rodents. [119, 120]. Isolated human islets 
were stimulated to produce IL-1, CXCL8, and TNF by LPS 
in a TLR4-dependent manner, whereas β cell viability and 
function were substantially compromised. CXCL8, which 
was specifically detected in β cells, stimulated monocyte 
recruitment, which was completely prevented by CXCL8 
neutralization. TLR4 is extremely pathogenic in human 
islets, causing a complicated multi-cellular inflammatory 
response that includes β cell failure, chemokine secretion, 



619Reviews in Endocrine and Metabolic Disorders (2023) 24:611–631 

1 3

and macrophages infiltration. The highly elevated TLR4 
response in obesity may exacerbate β cell damage and has-
ten diabetes progression [48].

Cimini and colleagues found that T2D patients had 
higher CXCL8 levels than non-diabetic subjects, and 
that CXCL8 concentration correlated with higher IL-6, 
TNF-α, fasting blood glucose, glycosylated hemoglobin, 
low-density lipoprotein cholesterol, lower adiponectin, 
and 25(OH) vitamin concentrations, indicating that T2D 
patients have a marked elevation of circulating CXCL8, 
which identifies subjects with worse inflammatory, gly-
cometabolic and lipid profile and lower vitamin D levels 
[121]. Moreover, reference showed that CXCL8 recruits’ 
neutrophils and stimulates tissue inflammation through 
binding to CXCR1 and CXCR2. In both in vitro and in vivo 
diabetes models, CXCL8 suppression inhibits the activa-
tion of CXCR1 and CXCR2, as well as their downstream 
JAK2/STAT3 and ERK1/2 pathways [122].

4.3  CXCL9, CXCL10, and CXCL11

Numerous studies have shown that CXCL9, CXCL10, and 
CXCL11 and their receptor CXCR3 are up-regulated in T2D 
patients [123–125]. Blocking the CXCL10/CXCR3 system 
is considered to be a promising therapeutic target due to 
the extensive research on the CXCL10/CXCR3 axis role in 
the immunopathogenesis of diabetes [105]. Additionally, 
high glucose levels activate the p38 MAP kinase signaling 
pathway, which in turn induces CXCR3 in  CD8+ T cells. 
Likewise, high glucose levels induced CXCL9,CXCL10, and 
CXCL11 expression, which promoted and infiltrated  CD8+ 
T cells into the peripheral tissue of diabetics and increased 
cytotoxicity [123, 126].

4.4  CXCL12 and CXCL13

SDF-1 alpha (CXCL12) is a stromal cell-derived fac-
tor that has a role in the activation of T lymphocytes 
and monocytes but not neutrophils. It induces a rapid 
and transient dramatic increase in intracellular calcium 
ions and further chemotaxis by activating the receptor 
CXCR4, which acts as its receptor. CXCL12 can also 
bind to another receptor, CXCR7, activating the beta-
arrestin pathway [105, 127]. Patients with T2D who 
have the heterozygous SDF-1 3′A genotype (801G/A in 
the 3′ untranslated region) have higher levels of insulin-
dependent adult progenitor cell mobilization, which is 
known to be involved in angiogenesis and vascular repair. 
On the other hand, homing of progenitor cells is a factor 
in the vascular complications of diabetes. This is because 
patients with the SDF-1 3′A genotype have higher levels 
of CXCL12 mRNA in their peripheral blood mononuclear 

cells. Variations in the CXCL12 gene’s genetic makeup 
may impact the movement of inf lammatory cells or 
defective precursors, which might increase the risk of 
diabetes disease [128, 129]. Moreover, karimabad et al. 
reported that injured duct, red blood cells, δ-cells, β 
cells, and α cells display higher amounts of CXCL12 
during T2D and that bone marrow and secondary lym-
phoid organs recruit immune cells to the blood via the 
CXCR4 receptor. Together, CXCL12 and CXCR4 contrib-
ute to the development of T2D, potentially by increasing 
B-cell mortality, glomerulonephritis, and microangiopa-
thy [129]. Elevated CXCL12 is associated with disease 
in the systemic compartment and can be used as a blood 
biomarker to identify individuals with T2D [130, 131].

CXCL13/CXCR5 has a considerable proinflammatory 
consequence by itself. CXCL13/CXCR5 signaling is a crucial 
upstream mediator driving p-ERK, p-AKT, and p-STAT3 
cell signaling pathways as well as stimulating the production 
of inflammatory cytokines TNF- α and IL-6. The chemokine 
CXCL13 and its receptor CXCR5 in the spinal cord contrib-
ute to the pathogenesis of painful diabetic neuropathy [132]. 
Surprisingly, Jiang et al. reported that CXCL13 promoted 
bone marrow stromal cell proliferation in high glucose envi-
ronments, promoting the healing of fractures in diabetic rats 
[133]. Furthermore, previous studies have showed increased 
levels of CXCL13 in T2D patients, and this protein has been 
speculated to be responsible for triggering leukocyte chemo-
taxis and activation [27, 82, 134].

4.5  CXCL14

Obesity affects the majority of T2D patients. Matsushita 
et al. found that serum CXCL14 levels were independently 
associated with serum C-peptide and fatty liver index in T2D 
patients. A high serum C-peptide concentration may reflect 
IR rather than β cell function in these patients, because 
CXCL14 displayed simple correlations with obesity-related 
factors. These findings suggested that serum CXCL14 levels 
in T2D patients could be used to predict elevated serum 
C-peptide and hepatic steatosis [66]. Although CXCL14’s 
cellular receptor and signaling pathway are still unknown, 
it is postulated to have chemotactic activity toward a wide 
range of inflammatory mononuclear cells, such as mono-
cytes, neutrophils, dendritic cells, and natural killer cells 
[135]. In this outcome, the serum CXCL14 concentration in 
T2D individuals involved has been reported to be elevated 
in correlation with IR and hepatic steatosis. It is believed 
that CXCL14 plays an important role in both the immune 
response and inflammation. This chemokine could be a new 
biomarker or therapeutic target for IR, hepatic steatosis, and 
T2D linked to obesity.
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4.6  CXCL16

CXCL16 is a protein that combines the functions of a scav-
enger receptor with those of an inflammatory chemokine. 
This transmembrane protein is composed of an extracellu-
lar chemokine domain and a transmembrane mucin stalk 
[136]. This chemokine domain functions as a recruiter for 
cells expressing the CXCR6 receptor as well as a scavenger, 
facilitating oxidized low-density lipoprotein uptake (ox-
LDL). Pro-inflammatory stimuli increase CXCL16 expres-
sion, which increases ox-LDL uptake and hastens foam cell 
formation in the vascular endothelium [137]. CXCL16 is a 
remarkable chemokine that is available in two forms: Solu-
ble CXCL16 links to immune cells that express the CXCR6 
receptor and leads them to the site of inflammation [138] 
and ox-LDL is subsequently internalized by the cell mem-
brane receptor form [139]. According to previous studies, 
the pancreatic β cell’s autophagy and transcription factor 
activation in diabetes could be induced by the activation of 
the CXCL16/ox-LDL pathway in β cells [140, 141]. Simi-
lar, Gutwein et al. reported that high levels of oxLDL were 
associated by increased glomerular CXCL16 expression in 
diabetic nephropathy [142]. This evidence confirms that 
oxLDL and CXCL16 have a link during diabetes. Moreover, 
the membranous CXCL16 can be cleaved to its soluble form 
by a Disintegrin and Metalloproteinase (ADAM10) [143]. 
Recent research indicates that ADAM10/CXCL16 upregu-
lation in the pancreatic islets of diabetic mice results in an 
accumulation of T-cells via an increased NF-kB pathway. 
Consequently, in diabetic mice, cleaved CXCL16 promoted 
T-cell recruitment into β cells and enhanced oxidative stress, 
inflammatory response, and mortality [140]. In addition, 
recent study demonstrated the processing enzyme ADAM10 
and the CXCL16/CXCR6 receptor have a role in the develop-
ment and progression of proliferative diabetic retinopathy. 
The researcher accepted that proliferative diabetic retinopa-
thy is mediated by elevated levels of retinal NF-kB, vascular 
endothelial growth factor, and intercellular adhesion mol-
ecule 1 [144]. In a recent study by Tawfik et al. discovered 
that patients with T2D had much higher levels of CXCL16  
in their blood than healthy patients [145]. Likewise, CXCL16 
serum levels were elevated in T2D patients with or without 
coronary artery disease compared to healthy patients [146]. 
Moreover, patients with diabetes mellitus, with or without 
gestational diabetes mellitus disease, had elevated blood 
CXCL16 levels [141, 147]. These studies confirmed that the 
chemokine CXCL16 is a key part of inflammation and may 
contribute to the development and progression of T2D. In 
T2D, serum CXCL16 might be used to monitor inflamma-
tion. Figure 4 displays the recent evidence regarding the role 
of CXC chemokines in the development of T2D and their 
blockade as a potential therapeutic approach.

5  CXC chemokines and NAFLD

The metabolic syndrome, which includes obesity, dys-
lipidemia, hyperinsulinemia, and IR, is characterized by 
NAFLD, which is its hepatic manifestation [148, 149]. 
Because of this, NAFLD is often considered a hepatic mani-
festation of metabolic syndrome [150]. NAFLD represents 
a wide range of liver disorders, from simple steatosis (SS) 
to nonalcoholic steatohepatitis (NASH) [151] ; It is well 
known that the latter increases the risk of liver cirrhosis and 
hepatocellular carcinoma (HCC) [152]. SS patients rarely 
suffer sever disease, but nearly 20% of NASH patients pro-
gress to the end-stages of liver disease [153, 154]. The risk 
of developing cirrhosis and hepatocellular carcinoma is 
higher in individuals with NASH than in individuals with 
SS, implying that NASH is a more severe form of liver 
injury [154–156].

Furthermore, adults with diagnosed NAFLD tend to fol-
low dietary patterns including high fat and sodium with 
suboptimal micronutrient intake and low physical activity 
[157]. Abdallah et al. reported that anti-inflammatory dietary 
patterns showed benefits to NAFLD risk factors, severity 
markers and inflammatory markers compared to the control 
diet [158]. These studies demonstrated that NAFLD could 
be prevented through dietary patterns.

5.1  CXCL1 and CXCL2

Regarding the development of NAFLD, a number of ref-
erence articles provide a comprehensive summary of key 
chemokines and their receptors. Chemokine pathophysi-
ological involvement in the development of NAFLD have 
been widely explored in NAFLD humans and animal mod-
els [159–161]. CXCL1 was among the most significantly 
active genes in the livers of mice following a 3-month HFD 
with binge ethanol exposure (30-fold in the liver and 5-fold 
in epididymal adipose tissue) [162]. CXCL1 expression 
increased significantly in hepatocytes, hepatic stellate cells 
(HSCs), and liver sinusoidal endothelial cells in the liver 
[162]. The regulation of CXCL1 by an HFD-plus-ethanol 
binge is thought to be associated with elevated levels of 
free fatty acid (FFA) in the liver, which stimulate CXCL1 
in hepatocytes via ERK1/2, Jun N-terminal kinase (JNK), 
and NF-kB. While CXCL1 overexpression exacerbated stea-
tohepatitis in 3-month HFD-fed mice, CXCL1 inhibition with 
a neutralizing antibody or CXCL1 gene disruption decreased 
hepatic neutrophil infiltration and injury following an HFD 
plus ethanol binge [162]. Moreover, In the choline deficient 
amino acid-defined (CDAA) diet-induced animal NASH 
model, CXCL1 mRNA levels are enhanced in a TLR4-
MyD88-dependent manner, resulting in increased neutrophil 
infiltration related to hepatic inflammation and fibrosis [163]. 
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In addition, In HFD-fed animals, adenoviral overexpression 
of CXCL1 induces hepatic neutrophil infiltration, oxidative 
stress, and hepatocyte mortality, increasing progression 
from SS to steatohepatitis [37]. Mueller et al. reported that 
CXCL1 is up-regulated in Ldlr-/-. Leiden mice enhanced 
hepatic inflammation, but treatment with the multicomponent 
pharmaceutical product (HC-24) inhibits the development 
of free cholesterol and has anti-inflammatory actions at the 
molecular and cellular levels in the liver [38]. Recently, bio-
informatic studies of human and animal also demonstrated 
that CXCL1 and CXCL2 is highly expressed in the NALFD 
disorder which indicated that CXCL1 and CXCL2 play impor-
tant role in the live inflammation in human and mice [164, 
165]. Moreover, a study demonstrated that CXCL2 activates 
the TLR4 pathway to recruit neutrophil and macrophage infil-
trations in the palmitate-induced fibrosis mouse model [166]. 
Saiman et al. found that increased hepatic levels of CXCL1 
and CXCL2 trigger the recruitment of neutrophils from the 

periphery after hepatic injury in humans [167]. These data 
indicate that CXCL1 and CXCL2 have a role in neutrophil 
recruitment and infiltration as a consequence of hepatic cell 
dysfunction in the liver, which leads to the development of 
chronic inflammation in NAFLD.

5.2  CXCL5

Previous reports indicated that CXCL5 is essential for neu-
trophil recruitment and activation via the CXCR2 receptor, as 
well as hepatocyte proliferation [168, 169]. CXCL5 is linked 
to neutrophil infiltration and a poor prognosis in HCC. It is 
considered a therapeutic target in the disease, as treatment 
with small-interfering RNAs or antibodies against CXCL5 
can inhibit tumor growth, proliferation, migration, and inva-
sion [170]. Xu et al. found that CXCL5 was over-expressed in 
HCC with high metastatic potential, and that CXCL5 could 
increase HCC migration and invasion, most frequently via 

Fig. 4  The functions of CXC chemokines in T2D. Chemokines 
mainly control the migration of neutrophils, monocytes, T cells, and 
leukocytes in T2D. CXCL1 and CXCL2 recruit neutrophils through 
the IL-17/NF-kB pathway and play a pro-inflammatory role. CXCL8 
recruits neutrophiles via the JAK2/STAT3/ERK1/2 pathways to 
induces pro-inflammatory response. CXCL9, CXCL10, and CXCL11 
recruits CD8 + T cells through the p38MAP pathway, which plays an 
important role in cytotoxicity. CXCL12/CXCR4 axis recruits immune 

cells, which creates inflammation. CXCL13 recruits promote inflam-
matory cytokines with the help of ERK/AKT/STAT3 pathways and 
induces inflammation. In addition, CXCL14 independently associ-
ated with serum C-peptide and fatty liver index which induce insu-
lin resistance. CXCL16/CXCR6/ADAM10 recruits T cells via NF-kB 
pathway and acts as a receptor for oxLDL clearance. Created with 
BioRender.com
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autocrine and paracrine mechanisms. Evidence also suggests 
that the CXCL5-CXCR2-ERK1/2/JNK/p38MAPK pathways 
may play important roles in HCC migration and invasion, 
and neutrophil and macrophage recruitment [171]. CXCL5 
was identified as a gene target of metastasis-associated lung 
adenocarcinoma transcript 1 (MALAT1) in liver cells, and 
increased levels of CXCL5 transcript and protein were found 
in fibrotic liver and activated hepatic stellate cells. Previous 
research demonstrated that MALAT1 expression increases 
in activated hepatic stellate cells and is regulated by hyper-
glycemia and insulin in vitro. In addition, MALAT1 expres-
sion was found to increase in activated hepatic stellate cells 
[172]. A recent study showed that CXCL5 activation of the 
NF-kB pathway in human hepatocyte-derived spheroids 
and primary rat hepatocytes caused NASH, while livogrit, 
a CXCL5 inhibitor, showed promise as a haptic therapeutic 
formulation that could reduce CXCL5 levels in the devel-
opment of NASH [173]. In Longitudinal studies, CXCL5 
chemokine is evaluated in the diet-induced progression of 
NAFLD to HCC in diet-induced animal model of nonalco-
holic fatty liver disease (DIAMOND) [174].

5.3  CXCL6

Chemokine CXCL6 (GCP-2) is an essential component of 
inflammatory cells. It is expressed in the liver and plays a 
role in the pathogenesis of multiple inflammatory responses 
and liver fibrosis [175]. CXCL6 dysregulation was closely 
associated with the activation of liver-infiltrating lympho-
cytes in the initial stage of hepatitis C-induced fibrosis [176]. 
Cai et al. showed that activated Kupffer cells (or stellate 
macrophages) are the source of CXCL6 in fibrotic livers, 
and that CXCL6 secreted by these macrophages promotes 
the release of transforming growth factor-beta (TGF-β) 
by Kupffer cells via the CXCR1/2 epidermal growth fac-
tor receptor (EGFR) pathway, which promotes HSCs acti-
vation [175]. Moreover, a recent study found that mRNA 
expression levels of CXCL6, and CXCR1 were high in SS 
during the pathogenesis of NAFLD via the pro-inflammatory 
NF-kB pathway [177].

5.4  CXCL8 and CXCL9

As evidenced by experimental findings, CXCL8 is a CXC 
chemokine with capabilities that are simultaneously pro-
inflammatory and pro-angiogenesis [178]. Macrophages are 
an essential element of NAFL and NASH, and research has 
demonstrated that liver-activated macrophages can create 
higher levels of CXCL8, hence inducing CXCL8/mir-17 clus-
ters. CXCL8 may enhance neutrophil recruitment in NASH 
by triggering the AKT/mTOR/STAT signaling pathway. The 
intrahepatic expression of CXCL8 was also elevated in the 
blood and liver of NAFL patients. These findings revealed 

that CXCL8, with the highest ranking in the NAFL stage, 
may play a significant role in both the NAFL and NASH 
stages [178, 179]. In addition, inflammatory neutrophil 
infiltration is distinguished by upregulation of CXCL8, and 
CXCR1/2, which recruit neutrophils into the liver to produce 
reactive oxygen species and proteases, resulting in hepato-
cyte damage [180–182]. For instance, studies have demon-
strated that patients with NAFLD have increasing levels of 
the inflammatory chemokine CXCL8 [49, 179, 183–185] and 
these recent research suggests that CXCL8 plays a role in the 
pathophysiology of NAFLD and could be a potential treat-
ment target for NAFLD.

The gene CXCL9 is a member of the chemokine super-
family, which produces secreted proteins that are involved 
in immune regulation, inflammation, and T cell trafficking. 
The encoded protein attracts lymphocytes but not neutro-
phils when it binds to the CXCL3. According to studies, 
CXCL9 plays a role in a number of pathological processes, 
including the growth of tumors, immunity, and inflammation 
[186, 187]. The liver tissues of NASH patients have higher 
levels of CXCL9 expression. CXCL9 mRNA was discovered 
to be overexpressed in both NASH and SS mice models, 
and hepatocytes and sinusoid endothelial cells that released 
CXCL9 protein were detected in regions where inflamma-
tory cells had infiltrated [188]. In a high-risk cohort of obese 
adults with NASH without fibrosis, the expression of CXCL9 
was upregulated [55]. Another cohort research found that 
the effects of liver fibrosis were positively connected with 
blood CXCL9 concentrations in patients with chronic liver 
disease, which were considerably greater than in healthy 
control individuals [189]. Patients with chronic hepatitis C 
virus infection also had higher levels of CXCL9 expression, 
which was associated with liver fibrosis [190]. In mouse 
models, the interaction from NAFLD to HCC in male mice 
was associated with a chronic trend of increased CXCL9 
levels [174, 191]. Furthermore, a recent study found that 
CXCL9 disrupts the Treg/Th17 balance in a mouse model of 
metabolic-associated fatty liver disease (MAFLD) by acti-
vating the p-JNK pathway [192]. Moreover, bioinformat-
ics analysis also demonstrated that CXCL9 is up-regulated 
in both humans and animals NAFL and NASH disorders 
[193–195]. CXCL9 is a key factor in chronic liver inflamma-
tion, according to these findings; nevertheless, its expression 
and involvement in NAFLD require additional exploration.

5.5  CXCL10 and CXCL12

CXCL10 is produced by a number of cells, including mac-
rophages, monocytes, hepatocytes, hepatic stellate cells, and 
endothelial cells [196]. In a well-designed and comprehen-
sive study, Ibrahim et al. may have identified the central 
link between lipotoxicity, and recruitment of macrophages, 
which promotes inflammatory processes in NASH. The 
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researchers examined the chemokine CXCL10 and mixed 
lineage kinase 3 (MLK3) in hepatocytes stimulated by pal-
mitic acid or lysophosphatidylcholine (LPC), as well as in an 
in vivo model of NASH [197]. CXCL10-containing extracel-
lular vesicles (EVs) were increased in treated cells and mice 
fed a high-calorie (saturated fat, cholesterol, and fructose; 
FFC) diet. In vitro, CXCL10 bound to EVs exerted a stronger 
chemotactic effect on macrophages than CXCL10 unbound 
to EVs. Two significant pathways controlled by MLK3 were 
discovered by MLK3 deletion or pharmacological inhibition. 
First, inhibiting MLK3 reduces LPC-induced CXCL10 pro-
duction, most probably via a p38/signal transducer and acti-
vator of transcription 1-dependent pathway; second, MLK3 
inhibition diminished CXCL10 trafficking into EVs (with 
increased intracellular CXCL10 levels in hepatocytes) and 
LPC-induced EV release, which may be dependent on JNK 
activation. In conclusion, MLK3-dependent hepatocyte pro-
duction of CXCL10-containing EVs may represent a crucial 
interface between lipotoxicity and inflammation generated 
by macrophages recruited into the liver [197]. Finally, these 
findings not only emphasize the importance of CXCL10 in 
driving hepatic inflammation in NASH, but it also suggests 
the role of EVs in hepatic inflammation, which is a novel 
field of cell biology that requires further investigation [197]. 
Furthermore, several studies on CXC10 chemokine and 
NAFLD indicate that CXCL10 has been recommended as a 
potential therapeutic target for NAFLD treatment [198–200].

CXCL12 is abundantly expressed in numerous tissues, 
including the liver, where biliary cells express it [201]. 
CXCL12 as well as its receptor CXCR4 have aberrant expres-
sion that has been linked to NAFLD. CXCR4 regulates cell 
localization, chemotaxis, activation, migration, division, and 
differentiation when it binds to its ligand, CXCL12 [202, 
203]. CXCL12 is widely generated by sinusoidal endothe-
lial cells in the liver and enhances hematopoietic stem cell 
migration following chronic liver injury [202]. NASH devel-
opments include elevated CXCR4 and CXCL12 protein lev-
els as well as aberrant  CD4+ T- cell responses to CXCL12 
[202, 204]. During immune surveillance and liver inflam-
mation, liver sinusoidal endothelial cells promote  CD4+ 
T cell recruitment by upregulating peri-vascular CXCL12 
production and activating CXCL12/CXCR4-dependent intra-
cellular transport pathways [24]. Moreover, Activation of 
the CXCL12/CXCR4 axis increased collagen I synthesis and 
hematopoietic stem cell proliferation in an animal model of 
CCL4-induced hepatic fibrosis [205].

5.6  CXCL16

Prior research has found that CXCL16 is substantially 
expressed in the livers of patients who suffer from meta-
bolic and inflammatory liver disorders [206, 207] and 
that CXCL16 inhibition reduced steatohepatitis and liver 

macrophage infiltration in chronic hepatic damage [208]. In 
addition, CXCL16 is considered to be a survival and matura-
tion regulator for hepatic NKT cells [209].

In experimental NAFLD, CXCR6 promotes liver inflam-
mation by enhancing the invasion of hepatic NKT cells and 
inflammatory macrophages [208, 210, 211]. The CXCL16/
CXCR6 axis stimulates hepatic NKT cell migration, pro-
moting CCl4-induced liver fibrosis [21, 22]. Indeed, injured 
hepatocytes exhibited increased CXCL16/CXCR6 axis 
expression, showing that the CXCL16/CXCR6 interplay is 
involved in the pathogenesis of NAFLD [208, 212–214].

5.7  CXCL17

CXCL17 is a newly identified 119-amino acid CXC 
chemokine; its recently identified receptor, GPR35/CXCR8, is 
a GPCR involved in metabolic processes [215–217]. It stimu-
lates monocytes, macrophages, dendritic cells, and immature 
myeloid-derived cells as a chemoattractant [217]. Autophagy 
inhibition was also associated with increased levels of 
CXCL17, which enhances cell proliferation and migration in 
human HCC tissues. Its suppression induces autophagy via 
nuclear translocation of liver kinase B1, which phosphoryl-
ates and activates AMPK, leading to an increase in tumor 
size and proliferation reduction [218]. In addition, an indica-
tor that can predict the patient’s prognosis in liver cancer is 
lncRNA called distal-less homeobox 6 antisense 1 (DLX6-
AS1) [219], whose down-regulation hinders cancer cells’ ten-
dency to proliferate [220]. Likewise, silencing DLX6-AS1 
effectively suppresses the bioactivities of HCC cells [221]. 
MicroRNAs (miRNAs), such as miR-15a-5p, are also crucial 
in the development of liver cancer. Interestingly, miR-15a-5p 
levels that are higher can inhibit the proliferation of liver 
cancer cells as well as other tumor-promoting features [222, 
223]. There have been some studies on the roles of HCC-
derived exosomes in human cancers. For instance, in HCC 
cells co-cultured with HCC-derived exosomes, increased 
migration, invasion, and epithelial-mesenchymal transition 
(EMT), as well as decreased E-cadherin and elevated vimen-
tin levels, have been observed [224]. The M2-polarized mac-
rophages and the miR-15a-5p/CXCL17 axis make it possible 
for DLX6-AS1 in HCC-derived exosomes to induce cancer. 
DLX6-AS1 suppresses miR-15a-5p, which stimulates the 
polarization of M2 macrophages and the invasion and metas-
tasis of HCC. The silencing of CXCL17 can inhibit migra-
tion, invasion, and EMT. Finally, DLX6-AS1 in HCC-derived 
exosomes modulates CXCL17 by binding to miR-15a-5p in a 
competitive fashion. This induces M2 macrophage polariza-
tion, which in turn promotes HCC migration, invasion, and 
EMT [26]. Furthermore, Li et al. demonstrated that CXCL17 
may positively regulate  CD68+ macrophage accumulation 
while negatively regulating  CD4+ T cell infiltration in HCC 
tumors, suggesting that CXCL17 production is connected 
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with adverse immune infiltration and may be a key target 
for anti-HCC therapy [225]. Figure 5 illustrates the recent 
evidence regarding the role of CXC chemokines in the patho-
genesis of NAFLD and their blockade as a potential thera-
peutic approach.

6  Conclusions and future perspectives

We attempted to explain the expression, molecular mecha-
nisms, sources, and key functions of CXC chemokines 
in obesity and disorders associated with obesity, such as 
T2D and NAFLD. In particular, suppressing the CXCR2 

pathway prevents the development of IR and inflamma-
tion, which may help to improve the prognosis of dis-
orders associated with obesity and inflammation. CXC 
chemokines suppression in an obese patient’s conditioned 
media from ASCs prevented cancer cell migration. Moreo-
ver, the CXC chemokines linkage may contribute to the 
immunopathogenesis of diabetes. On the other side, this 
axis’ suppression can decrease the risk of immunological 
rejection. This could be a possible therapeutic target for 
diabetes patients. Inhibition of the CXC chemokines can 
inhibit tumor growth, proliferation, migration, and inva-
sion during HCC, making it a potential target for thera-
peutic intervention.

Fig. 5  The role of CXC chemokines in the NAFLD. CXCL1 and 
CXCL2 recruit neutrophils via TLR- 4, JNK and NF-kB signaling, 
which induce inflammation. CXCL5 recruits neutrophiles through 
the ERK1/2/JNK and p38MAPK pathways, which plays an impor-
tant role in the pro-inflammatory process. CXCL6 and receptor 
CXCR1 and CXCR2 recruits stellate macrophages by EGFR mecha-
nism as a result pro-inflammatory response occur, CXCL8 and its 
receptors, CXCR1 and CXCR2, recruit neutrophils through the AKT/
mTOR/STAT3 pathways, causing hepatocyte injury and inflamma-
tion. CXCL9 disrupts the Treg/Th17 via the p-JNK pathway, which 

acts as a pro-inflammatory signal. CXCL10 recruits the macrophage 
chemotaxis via MLK3 mechanism and produces a pro-inflammatory 
response. CXCL12 and its receptor CXCR4 recruit  CD4+ T cells in 
the results of liver injury. CXCL6 and its receptor, CXCR6/CXCR6 
axis, primarily recruit macrophages and NKT cells and produce pro-
inflammatory response. DLX6-AS1 in HCC-derived exosomes mod-
ulates CXCL17 by binding to miR-15a-5p in a competitive fashion, 
which in turn promotes HCC migration, invasion, and EMT. Created 
with BioRender.com
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Nevertheless, our understanding of the complex communi-
cation system between CXC chemokines and their receptors 
is still inadequate, which could hinder the creation of innova-
tive therapeutics for obesity, T2D, and NAFLD. If possible, the 
role of each CXC chemokine and chemokine receptor should 
be adequately and instantly addressed to ensure translation 
into potential clinical implications. As a result, further clinical 
and pre-clinical studies are required to investigate the molecu-
lar mechanism and ascertain whether an anti-inflammatory 
strategic approach targeting specific CXC chemokines and 
chemokine receptors could be a promising therapeutic approach 
to prevent the progression of obesity, T2D, and NAFLD.
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