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Abstract
Obesity is a complex disease that relapses frequently and associates with multiple complications that comprise a worldwide 
health priority because of its rising prevalence and association with numerous complications, including metabolic disorders, 
mechanic pathologies, and cancer, among others. Noteworthy, excess adiposity is accompanied by chronic inflammation, 
oxidative stress, insulin resistance, and subsequent organ dysfunction. This dysfunctional adipose tissue is initially stored in 
the visceral depot, overflowing subsequently to produce lipotoxicity in ectopic depots like liver, heart, muscle, and pancreas, 
among others. People living with obesity need a diagnostic approach that considers an exhaustive pathophysiology and 
complications assessment. Thus, it is essential to warrant a holistic diagnosis and management that guarantees an adequate 
health status, and quality of life. The present review summarizes the different complications associated with obesity, at the 
same time, we aim to fostering a novel framework that enhances a patient-centered approach to obesity management in the 
precision medicine era.
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Abbreviations
ABCD  Adiposity-based chronic disease
Adpn/Lep  Adiponectin/leptin ratio
AT  Adipose tissue
CKD  Chronic kidney disease
CVD  Cardiovascular disease
ELF-Test  Enhanced liver fibrosis test
FFA  Free fatty acids

GERD  Gastroesophageal reflux disease
IR  Insulin resistance
MACE   Major adverse cardiovascular events
MHO  Metabolically healthy obesity
MUHO  Metabolically unhealthy obesity
MAFLD  Metabolic associated fatty liver disease
OHS  Obesity hypoventilation syndrome
OrAD  Obesity-related adipose tissue disease
OSA  Obstructive sleep apnea
PlwO  People living with obesity
RAS  Renin-angiotensin-aldosterone system
SCAT   Subcutaneous adipose tissue
SHBG  Sex hormone-binding globulin
T2D  Type 2 diabetes
VAT  Visceral adipose tissue
WHtR  Waist to height ratio

1 Introduction

In the last years, efforts have focused on addressing obesity 
beyond a body mass index (BMI) perspective, since dys-
functional adiposity promotes several diseases [1]. People 
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living with obesity (PlwO), have a higher risk mortality from 
all causes, with cardiovascular disease (CVD) together with 
cancer as standing out [2, 3]. The adiposity-based chronic 
disease (ABCD) concept has been proposed to improve the 
diagnosis of obesity based on the dimensions of etiology, 
severity of adiposity excess, and assessment of health risks 
[1]. This novel diagnostic framework aims to promote an 
accurate comorbidity screening in a systematic manner lead-
ing to an enriched patient care. Recently, the term “obesity-
related adipose tissue disease” (OrAD) has been proposed to 
collectively englobe the diverse pathologies related to “adi-
posopathy”, which include hypertrophy, inflammation and 
fibrosis of the adipose tissue (AT) [4]. The present review 
fosters a novel framework based on dysfunctional adipos-
ity recommending a holistic view with a patient-centered 
approach in the precision medicine era.

1.1  Common pathophysiology in obesity‑related 
diseases

Obesity-related diseases are predominantly determined 
by physical (i.e. hypoventilation, osteoarthritis) and met-
abolic features [1]. AT produces a variety of molecules 

called adipokines to maintain homeostasis (i.e. ther-
moregulation, energy storage, insulin sensitivity, and 
immunity, among others) [5]. AT dysfunction underlies 
the mechanisms linking obesity and the development of 
metabolic comorbidities [5–7]. AT dysfunction typically 
appears due to the pathological enlargement of fat mass 
(hypertrophy and hyperplasia of adipocytes) [7, 8], with 
subsequent hypoxia as blood supply becomes insufficient. 
The increased recruitment of macrophages, dendritic 
cells, and lymphocytes leads to an adiponectin expression 
downregulation, along with release of pro-inflammatory 
adipokines via metabolic signaling pathways activation 
[9, 10]. This increases oxidative stress, insulin resistance 
(IR), dyslipidemia and incites progressive accumulation 
of ectopic fat [11–13]. Ectopic fat intensifies the pro-
inflammatory cytokine activity favoring the development 
of lipotoxicity via oxidative stress, activation of platelets, 
elevated renin–angiotensin–aldosterone system activity, 
cellular senescence, and dysfunction of the endothelium, 
eventually underlying obesity-related diseases [13–15]. 
The different phenotypes of obesity have inflammatory 
cytokines levels that reflect the dysfunctional AT con-
tinuum implicated in the systemic inflammation [16]. 
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Fig. 1  Dysfunctional adipose tissue enlargement underlies ectopic fat 
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Figure 1 summarizes the common pathophysiology in 
obesity-related diseases. Current trends attempt to foster 
a more personalized diagnostic and treatment approach of 
obesity based on adiposopathy [17].

2  Organ systems approach in relation 
to dysfunctional adiposity

Figure 2 summarizes the obesity-related diseases.

2.1  Cardiovascular diseases

As a major independent ischemic heart disease risk factor, 
obesity also directly contributes to incident cardiometabolic 
risk like type 2 diabetes (T2D), dyslipidemia, sleep disor-
ders, and hypertension [18]. Visceral adipose tissue (VAT) 
is frequently accompanied by collection of fat in physi-
ologically lean tissues (liver, heart, skeletal muscle), which 
gradually promotes chronic inflammation, that enhances 
endothelial cell dysfunction and atherosclerosis, including 
acute thrombosis, associated with a higher CVD risk [19]. 
An international multicenter case–control study, involving 
more than 27,000 participants, reported the waist-height 

ratio (WHtR) as the strongest myocardial infarction predic-
tor, independently of gender, age, smoking status, ethnic-
ity, hypertension, diabetes, and dyslipidemia [20]. Regard-
ing cardiac arrhythmias, obesity may account for one-fifth 
of the patients with atrial fibrillation [18]. Additionally, a 
dose–response meta-analysis and systematic review have 
evidenced that a BMI > 25 kg/m2 together with abdominal 
adiposity are related with an elevated heart failure risk [3]. 
The classical major adverse cardiovascular events (MACE) 
comprise nonfatal stroke, nonfatal myocardial infarction, and 
cardiovascular death. The elevated ischemic stroke risk is 
also related to obesity [21], as expected, although it seems to 
depend more on the metabolic consequences of obesity [22]. 
Interestingly, physical activity and weight loss attenuate the 
detrimental effects of obesity on CVD [23].

2.2  Respiratory diseases

PlwO may have a mechanical compression of the chest 
cavity on the diaphragm, which may induce an increased 
pulmonary resistance, and reduced respiratory muscle 
strength, which may eventually lead to cor pulmonale [24]. 
Lung function and body fat distribution have a robust cor-
relation, especially when fat accumulates in the thorax and 
in the abdomen [24]. In this line, asthma prevalence and 
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severity are associated with excess total body weight, its 
incidence increases by 50% in patients with overweightness/
obesity [25]. Likewise, the prevalence of pulmonary embo-
lism is higher in PlwO than in people without overweight-
ness [26]. Furthermore, overweightness is considered the 
most common risk factor of obstructive sleep apnea (OSA) 
[27]. OSA is traditionally related to an incremented cardio-
vascular risk and a reduced quality of life with mechanical 
and metabolic factors playing an important role in its etiol-
ogy. In PlwO, OSA prevalence is estimated to be 19–31%. 
The coexistence of excess weight, daytime hypercapnia 
(pCO2 > 6 kPa) together with disrupted sleep breathing 
pattern characterizes the obesity hypoventilation syndrome 
(OHS) [24].

2.3  Gastrointestinal diseases

The accumulation of intracellular fat in the liver charac-
terizes metabolic associated fatty liver disease (MAFLD) 
[28]. Its prevalence worldwide is rising, especially in PlwO 
or T2D. A meta-analysis involving 8.5 million individuals 
reported that more than 80% of patients with fatty liver dis-
ease had overweightness, 72% had dyslipidemia, and 44% 
had T2D [29]. IR and visceral fat are the central mechanisms 
linking both entities [30]. There is evidence to consider 
MAFLD as an additional independent risk factor for CVD 
[31]. Moreover, MAFLD will become the first cause of liver 
transplantation [32]. The presence of fibrosis and its severity 
are the factors related to the increased all-cause mortality, 
however due to CVD mainly [33]. Obesity is also associated 
with esophageal disorders, specially gastroesophageal reflux 
disease (GERD) [34], which may lead to esophagitis, Bar-
rett’s esophagus, or adenocarcinoma. Regarding other gas-
trointestinal disorders, PlwO have a higher risk for gallblad-
der disease [35]. Gallbladder dysmotility is the suggested 
mechanism to explain this association [36]. Likewise, an 
association between obesity and increased risk of acute pan-
creatitis has been reported [37].

2.4  Endocrinological diseases

Obesity may have an impact on numerous endocrine organs, 
encompassing the hypothalamic-pituitary axis, vitamin D 
alterations and sex steroids disarrangements, among others 
[38]. IR is responsible for many endocrine abnormalities. In 
the presence of excess adiposity, increased plasma free fatty 
acids (FFA) concentrations are observed [30]. Mitochon-
drial fatty acid β-oxidation mediates lipid removal of the 
liver, subsequently, triacylglycerols reach the bloodstream as 
VLDL or can be accumulated as liver lipid droplets. When 
AT is overwhelmed with FFA, deposition of fat occurs in 
beta cells of the pancreas as well as in the liver and skeletal 
muscle [38]. Hepatic triacylglycerol deposition stimulates 

IR leading to a compensatory hyperinsulinemia that reduces 
the synthesis of glycogen, elevates uptake of liver FFA at the 
same time as inhibiting hepatic β-oxidation [15]. Moreover, 
hyperinsulinemia diminishes the hepatic hormone-binding 
proteins, frequently related to endocrine dysregulation [38]. 
All these alterations lead to an increased proinflammatory 
profile as described above.

The most common endocrinopathy in obesity is T2D [39]. 
Regarding other endocrinopathies [38], obesity is associ-
ated to hypogonadism through the reduction in the release 
of gonadotropin releasing hormone, the enhancement of aro-
matase (promoting free testosterone conversion to estrogen), 
and the decrease of sex hormone-binding globulin (SHBG) 
mediated through IR. The GH axis may also be altered in 
PlwO; GH levels may be lower due to an increase in the GH-
binding protein and a GHRH central activation decrease. 
Serum IGF-1, however, is not altered in PlwO. TSH levels 
may also be altered due to IR and higher leptin levels (which 
stimulates TSH secretion). Vitamin D is a fat-soluble vita-
min, thus AT vitamin D sequestration may decrease its bio-
availability. Renin and aldosterone levels may be elevated 
through RAS activation in the low-grade inflammation set-
ting [40]. Finally, adiponectin, leptin and ghrelin levels are 
altered in PlwO [41, 42]. Adiponectin/Leptin ratio (Adpn/
Lep) is a suitable indicator of AT dysfunction, thus it may 
be a useful estimator of cardiometabolic risk [42].

2.5  Renal and genitourinary diseases

PlwO have a higher risk for urinary tract infection [43]. 
Likewise, obesity and visceral fat are associated with over-
active bladder syndrome and urinary incontinence [44]. 
Moreover, obesity markedly increases the risk of benign 
prostatic hyperplasia [45]. PlwO may have an increased 
risk of kidney stones [46]. Furthermore, IR may damage 
the acid–base kidney metabolism leading to a lower urinary 
pH together with an elevated uric acid stone disease risk. 
Besides, refined sugars intake, purine-rich foods, and low 
fluid intake may contribute to the development of renal lithi-
asis. Furthermore, Roux-en-Y bypass surgery may in addi-
tion augment the kidney stone risk in relation to the elevated 
hyperoxaluria [47].

Additionally, obesity represents a further risk factor for 
CKD development [48], even after additional adjustments 
for blood pressure and T2D. Diabetic kidney disease and 
obesity-related glomerulopathy are the two main drivers of 
CKD in PlwO [49]. Obesity-related glomerulopathy, char-
acterized by proteinuria, hypertrophy, and adaptive focal 
segmental glomerulosclerosis, can subsequently lead to a 
reduction of the renal function. The hemodynamic, adipose 
tissue-related, IR common pathophysiology may explain this 
relationship [50]. VAT, and not subcutaneous adipose tissue 
(SCAT), assessed by imaging techniques, is associated with 
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a higher albuminuria prevalence [51], suggesting a key role 
of visceral adiposity in this relation [52]. In this line, studies 
have also evidenced that prompt identification and manage-
ment of MAFLD may decrease the CKD burden [53]. How-
ever, there is a need of further studies examining the effects 
of obesity on kidney disease progression.

2.6  Musculoskeletal disease

Obesity can independently lead to loss of muscle mass and 
function, due to oxidative stress, inflammation and IR [54, 
55]. Sedentary lifestyle is both a cause and a consequence of 
sarcopenia and obesity. Additionally, body fat is associated 
with widespread and single-site joint pain [56]. Knee osteo-
arthritis is the most common musculoskeletal comorbidity 
in PlwO [57]. This comorbid association reduces mobility, 
which can further increase weight. A recent study showed 
that living with obesity elevates rheumatoid arthritis risk in 
women by 40–70% depending on serologic status and age 
[58]. As expected, weight loss of at least 10% has been asso-
ciated with an improvement of pain [57]. Moreover, gout, an 
inflammatory arthritis caused by crystal-deposition subse-
quent to uric acid serum elevation, is common in PlwO [59]. 
In all the entities described, weight loss may improve symp-
toms, nonetheless, gout attacks might occur in the weight 
loss period [60].

2.7  Neurological diseases

Mounting amount of evidence shows the effects of obesity 
on the central nervous system [61–63]. In a recent prospec-
tive cohort study aiming to clarify the relation between life 
time adiposity and cognitive impairment, a higher dementia 
risk was evidenced in people with less fat-free mass and 
more fat distribution on arms [61]. Neuroimaging studies 
in PlwO highlight a relation with brain structural abnor-
malities, mainly temporal and frontal lobes atrophy, cor-
responding to the executive and memory dysfunctions 
presented by these patients [62, 63]. A chronic low grade 
systemic inflammation, oxidative stress, the accumulation 
of senescence cells in the brain that escalates the neuro-
inflammation, changes in blood barrier permeability and 
glial activation have been proposed as responsible for the 
synaptic remodelling and neuronal apoptosis that has been 
associated with cognitive impairment in PlwO [64–67]. In 
PlwO, the etiological implications of vascular pathology in 
cognitive impairment should not be neglected [68]. Obesity 
is also connected to idiopathic intracranial hypertension and 
migraine [69]. At the pathophysiological level, the overlap 
between migraine and both, central and peripheral pathways, 
regulating feeding, involving serotonin, adiponectin and 
leptin is expected [70]. The relation between obesity and 

peripheral nervous system affects both the somatic nerves 
causing polyneuropathy [71] and the autonomic nervous 
system, with an autonomic neuropathy inducing a chronic 
activation of the sympathetic nervous system [72].

2.8  Psychosocial disorders

One of the most common forms of discrimination in modern 
societies is weight discrimination [73]. Impressively, nega-
tive attitudes about obesity have been evidenced in some 
healthcare professionals, consequently disturbing patient 
care [74]. Weight stigma is associated with adverse physi-
ological and psychological outcomes [75]. Obesity stigma-
tization starts in schools, therefore, children and adolescents 
living with obesity experience high proportions of bully-
ing and are at an increased risk for social isolation [76]. 
Later in life, weight-based stigma weakens opportunities for 
career development and employment. Body dissatisfaction 
has being identified as a strong correlate with unfavorable 
obesity-related behavior among PlwO and specially among 
women [77]. Depression, anxiety disorders, attention defi-
cit hyperactivity disorder, substance abuse, binge-eating, 
trauma, bipolar disorder, and schizophrenia are the most 
frequent psychiatric disorders associated with obesity [78].

2.9  Cancer

After smoking obesity accounts for the second cause of 
cancer that can be prevented [79, 80]. The association of 
obesity with an elevated cancer risk is observed for esopha-
geal, gastric cardia, gallbladder, colorectal, hepatocellular 
and pancreatic adenocarcinomas, renal cancer, thyroid can-
cer, ovarian and endometrium cancer, meningioma, hema-
tological cancer (leukemia, lymphoma, multiple myeloma), 
prostate, and breast cancer in postmenopausal women [6, 
79, 80]. The main pathways linking both entities include 
hyperinsulinemia, IR, abnormalities of the IGF-1 signaling, 
low-grade inflammation, oxidative stress, altered intestinal 
microbiome, and mechanical forces, as elucidated in the 
common pathophysiology [81, 82].

3  Towards a novel diagnostic framework

Precision medicine allows applying more intensified meas-
ures for primary prevention of metabolic abnormalities. 
Figure 3 summarizes the holistic syndemic approach of 
PlwO. In the decades to come, it is expected that a broader 
range of elements that better reflect the complexity of obe-
sity (i.e. genotype, adipotype, microbiome, and exposome) 
may be evaluated [17, 83].

AT amount and distribution are key features of obesity-
related diseases. On the last decade, translational studies 
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have provided evidence that VAT has a strong correlation 
with metabolic diseases [84, 85]. Therefore, clinicians need 
to properly evaluate PlwO in a dynamic framework. Anthro-
pometric measures of central adiposity like waist circum-
ference [86–88], WHtR [89–91], and more specifically: 
VAT [92], VAT to SCAT ratio [93], liver steatosis [94], and 
epicardial adipose tissue [95], among others, have a central 
role in the development of impaired metabolic disease. In 
this line, some normal weight individuals may have excess 
of VAT and a high cardiovascular risk, exposing the limita-
tions of BMI for health evaluation in the general population 
[87]. Fatty liver index, abdominal ultrasound or Fibroscan 
must be performed to rule out MAFLD. Morphofunctional 
assessment has also shown to provide very useful clinical 
information. A thorough assessment of all potential obesity-
associated alterations should be analyzed in a systematic and 
holistic way.

Several aspects may be considered in the precision medi-
cine era for the diagnostic approach of PlwO with a wide 
perspective, thereby including quite diverse spheres. The 
Edmonton Obesity Staging System has proposed the use of 
a mnemonic consisting of four Ms to help the hard-working 
practitioner navigate through an exhaustive and careful assess-
ment of PlwO [96]. Figure 4 summarizes the mnemonic of 
the four Ms standing for: mental, mechanical, metabolic and 
monetary, to assess the drivers and complications of obesity.

Psychosocial evaluation is essential in obesity manage-
ment with the purpose of identifying potential road blocks 

and challenges that facilitate behavioral changes aimed at 
enhancing long-term weight management [73]. Not recog-
nizing mental health issues is likely to result in poor com-
pliance as well as high rates of weight regain [96]. The 
psychosocial profile is also helpful in identifying potential 
contraindications for undergoing bariatric surgery (i.e. sub-
stance abuse, poorly controlled depression).

Beside the behavioral assessment, socioeconomical eval-
uation, mechanical, and metabolic comorbidities evaluation 
through AT dysfunction assessment, serum markers and his-
topathological features, among others features, should be 
included in the holistic approach of obesity.

3.1  Inflammation markers

AT synthesizes and releases a number of factors collectively 
called adipokines, like adiponectin and leptin, closely related 
to cardiometabolic risk [97–99]. Leptin is predominantly 
secreted by AT proportionally to AT amount, being directly 
implicated in food intake control and energy regulation [99]. 
Adiponectin is known for its anti-inflammatory effect and 
decreases in PlwO [42]. The Adpn/Lep ratio is reportedly 
better related with IR than with each of the adipokines alone 
[98]. In epidemiological studies, an increase in this ratio has 
been related with a decreased risk of atherosclerosis and some 
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cancer types [100]. An Adpn/Lep ratio ≥ 1.0 can be considered 
normal, a ratio ≥ 0.5 and < 1.0 indicates moderate to medium 
increased risk, while a ratio < 0.5 suggests a severe elevation 
in cardiometabolic risk [42]. Other adipokines [101], like 
osteopontin, calprotectin [102], pigment-epithelium derived 
factor [103], ghrelin [104], and adipocyte-derived lipopoly-
saccharide binding protein [10], are also involved in inflam-
mation and insulin resistance, as is the case with aquapor-
ins [105] and caveolins [106].

In MAFLD, transient elastography [107] and non-
invasive markers of fibrosis (e.g. NAFLD Fibrosis 
Score [NFS] [108] and Fibrosis 4 Score [FIB-4] [109]) 
have reportedly provided high diagnostic precision in 
advanced stages of hepatic fibrosis (F3–F4) and asso-
ciate with MACE [110] and subclinical cardiovascular 
disease [111]. If available, the enhanced liver fibrosis 
test (ELF-Test) can be determined as it reflects the liver 
extracellular matrix metabolism, it measures the levels 
of amino-terminal propeptide of type III procollagen, tis-
sue inhibitor of metalloproteinases 1, and hyaluronic acid 
[32, 112].

3.2  Histopathological features

Whenever possible, the histological analysis of AT should 
be pursued. Histopathological features of AT may predict 
the possibility of developing diseases associated to obesity 
or the potential therapeutic response to intervention (i.e. 
bariatric surgery) [4]. Sampling abdominal subcutaneous 
and omental AT should be a standard care procedure for 
PlwO undergoing bariatric surgery. A high fibrosis score in 
subcutaneous fat [113], a low omental fat mast cell count 
[114], and a high adipocyte cell size [115], can predict a 
reduced postoperative weight-loss after bariatric surgery. 
The balance between lipolysis and lipogenesis is a further 
relevant aspect given the involvement of adipokines in lipid 
metabolism regulation and cardiometabolic risk [116–119].

The term “metabolically healthy obesity (MHO)” and 
“metabolically unhealthy obesity (MUHO)” have been 
proposed to phenotype and establish risk in PlwO [120]. 
The MHO definition is still a matter of debate, nonetheless, 
research has reportedly shown proven risk of CVD not only 
in MUHO but also in MHO [121–124]. Evaluating subcu-
taneous adipocyte size in patients with obesity without any 
comorbid pathology (or “MHO”), may anticipate glycemic 
control deterioration in patients with even normal glucose 
tolerance [125, 126], thus metabolic health represents a 
dynamic marker of elevated risk for progression to unhealthy 
phenotypes [127]. Inflammatory cytokines concentrations 
in the diverse obesity phenotypes [5], also support the AT 
dysfunction continuum gradually leading to the unhealthy 
phenotype conversion [19, 128].

3.3  Molecular features

In the last decade, studies have identified molecular pat-
terns that could theoretically aid in personalizing obesity 
care; for example, subcutaneous microRNA expression may 
be related to the magnitude of weight loss [129, 130]. A 
higher visceral AT miRNA-122 expression anticipates the 
magnitude of weight loss following bariatric surgery [131]. 
Moreover, modern ‘omics’ technologies, single-cell RNA-
sequencing of stromovascular fat cells, or single-nucleus 
RNA-sequencing are potential tools to define specific phe-
notypes in response to weight loss change based on the 
underlying complexity of energy homeostasis control and, 
therefore, may predict response to the diverse therapeutic 
approaches [4, 17]. In this line, recent studies, have also evi-
denced that environmental influences affect the epigenetic 
state, phenotype, and susceptibility to different diseases of 
next generations [17].

4  Addressing innovative therapeutic 
approaches

In the last years, substantial knowledge related to the biology 
of obesity has been gained. Unfortunately, comprehension 
has had little impact on obesity prevalence [84]. The clinical 
phenotype of PlwO is complex, thereby reflecting the inter-
connection between environmental, genetic, epigenetic, and 
lifestyle factors [17]. To appropriately approach the burden 
of obesity, a paradigm change is needed [83]. Management 
of obesity requires long-term follow-up to monitor treatment 
goals, regarding lifestyle changes and comorbidities [132]. 
Treatment instauration and goals must be personalized based 
also on the amount and distribution of fat, beyond BMI. 
Biological, psychosocial, and economic factors influencing 
health must be considered, individually and globally. Con-
ventionally, approaches are stepwise, lifestyle interventions 
represent the first step being followed by the application 
of anti-obesity drugs, endoscopical procedures (e.i. endo-
scopic gastroplasty, gastric balloon), and consideration of 
bariatric surgery [32, 133]. However, currently a multimodal 
approach seems to be better. After bariatric surgery, phar-
macological treatment [134, 135] or endoscopic procedures 
[136] may be further considered for weight regain.

Patient circumstances, preferences, availability, costs, 
and comorbidities must be considered in the selection of 
treatment [137]. Acosta et al. have proposed the selection of 
antiobesity medications based on energy balance phenotypes 
[138]. Interestingly, two or more phenotypes were identified 
in 27% of PlwO whereas in 15% of the participants, a spe-
cific biological phenotype was not identified. Food intake 
depends on hunger, satiation, gastric emptying, satiety, 
and emotional eating; and expenditure depends on resting 
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energy expenditure, physical activity, and exercise. In brief, 
four distinct profiles were identified by these main charac-
teristics: i) hungry brain, ii) emotional hunger, iii) hungry 
gut and iv) slow brain. Table 1 describes the phenotypes 

described by Acosta et al. Figure 5 considers energy balance 
phenotypes and available antiobesity medications. This ther-
apeutic approach has evidenced a more pronounced weight 
loss as compared to the use of standard care antiobesity 

Table 1  Biological and 
behavioural phenotype-guided 
pharmacotherapy to optimize 
obesity therapy in a precision 
medicine context

In a pragmatic clinical trial based on an approach guided by the phenotype, a more pronounced weight loss (1.75 fold) after 1
year was observed versus the non-phenotype guided group experimenting a 15.9% weight loss versus 9.0%; p<0.001
[138][139]. Interestingly, 79% of the patients reached >10% weight loss after 1 year versus 34% in the control group.

Phenotypes Medication

Abnormal satiation “Hungry brain”, characterized by excessive calories consumption to
terminate meal
Measured by the kilocalories needed to reach maximal fullness

Phentermine-topiramate
extended release

Hedonic eating “Emotional hunger”, characterized by the desire of eating to manage
with emotions, cravings, and reward- seeking behaviors
Measured by validated questionnaires

Bupropion-naltrexone

Abnormal satiety “Hungry gut”, characterized by rapid gastric emptying and reduced
duration of fullness
Measured by validated scales for hunger and gastric emptying by
scintigraphy

Liraglutide

Decreased metabolic rate “Slow burn”, characterized by reduced resting energy expenditure
and physical activity
Measured by indirect calorimetry, reported exercise and physical
activity

Low-dose phentermine
plus resistance training

eased metabolic
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Fig. 5  Schematic illustration of plausible phenotype-guided pharmacotherapy
Selection of anti-obesity medications centered on energy balance phenotypes (based on Acosta et al) [138]
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pharmacotherapy. Nonetheless, the medication prescribed 
for each phenotype may be a matter of debate, as GLP-1 
receptor agonists may act on different levels, for instance, 
on abnormal satiation and satiety.

5  Conclusions

Obesity is a complex disease affecting almost every organ 
and system of the body. Clinicians and politicians need 
to collaborate in the paradigm change characterized by 
an holistic approach. Future perspectives on adipobiol-
ogy with innovative novel molecular and histopathological 
findings may help us predict which patients will respond 
better to medical, endoscopic, surgical, or mixed treat-
ment. Whilst precision medicine has advanced remarkably 
in some specialties like oncology, in the field of obesity, 
progress has been hampered by old-fashioned views of 
the disease itself, the applied technology for its diagnosis 
and the scarcity of treatment tools. A long-term compre-
hensive strategy with multidimensional initiatives focus-
ing on sustainable changes aimed at improving health and 
well-being rather than achieving a specific weight target 
should be pursued. Noteworthy, success can be different 
for every individual ranging from a better quality of life 
to greater self-esteem, a 5% weight loss, a decrease in 
cardiometabolic risk factors, prevention of weight regain, 
among others.
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