Skip to main content
Log in

An update on the role and potential mechanisms of clock genes regulating spermatogenesis: A systematic review of human and animal experimental studies

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Circadian clocks can be traced in nearly all life kingdoms, with the male reproductive system no exception. However, our understanding of the circadian clock in spermatogenesis seems to fall behind other scenarios. The present review aims to summarize the current knowledge about the role and especially the potential mechanisms of clock genes in spermatogenesis regulation. Accumulating studies have revealed rhythmic oscillation in semen parameters and some physiological events of spermatogenesis. Disturbing the clock gene expression by genetic mutations or environmental changes will also notably damage spermatogenesis. On the other hand, the mechanisms of spermatogenetic regulation by clock genes remain largely unclear. Some recent studies, although not revealing the entire mechanisms, indeed attempted to shed light on this issue. Emerging clues hinted that gonadal hormones, retinoic acid signaling, homologous recombination, and the chromatoid body might be involved in the regulation of spermatogenesis by clock genes. Then we highlight the challenges and the promising directions for future studies so as to stimulate attention to this critical field which has not gained adequate concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

LD cycle:

Light dark cycle

SCN:

Suprachiasmatic nucleus

TTFLs:

Transcriptional–translational feedback loops

HPT axis:

Hypothalamic-pituitary–testicular axis

GnRH:

Gonadotropin-releasing hormone

GnIH:

Gonadotropin-inhibitory hormone

FSH:

Follicle-stimulating hormone

LH:

Luteinizing hormone

hCG:

Human chorionic gonadotropin

BPA:

Bisphenol A

RARα:

Retinoic acid receptors α

RXRα:

Retinoid X receptors

RORα/β/γ:

Retinoic acid-related orphan receptors α/β/γ

REV-ERBα:

Nuclear receptor subfamily 1 group D α

ATAC:

Assay for transposase accessible chromatin with high-throughput sequencing

References

  1. Koronowski KB, Sassone-Corsi P. Communicating clocks shape circadian homeostasis. Science 2021;371(6530). https://doi.org/10.1126/science.abd0951.

  2. Allada R, Bass J. Circadian mechanisms in medicine. N Engl J Med. 2021;384(6):550–61. https://doi.org/10.1056/NEJMra1802337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chaix A, Zarrinpar A, Panda S. The circadian coordination of cell biology. J Cell Biol. 2016;215(1):15–25. https://doi.org/10.1083/jcb.201603076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci USA. 2014;111(45):16219–24. https://doi.org/10.1073/pnas.1408886111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 2018;359(6381). https://doi.org/10.1126/science.aao0318.

  6. Li MD, Xin H, Yuan Y, Yang X, Li H, Tian D, et al. Circadian clock-controlled checkpoints in the pathogenesis of complex disease. Front Genet. 2021;12:721231. https://doi.org/10.3389/fgene.2021.721231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Levine H, Jorgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Jolles M, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum Reprod Update. 2022. https://doi.org/10.1093/humupd/dmac035.

    Article  Google Scholar 

  8. Levine H, Jorgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Mindlis I, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update. 2017;23(6):646–59. https://doi.org/10.1093/humupd/dmx022.

    Article  PubMed  PubMed Central  Google Scholar 

  9. He M, Zhou W, Liu K, Wang X, Liu C, Shi F, et al. The prevalence of male rotating shift work correlates with reduced total fertility rate: an ecological study of 54,734 reproductive-aged males in 35 European countries between 2000 and 2015. Chronobiol Int. 2021;38(7):1072–82. https://doi.org/10.1080/07420528.2021.1907396.

    Article  CAS  PubMed  Google Scholar 

  10. Liu K, Hou G, Wang X, Chen H, Shi F, Liu C, et al. Adverse effects of circadian desynchrony on the male reproductive system: an epidemiological and experimental study. Human reproduction (Oxford, England). 2020;35(7):1515–28. https://doi.org/10.1093/humrep/deaa101.

    Article  CAS  PubMed  Google Scholar 

  11. Ruger M, Scheer FA. Effects of circadian disruption on the cardiometabolic system. Rev Endocr Metab Disord. 2009;10(4):245–60. https://doi.org/10.1007/s11154-009-9122-8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vetter C. Circadian disruption: What do we actually mean? Eur J Neurosci. 2020;51(1):531–50. https://doi.org/10.1111/ejn.14255.

    Article  PubMed  Google Scholar 

  13. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Danielsson A, Horvath A, Senorski C, Alentorn-Geli E, Garrett WE, Cugat R, et al. The mechanism of hamstring injuries - a systematic review. BMC Musculoskelet Disord. 2020;21(1):641. https://doi.org/10.1186/s12891-020-03658-8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Alonso-Molero J, Gonzalez-Donquiles C, Fernandez-Villa T, de Souza-Teixeira F, Vilorio-Marques L, Molina AJ, et al. Alterations in PGC1alpha expression levels are involved in colorectal cancer risk: a qualitative systematic review. BMC Cancer. 2017;17(1):731. https://doi.org/10.1186/s12885-017-3725-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, et al. Meiotic recombination: insights into its mechanisms and its role in human reproduction with a special focus on non-obstructive azoospermia. Hum Reprod Update. 2022. https://doi.org/10.1093/humupd/dmac024.

    Article  PubMed  Google Scholar 

  17. Wu S, Yan M, Ge R, Cheng CY. Crosstalk between sertoli and germ cells in male fertility. Trends Mol Med. 2020;26(2):215–31. https://doi.org/10.1016/j.molmed.2019.09.006.

    Article  CAS  PubMed  Google Scholar 

  18. Lin Z, Hsu PJ, Xing X, Fang J, Lu Z, Zou Q, et al. Mettl3-/Mettl14-mediated mRNA N(6)-methyladenosine modulates murine spermatogenesis. Cell Res. 2017;27(10):1216–30. https://doi.org/10.1038/cr.2017.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mruk DD, Cheng CY. The mammalian blood-testis barrier: its biology and regulation. Endocr Rev. 2015;36(5):564–91. https://doi.org/10.1210/er.2014-1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hacker-Klom UB. Diurnal changes in murine spermatogenesis. Z Naturforsch. 1994;49(7–8):522–5. https://doi.org/10.1515/znc-1994-7-820.

    Article  CAS  Google Scholar 

  21. Matsuyama M, Morita S, Hamaji N, Kashiwagi M, Ohta K, Nagahama Y. Diurnal spermatogenesis and spawning in the secondary male of a protogynous wrasse, Pseudolabrus japonicus (Teleostei, Labridae). Zoolog Sci. 1997;14(6):1001–8. https://doi.org/10.2108/zsj.14.1001.

    Article  Google Scholar 

  22. Arav VI, Sych VF, Zheleznyak EV. Effect of pinealectomy on circadian rhythm of spermatogenesis. Bull Exp Biol Med. 2003;136(6):604–6. https://doi.org/10.1023/b:bebm.0000020216.01084.da.

    Article  CAS  PubMed  Google Scholar 

  23. Minucci S, Dimatteo L, Dimeglio M, Rastogi RK. Circadian variation in mitotic index of primary spermatogonia in the adult frog (Rana esculenta). Bollettino Di Zoologia. 1987;54(1):87–9.

    Article  Google Scholar 

  24. Rienstein S, Dotan A, Avivi L, Ashkenazi I. Daily rhythms in male mice meiosis. Chronobiol Int. 1998;15(1):13–20. https://doi.org/10.3109/07420529808998665.

    Article  CAS  PubMed  Google Scholar 

  25. Giebultowicz JM, Riemann JG, Raina AK, Ridgway RL. Circadian system controlling release of sperm in the insect testes. Science (New York, NY). 1989;245(4922):1098–100. https://doi.org/10.1126/science.245.4922.1098.

    Article  CAS  Google Scholar 

  26. Bebas P, Cymborowski B, Giebultowicz JM. Circadian rhythm of sperm release in males of the cotton leafworm, Spodoptera littoralis in vivo and in vitro studies. J Insect Physiol. 2001;47(8):859–66.

    Article  CAS  Google Scholar 

  27. Kotwica J, Bebas P, Gvakharia BO, Giebultowicz JM. RNA interference of the period gene affects the rhythm of sperm release in moths. J Biol Rhythms. 2009;24(1):25–34. https://doi.org/10.1177/0748730408329109.

    Article  CAS  PubMed  Google Scholar 

  28. Kotwica J, Joachimiak E, Polanska MA, Majewska MM, Giebultowicz JM, Bebas P. Diurnal rhythm in expression and release of yolk protein in the testis of Spodoptera littoralis (Lepidoptera: Noctuidae). Insect Biochem Mol Biol. 2011;41(4):264–72. https://doi.org/10.1016/j.ibmb.2011.01.003.

    Article  CAS  PubMed  Google Scholar 

  29. de las Heras MA, Calandra RS. Circadian rhythm of ornithine decarboxylase activity in rat testis. Horm Metab Res. 1986;18(11):792–3. https://doi.org/10.1055/s-2007-1012440.

    Article  PubMed  Google Scholar 

  30. Vermouth NT, Ponce RH, Carriazo CS, Blanco A. Circadian rhythm of lactate dehydrogenase in rat testis. Comp Biochem Physiol B. 1984;78(4):897–902. https://doi.org/10.1016/0305-0491(84)90206-2.

    Article  CAS  PubMed  Google Scholar 

  31. Sosa A, Altamirano E, Hernández P, Rosado A. Subcellular distribution and circadian rhythm of some glycolytic enzymes in rat testis. J Reprod Fertil. 1972;28(3):447–50. https://doi.org/10.1530/jrf.0.0280447.

    Article  CAS  PubMed  Google Scholar 

  32. Russo J. Circadian rhythm of acid phosphatase in mouse testis lysosomes. J Reprod Fertil. 1970;23(1):21–4. https://doi.org/10.1530/jrf.0.0230021.

    Article  CAS  PubMed  Google Scholar 

  33. Liu K, Meng T, Chen Q, Hou G, Wang X, Hu S, et al. Diurnal rhythm of human semen quality: analysis of large-scale human sperm bank data and timing-controlled laboratory study. Hum Reprod. 2022;37(8):1727–38. https://doi.org/10.1093/humrep/deac135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ni W, Liu K, Hou G, Pan C, Wu S, Zheng J, et al. Diurnal variation in sperm DNA fragmentation: analysis of 11,382 semen samples from two populations and in vivo animal experiments. Chronobiol Int. 2019;36(11):1455–63. https://doi.org/10.1080/07420528.2019.1649275.

    Article  CAS  PubMed  Google Scholar 

  35. Xie M, Utzinger KS, Blickenstorfer K, Leeners B. Diurnal and seasonal changes in semen quality of men in subfertile partnerships. Chronobiol Int. 2018;35(10):1375–84. https://doi.org/10.1080/07420528.2018.1483942.

    Article  PubMed  Google Scholar 

  36. De Giorgi A, Volpi R, Tiseo R, Pala M, Manfredini R, Fabbian F. Seasonal variation of human semen parameters: A retrospective study in Italy. Chronobiol Int. 2015;32(5):711–6. https://doi.org/10.3109/07420528.2015.1024315.

    Article  PubMed  Google Scholar 

  37. Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R, Giebultowicz JM. Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc Natl Acad Sci USA. 2002;99(4):2134–9. https://doi.org/10.1073/pnas.032426699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alvarez JD, Hansen A, Ord T, Bebas P, Chappell PE, Giebultowicz JM, et al. The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J Biol Rhythms. 2008;23(1):26–36. https://doi.org/10.1177/0748730407311254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liang X, Cheng S, Jiang X, He X, Wang Y, Jiang Z, et al. The noncircadian function of the circadian Clock gene in the regulation of male fertility. J Biol Rhythms. 2013;28(3):208–17. https://doi.org/10.1177/0748730413486873.

    Article  CAS  PubMed  Google Scholar 

  40. Huang Y, Jiang X, Yan Y, Liu G, Liu C. Expression of cell proliferation regulatory factors bricd5, tnfrsf21, cdk1 correlates with expression of clock gene cry1 in testes of Hu rams during puberty. Mol Biol Rep. 2021. https://doi.org/10.1007/s11033-021-06747-6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li C, Xiao S, Hao J, Liao X, Li G. Cry1 deficiency leads to testicular dysfunction and altered expression of genes involved in cell communication, chromatin reorganization, spermatogenesis, and immune response in mouse testis. Mol Reprod Dev. 2018;85(4):325–35. https://doi.org/10.1002/mrd.22968.

    Article  CAS  PubMed  Google Scholar 

  42. Hodžić A, Ristanović M, Zorn B, Tulić C, Maver A, Novaković I, et al. Genetic variation in circadian rhythm genes CLOCK and ARNTL as risk factor for male infertility. PloS One. 2013;8(3):e59220. https://doi.org/10.1371/journal.pone.0059220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen O, Ding X, Nie J, Xia Y, Wang X, Tong J, et al. Variants of the CLOCK gene affect the risk of idiopathic male infertility in the Han-Chinese population. Chronobiol Int. 2015;32(7):959–65. https://doi.org/10.3109/07420528.2015.1056305.

    Article  CAS  PubMed  Google Scholar 

  44. Xu Y, Wang L, Cao S, Hu R, Liu R, Hua K, et al. Genipin improves reproductive health problems caused by circadian disruption in male mice. Reprod Biol Endocrinol. 2020;18(1):122. https://doi.org/10.1186/s12958-020-00679-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Woodard AE, Snyder RL, Fuqua L. The effect of photoperiod and feed restriction on semen production in the turkey. Poult Sci. 1979;58(1):217–21. https://doi.org/10.3382/ps.0580217.

    Article  CAS  PubMed  Google Scholar 

  46. Shan Z, Li Y, Zong G, Guo Y, Li J, Manson JE, et al. Rotating night shift work and adherence to unhealthy lifestyle in predicting risk of type 2 diabetes: results from two large US cohorts of female nurses. BMJ. 2018;363:k4641. https://doi.org/10.1136/bmj.k4641.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pastuszak AW, Moon YM, Scovell J, Badal J, Lamb DJ, Link RE, et al. Poor sleep quality predicts hypogonadal symptoms and sexual dysfunction in male nonstandard shift workers. Urology. 2017;102:121–5. https://doi.org/10.1016/j.urology.2016.11.033.

    Article  PubMed  Google Scholar 

  48. Balasubramanian A, Kohn TP, Santiago JE, Sigalos JT, Kirby EW, Hockenberry MS, et al. Increased risk of hypogonadal symptoms in shift workers with shift work sleep disorder. Urology. 2020;138:52–9. https://doi.org/10.1016/j.urology.2019.10.040.

    Article  PubMed  Google Scholar 

  49. El-Helaly M, Awadalla N, Mansour M, El-Biomy Y. Workplace exposures and male infertility - a case-control study. Int J Occup Med Environ Health. 2010;23(4):331–8. https://doi.org/10.2478/v10001-010-0039-y.

    Article  PubMed  Google Scholar 

  50. Eisenberg ML, Chen Z, Ye A, Buck Louis GM. Relationship between physical occupational exposures and health on semen quality: data from the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril. 2015;103(5):1271–7. https://doi.org/10.1016/j.fertnstert.2015.02.010.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Irgens A, Kruger K, Ulstein M. The effect of male occupational exposure in infertile couples in Norway. J Occup Environ Med. 1999;41(12):1116–20. https://doi.org/10.1097/00043764-199912000-00016.

    Article  CAS  PubMed  Google Scholar 

  52. Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000;288(5466):682–5. https://doi.org/10.1126/science.288.5466.682.

    Article  CAS  PubMed  Google Scholar 

  53. Meyer V, Lerchl A. Evidence for species-specific clock gene expression patterns in hamster peripheral tissues. Gene. 2014;548(1):101–11. https://doi.org/10.1016/j.gene.2014.07.019.

    Article  CAS  PubMed  Google Scholar 

  54. Alvarez JD, Chen D, Storer E, Sehgal A. Non-cyclic and developmental stage-specific expression of circadian clock proteins during murine spermatogenesis. Biol Reprod. 2003;69(1):81–91. https://doi.org/10.1095/biolreprod.102.011833.

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol. 2004;5:18. https://doi.org/10.1186/1471-2199-5-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miyamoto Y, Sancar A. Circadian regulation of cryptochrome genes in the mouse. Brain Res Mol Brain Res. 1999;71(2):238–43. https://doi.org/10.1016/s0169-328x(99)00192-8.

    Article  CAS  PubMed  Google Scholar 

  57. Mazzoccoli G, Francavilla M, Giuliani F, Aucella F, Vinciguerra M, Pazienza V, et al. Clock gene expression in mouse kidney and testis: analysis of periodical and dynamical patterns. J Biol Regul Homeost Agents. 2012;26(2):303–11.

    CAS  PubMed  Google Scholar 

  58. Klose M, Grote K, Lerchl A. Temporal control of spermatogenesis is independent of the central circadian pacemaker in Djungarian hamsters (Phodopus sungorus). Biol Reprod. 2011;84(1):124–9. https://doi.org/10.1095/biolreprod.110.085126.

    Article  CAS  PubMed  Google Scholar 

  59. Nishide SY, Hashimoto K, Nishio T, Honma K, Honma S. Organ-specific development characterizes circadian clock gene Per2 expression in rats. Am J Physiol Regul Integr Comp Physiol. 2014;306(1):R67-74. https://doi.org/10.1152/ajpregu.00063.2013.

    Article  CAS  PubMed  Google Scholar 

  60. Zhao L, Zhang J, Yang L, Zhang H, Zhang Y, Gao D, et al. Glyphosate exposure attenuates testosterone synthesis via NR1D1 inhibition of StAR expression in mouse Leydig cells. The Science of the total environment. 2021;785:147323. https://doi.org/10.1016/j.scitotenv.2021.147323.

    Article  CAS  PubMed  Google Scholar 

  61. Liu S, Cai Y, Sothern RB, Guan Y, Chan P. Chronobiological analysis of circadian patterns in transcription of seven key clock genes in six peripheral tissues in mice. Chronobiol Int. 2007;24(5):793–820. https://doi.org/10.1080/07420520701672556.

    Article  CAS  PubMed  Google Scholar 

  62. Li C, Zhang L, Ma T, Gao L, Yang L, Wu M, et al. Bisphenol A attenuates testosterone production in Leydig cells via the inhibition of NR1D1 signaling. Chemosphere. 2021;263:128020. https://doi.org/10.1016/j.chemosphere.2020.128020.

    Article  CAS  PubMed  Google Scholar 

  63. Sharma A, Jayasena CN, Dhillo WS. Regulation of the hypothalamic-pituitary-testicular axis: Pathophysiology of hypogonadism. Endocrinol Metab Clin North Am. 2022;51(1):29–45. https://doi.org/10.1016/j.ecl.2021.11.010.

    Article  PubMed  Google Scholar 

  64. Sciarra F, Franceschini E, Campolo F, Gianfrilli D, Pallotti F, Paoli D, et al. Disruption of circadian rhythms: A crucial factor in the etiology of infertility. Int J Mol Sci. 2020;21(11). https://doi.org/10.3390/ijms21113943.

  65. Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 2010;72:551–77. https://doi.org/10.1146/annurev-physiol-021909-135919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yao Y, Silver R. Mutual shaping of circadian body-wide synchronization by the suprachiasmatic nucleus and circulating steroids. Front Behav Neurosci. 2022;16:877256. https://doi.org/10.3389/fnbeh.2022.877256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Van der Beek EM, Horvath TL, Wiegant VM, Van den Hurk R, Buijs RM. Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: combined tracing and light and electron microscopic immunocytochemical studies. J Comp Neurol. 1997;384(4):569–79. https://doi.org/10.1002/(sici)1096-9861(19970811)384:4%3c569::aid-cne6%3e3.0.co;2-0.

    Article  PubMed  Google Scholar 

  68. Baburski AZ, Andric SA, Kostic TS. Luteinizing hormone signaling is involved in synchronization of Leydig cell’s clock and is crucial for rhythm robustness of testosterone production. Biol Reprod. 2019;100(5):1406–15. https://doi.org/10.1093/biolre/ioz020.

    Article  PubMed  Google Scholar 

  69. Herbert J. Testosterone: Sex, Power, and the Will to Win. Oxford: OUP Oxford; 2015.

    Google Scholar 

  70. Smith LB, Walker WH. The regulation of spermatogenesis by androgens. Semin Cell Dev Biol. 2014;30:2–13. https://doi.org/10.1016/j.semcdb.2014.02.012.

    Article  CAS  PubMed  Google Scholar 

  71. Walker WH. Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis. 2011;1(2):116–20. https://doi.org/10.4161/spmg.1.2.16956.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Holdcraft RW, Braun RE. Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development. 2004;131(2):459–67. https://doi.org/10.1242/dev.00957.

    Article  CAS  PubMed  Google Scholar 

  73. Jones TH, Darne JF, McGarrigle HH. Diurnal rhythm of testosterone induced by human chorionic gonadotrophin (hCG) therapy in isolated hypogonadotrophic hypogonadism: a comparison between subcutaneous and intramuscular hCG administration. Eur J Endocrinol. 1994;131(2):173–8. https://doi.org/10.1530/eje.0.1310173.

    Article  CAS  PubMed  Google Scholar 

  74. Resko JA, Eik-nes KB. Diurnal testosterone levels in peripheral plasma of human male subjects. J Clin Endocrinol Metab. 1966;26(5):573–6. https://doi.org/10.1210/jcem-26-5-573.

    Article  CAS  PubMed  Google Scholar 

  75. Thorpe J, Rajabi N, deCatanzaro D. Circadian rhythm and response to an acute stressor of urinary corticosterone, testosterone, and creatinine in adult male mice. Horm Metab Res. 2012;44(06):429–35. https://doi.org/10.1055/s-0032-1306307.

    Article  CAS  PubMed  Google Scholar 

  76. Waite E, Kershaw Y, Spiga F, Lightman SL. A glucocorticoid sensitive biphasic rhythm of testosterone secretion. J Neuroendocrinol. 2009;21(9):737–41. https://doi.org/10.1111/j.1365-2826.2009.01900.x.

    Article  CAS  PubMed  Google Scholar 

  77. Chen H, Gao L, Xiong Y, Yang D, Li C, Wang A, et al. Circadian clock and steroidogenic-related gene expression profiles in mouse Leydig cells following dexamethasone stimulation. Biochem Biophys Res Commun. 2017;483(1):294–300. https://doi.org/10.1016/j.bbrc.2016.12.149.

    Article  CAS  PubMed  Google Scholar 

  78. Baburski AZ, Sokanovic SJ, Bjelic MM, Radovic SM, Andric SA, Kostic TS. Circadian rhythm of the Leydig cells endocrine function is attenuated during aging. Exp Gerontol. 2016;73:5–13. https://doi.org/10.1016/j.exger.2015.11.002.

    Article  CAS  PubMed  Google Scholar 

  79. Bittman EL. Timing in the testis. J Biol Rhythms. 2016;31(1):12–36. https://doi.org/10.1177/0748730415618297.

    Article  CAS  PubMed  Google Scholar 

  80. Lucas LA, Eleftheriou BE. Circadian variation in concentrations of testosterone in the plasma of male mice: a difference between BALB/cBy and C57BL/6By inbred strains. J Endocrinol. 1980;87(1):37–46. https://doi.org/10.1677/joe.0.0870037.

    Article  CAS  PubMed  Google Scholar 

  81. Auer KE, Kussmaul M, Mostl E, Hohlbaum K, Rulicke T, Palme R. Measurement of fecal testosterone metabolites in mice: Replacement of invasive techniques. Animals (Basel). 2020;10(1). https://doi.org/10.3390/ani10010165.

  82. Yang L, Ma T, Zhao L, Jiang H, Zhang J, Liu D, et al. Circadian regulation of apolipoprotein gene expression affects testosterone production in mouse testis. Theriogenology. 2021;174:9–19. https://doi.org/10.1016/j.theriogenology.2021.06.023.

    Article  CAS  PubMed  Google Scholar 

  83. Guo Y, Shen O, Han J, Duan H, Yang S, Zhu Z, et al. Circadian rhythm genes mediate fenvalerate-induced inhibition of testosterone synthesis in mouse Leydig cells. J Toxicol Environ Health A. 2017;80(23–24):1314–20. https://doi.org/10.1080/15287394.2017.1384148.

    Article  CAS  PubMed  Google Scholar 

  84. Zhao L, Xiao Y, Li C, Zhang J, Zhang Y, Wu M, et al. Zearalenone perturbs the circadian clock and inhibits testosterone synthesis in mouse Leydig cells. J Toxicol Environ Health A. 2021;84(3):112–24. https://doi.org/10.1080/15287394.2020.1841699.

    Article  CAS  PubMed  Google Scholar 

  85. Zeman M, Molcan L, Herichova I, Okuliarova M. Endocrine and cardiovascular rhythms differentially adapt to chronic phase-delay shifts in rats. Chronobiol Int. 2016;33(9):1148–60. https://doi.org/10.1080/07420528.2016.1203332.

    Article  PubMed  Google Scholar 

  86. Touitou Y, Motohashi Y, Reinberg A, Touitou C, Bourdeleau P, Bogdan A, et al. Effect of shift work on the night-time secretory patterns of melatonin, prolactin, cortisol and testosterone. Eur J Appl Physiol Occup Physiol. 1990;60(4):288–92. https://doi.org/10.1007/BF00379398.

    Article  CAS  PubMed  Google Scholar 

  87. Xu G, Yuan Z, Hou J, Zhao J, Liu H, Lu W, et al. Prolonging photoperiod promotes testosterone synthesis of Leydig cells by directly targeting local melatonin system in rooster testes. Biol Reprod. 2021. https://doi.org/10.1093/biolre/ioab155.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Axelsson J, Ingre M, Akerstedt T, Holmback U. Effects of acutely displaced sleep on testosterone. J Clin Endocrinol Metab. 2005;90(8):4530–5. https://doi.org/10.1210/jc.2005-0520.

    Article  CAS  PubMed  Google Scholar 

  89. Pavlovic MV, Marinkovic DZ, Andric SA, Kostic TS. The cost of the circadian desynchrony on the Leydig cell function. Sci Rep. 2022;12(1):15520. https://doi.org/10.1038/s41598-022-19889-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Griswold MD. Spermatogenesis: The Commitment to Meiosis. Physiol Rev. 2016;96(1):1–17. https://doi.org/10.1152/physrev.00013.2015.

    Article  CAS  PubMed  Google Scholar 

  91. Sinha N, Whelan EC, Tobias JW, Avarbock M, Stefanovski D, Brinster RL. Roles of Stra8 and Tcerg1l in retinoic acid induced spermatogonial differentiation in mousedagger. Biol Reprod. 2021;105(2):503–18. https://doi.org/10.1093/biolre/ioab093.

    Article  PubMed  Google Scholar 

  92. Endo T, Freinkman E, de Rooij DG, Page DC. Periodic production of retinoic acid by meiotic and somatic cells coordinates four transitions in mouse spermatogenesis. Proc Natl Acad Sci U S A. 2017;114(47):E10132–41. https://doi.org/10.1073/pnas.1710837114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ashton A, Stoney PN, Ransom J, McCaffery P. Rhythmic Diurnal Synthesis and Signaling of Retinoic Acid in the Rat Pineal Gland and Its Action to Rapidly Downregulate ERK Phosphorylation. Mol Neurobiol. 2018;55(11):8219–35. https://doi.org/10.1007/s12035-018-0964-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Golini RS, Delgado SM, Navigatore Fonzo LS, Ponce IT, Lacoste MG, Anzulovich AC. Daily patterns of clock and cognition-related factors are modified in the hippocampus of vitamin A-deficient rats. Hippocampus. 2012;22(8):1720–32. https://doi.org/10.1002/hipo.22007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Navigatore-Fonzo LS, Golini RL, Ponce IT, Delgado SM, Plateo-Pignatari MG, Gimenez MS, et al. Retinoic acid receptors move in time with the clock in the hippocampus. Effect of a vitamin-A-deficient diet. J Nutr Biochem. 2013;24(5):859–67. https://doi.org/10.1016/j.jnutbio.2012.05.006.

    Article  CAS  PubMed  Google Scholar 

  96. McNamara P, Seo SB, Rudic RD, Sehgal A, Chakravarti D, FitzGerald GA. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell. 2001;105(7):877–89. https://doi.org/10.1016/s0092-8674(01)00401-9.

    Article  CAS  PubMed  Google Scholar 

  97. Ransom J, Morgan PJ, McCaffery PJ, Stoney PN. The rhythm of retinoids in the brain. J Neurochem. 2014;129(3):366–76. https://doi.org/10.1111/jnc.12620.

    Article  CAS  PubMed  Google Scholar 

  98. Sati L. Chronodisruption: effects on reproduction, transgenerational health of offspring and epigenome. Reproduction. 2020;160(5):R79-r94. https://doi.org/10.1530/rep-20-0298.

    Article  CAS  PubMed  Google Scholar 

  99. Shirai H, Oishi K, Ishida N. Bidirectional CLOCK/BMAL1-dependent circadian gene regulation by retinoic acid in vitro. Biochem Biophys Res Commun. 2006;351(2):387–91. https://doi.org/10.1016/j.bbrc.2006.10.031.

    Article  CAS  PubMed  Google Scholar 

  100. Hamilton EE, Kay SA. SnapShot: circadian clock proteins. Cell. 2008;135(2):368–368 e361. https://doi.org/10.1016/j.cell.2008.09.042.

    Article  PubMed  Google Scholar 

  101. Ukai H, Ueda HR. Systems biology of mammalian circadian clocks. Annu Rev Physiol. 2010;72:579–603. https://doi.org/10.1146/annurev-physiol-073109-130051.

    Article  CAS  PubMed  Google Scholar 

  102. André E, Conquet F, Steinmayr M, Stratton SC, Porciatti V, Becker-André M. Disruption of retinoid-related orphan receptor beta changes circadian behavior, causes retinal degeneration and leads to vacillans phenotype in mice. EMBO J. 1998;17(14):3867–77. https://doi.org/10.1093/emboj/17.14.3867.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Stehlin-Gaon C, Willmann D, Zeyer D, Sanglier S, Van Dorsselaer A, Renaud JP, et al. All-trans retinoic acid is a ligand for the orphan nuclear receptor ROR beta. Nat Struct Biol. 2003;10(10):820–5. https://doi.org/10.1038/nsb979.

    Article  CAS  PubMed  Google Scholar 

  104. Hogarth CA, Arnold S, Kent T, Mitchell D, Isoherranen N, Griswold MD. Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production. Biol Reprod. 2015;92(2):37. https://doi.org/10.1095/biolreprod.114.126326.

    Article  CAS  PubMed  Google Scholar 

  105. Liu T, Zhong Z, Zhong Y, Wang H. The circadian clock promotes spermatogonial differentiation and fertilization through retinoic acid signaling. V World Congress Chronobiology. 2019.

  106. Wang H. Comparative analysis of teleost fish genomes reveals preservation of different ancient clock duplicates in different fishes. Mar Genomics. 2008;1(2):69–78. https://doi.org/10.1016/j.margen.2008.06.003.

    Article  PubMed  Google Scholar 

  107. Cheng S, Liang X, Wang Y, Jiang Z, Liu Y, Hou W, et al. The circadian Clock gene regulates acrosin activity of sperm through serine protease inhibitor A3K. Exp Biol Med (Maywood). 2016;241(2):205–15. https://doi.org/10.1177/1535370215597199.

    Article  CAS  PubMed  Google Scholar 

  108. Ernst C, Odom DT, Kutter C. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat Commun. 2017;8(1):1411. https://doi.org/10.1038/s41467-017-01049-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zickler D, Kleckner N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb Perspect Biol. 2015;7(6). https://doi.org/10.1101/cshperspect.a016626.

  110. Hunter N. Meiotic Recombination: The essence of heredity. Cold Spring Harb Perspect Biol. 2015;7(12). https://doi.org/10.1101/cshperspect.a016618.

  111. Lei WL, Han F, Hu MW, Liang QX, Meng TG, Zhou Q, et al. Protein phosphatase 6 is a key factor regulating spermatogenesis. Cell Death Differ. 2020;27(6):1952–64. https://doi.org/10.1038/s41418-019-0472-9.

    Article  CAS  PubMed  Google Scholar 

  112. Che L, Alavattam KG, Stambrook PJ, Namekawa SH, Du C. BRUCE preserves genomic stability in the male germline of mice. Cell Death Differ. 2020;27(8):2402–16. https://doi.org/10.1038/s41418-020-0513-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xu X, Aprelikova O, Moens P, Deng CX, Furth PA. Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in BRCA1 full-length isoform deficient mice. Development. 2003;130(9):2001–12. https://doi.org/10.1242/dev.00410.

    Article  CAS  PubMed  Google Scholar 

  114. Shafi AA, McNair CM, McCann JJ, Alshalalfa M, Shostak A, Severson TM, et al. The circadian cryptochrome, CRY1, is a pro-tumorigenic factor that rhythmically modulates DNA repair. Nat Commun. 2021;12(1):401. https://doi.org/10.1038/s41467-020-20513-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Amano T, Matsushita A, Hatanaka Y, Watanabe T, Oishi K, Ishida N, et al. Expression and functional analyses of circadian genes in mouse oocytes and preimplantation embryos: Cry1 is involved in the meiotic process independently of circadian clock regulation. Biol Reprod. 2009;80(3):473–83. https://doi.org/10.1095/biolreprod.108.069542.

    Article  CAS  PubMed  Google Scholar 

  116. Saffman EE, Lasko P. Germline development in vertebrates and invertebrates. Cell Mol Life Sci. 1999;55(8–9):1141–63. https://doi.org/10.1007/s000180050363.

    Article  CAS  PubMed  Google Scholar 

  117. Eddy EM. Germ plasm and the differentiation of the germ cell line. Int Rev Cytol. 1975;43:229–80. https://doi.org/10.1016/s0074-7696(08)60070-4.

    Article  CAS  PubMed  Google Scholar 

  118. Parvinen M. The chromatoid body in spermatogenesis. Int J Androl. 2005;28(4):189–201. https://doi.org/10.1111/j.1365-2605.2005.00542.x.

    Article  PubMed  Google Scholar 

  119. Meikar O, Da Ros M, Korhonen H, Kotaja N. Chromatoid body and small RNAs in male germ cells. Reproduction. 2011;142(2):195–209. https://doi.org/10.1530/REP-11-0057.

    Article  CAS  PubMed  Google Scholar 

  120. de Mateo S, Sassone-Corsi P. Regulation of spermatogenesis by small non-coding RNAs: role of the germ granule. Semin Cell Dev Biol. 2014;29:84–92. https://doi.org/10.1016/j.semcdb.2014.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Meikar O, Vagin VV, Chalmel F, Sostar K, Lardenois A, Hammell M, et al. An atlas of chromatoid body components. RNA. 2014;20(4):483–95. https://doi.org/10.1261/rna.043729.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kotaja N, Bhattacharyya SN, Jaskiewicz L, Kimmins S, Parvinen M, Filipowicz W, et al. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci USA. 2006;103(8):2647–52. https://doi.org/10.1073/pnas.0509333103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mosevitsky MI, Snigirevskaya ES, Komissarchik YY. Immunoelectron microscopic study of BASP1 and MARCKS location in the early and late rat spermatids. Acta Histochem. 2012;114(3):237–43. https://doi.org/10.1016/j.acthis.2011.06.009.

    Article  CAS  PubMed  Google Scholar 

  124. Kotaja N, Sassone-Corsi P. The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol. 2007;8(1):85–90. https://doi.org/10.1038/nrm2081.

    Article  CAS  PubMed  Google Scholar 

  125. Dai P, Wang X, Gou LT, Li ZT, Wen Z, Chen ZG, et al. A Translation-Activating Function of MIWI/piRNA during mouse spermiogenesis. Cell. 2019;179(7):1566–81 e1516. https://doi.org/10.1016/j.cell.2019.11.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gou LT, Dai P, Yang JH, Xue Y, Hu YP, Zhou Y, et al. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 2015;25(2):266. https://doi.org/10.1038/cr.2015.14.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Reuter M, Berninger P, Chuma S, Shah H, Hosokawa M, Funaya C, et al. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature. 2011;480(7376):264–7. https://doi.org/10.1038/nature10672.

    Article  CAS  PubMed  Google Scholar 

  128. Kotaja N, Lin H, Parvinen M, Sassone-Corsi P. Interplay of PIWI/Argonaute protein MIWI and kinesin KIF17b in chromatoid bodies of male germ cells. J Cell Sci. 2006;119(Pt 13):2819–25. https://doi.org/10.1242/jcs.03022.

    Article  CAS  PubMed  Google Scholar 

  129. Dodson AE, Kennedy S. Phase Separation in Germ Cells and Development. Dev Cell. 2020;55(1):4–17. https://doi.org/10.1016/j.devcel.2020.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell. 2015;57(5):936–47. https://doi.org/10.1016/j.molcel.2015.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Peruquetti RL, de Mateo S, Sassone-Corsi P. Circadian proteins CLOCK and BMAL1 in the chromatoid body, a RNA processing granule of male germ cells. PloS One. 2012;7(8):e42695. https://doi.org/10.1371/journal.pone.0042695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell. 2019;176(3):419–34. https://doi.org/10.1016/j.cell.2018.12.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pattanayak GK, Liao Y, Wallace EWJ, Budnik B, Drummond DA, Rust MJ. Daily cycles of reversible protein condensation in cyanobacteria. Cell Rep. 2020;32(7):108032. https://doi.org/10.1016/j.celrep.2020.108032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li C, Fang X. Phase separation as a molecular thermosensor. Dev Cell. 2020;55(2):118–9. https://doi.org/10.1016/j.devcel.2020.09.019.

    Article  CAS  PubMed  Google Scholar 

  135. Jung JH, Barbosa AD, Hutin S, Kumita JR, Gao M, Derwort D, et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature. 2020;585(7824):256–60. https://doi.org/10.1038/s41586-020-2644-7.

    Article  CAS  PubMed  Google Scholar 

  136. Rodelsperger C, Ebbing A, Sharma DR, Okumura M, Sommer RJ, Korswagen HC. Spatial transcriptomics of nematodes identifies sperm cells as a source of genomic novelty and rapid evolution. Mol Biol Evol. 2021;38(1):229–43. https://doi.org/10.1093/molbev/msaa207.

    Article  CAS  PubMed  Google Scholar 

  137. Chen H, Murray E, Sinha A, Laumas A, Li J, Lesman D, et al. Dissecting mammalian spermatogenesis using spatial transcriptomics. Cell Rep. 2021;37(5):109915. https://doi.org/10.1016/j.celrep.2021.109915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. La H, Yoo H, Lee EJ, Thang NX, Choi HJ, Oh J, et al. Insights from the applications of single-cell transcriptomic analysis in germ cell development and reproductive medicine. Int J Mol Sci 2021;22(2). https://doi.org/10.3390/ijms22020823.

  139. Wang M, Liu X, Chang G, Chen Y, An G, Yan L, et al. Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell. 2018;23(4):599–614 e594. https://doi.org/10.1016/j.stem.2018.08.007.

    Article  CAS  PubMed  Google Scholar 

  140. Hermann BP, Cheng K, Singh A, Roa-De La Cruz L, Mutoji KN, Chen IC, et al. The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep. 2018;25(6):1650–67 e1658. https://doi.org/10.1016/j.celrep.2018.10.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dries R, Chen J, Del Rossi N, Khan MM, Sistig A, Yuan GC. Advances in spatial transcriptomic data analysis. Genome Res. 2021;31(10):1706–18. https://doi.org/10.1101/gr.275224.121.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kim SM, Neuendorff N, Alaniz RC, Sun Y, Chapkin RS, Earnest DJ. Shift work cycle-induced alterations of circadian rhythms potentiate the effects of high-fat diet on inflammation and metabolism. FASEB J. 2018;32(6):3085–95. https://doi.org/10.1096/fj.201700784R.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Touitou Y, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci. 2017;173:94–106. https://doi.org/10.1016/j.lfs.2017.02.008.

    Article  CAS  PubMed  Google Scholar 

  144. Lunn RM, Blask DE, Coogan AN, Figueiro MG, Gorman MR, Hall JE, et al. Health consequences of electric lighting practices in the modern world: A report on the National Toxicology Program’s workshop on shift work at night, artificial light at night, and circadian disruption. Sci Total Environ. 2017;607–608:1073–84. https://doi.org/10.1016/j.scitotenv.2017.07.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nagano M, Adachi A, Nakahama K, Nakamura T, Tamada M, Meyer-Bernstein E, et al. An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J Neurosci. 2003;23(14):6141–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target. Nat Rev Drug Discov. 2021;20(4):287–307. https://doi.org/10.1038/s41573-020-00109-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Asher G, Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell. 2015;161(1):84–92. https://doi.org/10.1016/j.cell.2015.03.015.

    Article  CAS  PubMed  Google Scholar 

  148. Potter GDM, Wood TR. The future of shift work: Circadian biology meets personalised medicine and behavioural science. Front Nutr. 2020;7:116. https://doi.org/10.3389/fnut.2020.00116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Aoyama S, Shibata S. Time-of-day-dependent physiological responses to meal and exercise. Front Nutr. 2020;7:18. https://doi.org/10.3389/fnut.2020.00018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Petersen MC, Gallop MR, Flores Ramos S, Zarrinpar A, Broussard JL, Chondronikola M, et al. Complex physiology and clinical implications of time-restricted eating. Physiol Rev. 2022;102(4):1991–2034. https://doi.org/10.1152/physrev.00006.2022.

    Article  CAS  PubMed  Google Scholar 

  151. Sasseville A, Hebert M. Using blue-green light at night and blue-blockers during the day to improves adaptation to night work: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(7):1236–42. https://doi.org/10.1016/j.pnpbp.2010.06.027.

    Article  PubMed  Google Scholar 

  152. Hermida RC, Crespo JJ, Dominguez-Sardina M, Otero A, Moya A, Rios MT, et al. Bedtime hypertension treatment improves cardiovascular risk reduction: the Hygia Chronotherapy Trial. Eur Heart J. 2020;41(48):4565–76. https://doi.org/10.1093/eurheartj/ehz754.

    Article  CAS  PubMed  Google Scholar 

  153. Roenneberg T, Allebrandt KV, Merrow M, Vetter C. Social jetlag and obesity. Curr Biol. 2012;22(10):939–43. https://doi.org/10.1016/j.cub.2012.03.038.

    Article  CAS  PubMed  Google Scholar 

  154. Zhu Q, Belden WJ. Molecular regulation of circadian chromatin. J Mol Biol. 2020;432(12):3466–82. https://doi.org/10.1016/j.jmb.2020.01.009.

    Article  CAS  PubMed  Google Scholar 

  155. Greco CM, Cervantes M, Fustin JM, Ito K, Ceglia N, Samad M, et al. S-adenosyl-l-homocysteine hydrolase links methionine metabolism to the circadian clock and chromatin remodeling. Sci Adv 2020;6(51). https://doi.org/10.1126/sciadv.abc5629.

  156. Henriques R, Mas P. Chromatin remodeling and alternative splicing: pre- and post-transcriptional regulation of the Arabidopsis circadian clock. Semin Cell Dev Biol. 2013;24(5):399–406. https://doi.org/10.1016/j.semcdb.2013.02.009.

    Article  CAS  PubMed  Google Scholar 

  157. Wang M, Zeng L, Su P, Ma L, Zhang M, Zhang YZ. Autophagy: a multifaceted player in the fate of sperm. Hum Reprod Update. 2022;28(2):200–31. https://doi.org/10.1093/humupd/dmab043.

    Article  CAS  PubMed  Google Scholar 

  158. Ferder IC, Fung L, Ohguchi Y, Zhang X, Lassen KG, Capen D, et al. Meiotic gatekeeper STRA8 suppresses autophagy by repressing Nr1d1 expression during spermatogenesis in mice. PLoS Genetics. 2019;15(5):e1008084. https://doi.org/10.1371/journal.pgen.1008084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yang J, Zhang Z, Zhang Y, Zheng X, Lu Y, Tao D, et al. CLOCK interacts with RANBP9 and is involved in alternative splicing in spermatogenesis. Gene. 2018;642:199–204. https://doi.org/10.1016/j.gene.2017.11.007.

    Article  CAS  PubMed  Google Scholar 

  160. Carlsen E, Giwercman A, Keiding N, Skakkebaek NE. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992;305(6854):609–13. https://doi.org/10.1136/bmj.305.6854.609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hiroyoshi S, Mitsunaga T, Reddy GVP. Temporal shift between daily sperm movement and mating (sperm reflux) in the Asian comma butterfly, Polygonia c-aureum. Entomol Exp Appl. 2020;168(11):857–68. https://doi.org/10.1111/eea.12980.

    Article  CAS  Google Scholar 

  162. Rienstein S, Dotan A, Avivi L, Ashkenazi I. Daily rhythms in male mice meiosis. Chronobiol Int. 1998;15(1):13–20. https://doi.org/10.3109/07420529808998665.

    Article  CAS  PubMed  Google Scholar 

  163. Bebas P, Maksimiuk E, Gvakharia B, Cymborowski B, Giebultowicz JM. Circadian rhythm of glycoprotein secretion in the vas deferens of the moth, Spodoptera littoralis. BMC Physiol. 2002;2(15). https://doi.org/10.1186/1472-6793-2-15.

  164. Bebas P, Cymborowski B, Giebultowicz JM. Circadian rhythm of acidification in insect vas deferens regulated by rhythmic expression of vacuolar H(+)-ATPase. J Exp Biol. 2002;205(Pt 1):37–44. https://doi.org/10.1242/jeb.205.1.37.

    Article  CAS  PubMed  Google Scholar 

  165. Giebultowicz JM, Brooks NL. The circadian rhythm of sperm release in the codling moth, Cydia pomonella. Entomo Exp Appl. 1998;88(3):229–34. https://doi.org/10.1046/j.1570-7458.1998.00367.x.

    Article  Google Scholar 

  166. Giebultowicz JM, Weyda F, Erbe EF, Wergin WP. Circadian rhythm of sperm release in the gypsy moth, Lymantria dispar: ultrastructural study of transepithelial penetration of sperm bundles. J Insect Physiol. 1997;43(12):1133–47. https://doi.org/10.1016/s0022-1910(97)00061-9.

    Article  CAS  PubMed  Google Scholar 

  167. Matsuyama M, Yoneda M, Takeuchi H, Kawaga H, Kashiwagi M, Tabata K, et al. Diurnal periodicity in testicular activity in the Japanese flounder Paralichthys olivaceus. Fish Sci. 1995;61(1):17–23. https://doi.org/10.2331/fishsci.61.17.

    Article  CAS  Google Scholar 

  168. Giebultowicz JM, Joy JE, Riemann JG, Raina AK. Changes in protein patterns in sperm and vas deferens during the daily rhythm of sperm release in the gypsy moth. Arch Insect Biochem Physiol. 1994;27(1):65–75. https://doi.org/10.1002/arch.940270108.

    Article  CAS  Google Scholar 

  169. Allan DJ, Harmon BV, Roberts SA. Spermatogonial apoptosis has three morphologically recognizable phases and shows no circadian rhythm during normal spermatogenesis in the rat. Cell Prolif. 1992;25(3):241–50. https://doi.org/10.1111/j.1365-2184.1992.tb01399.x.

    Article  CAS  PubMed  Google Scholar 

  170. Riemann JG, Giebultowicz JM. Secretion in the upper vas deferens of the gypsy moth correlated with the circadian rhythm of sperm release from the testes. J Insect Physiol. 1991;37(1):53–62. https://doi.org/10.1016/0022-1910(91)90019-v.

    Article  Google Scholar 

  171. Giebultowicz JM, Bell RA, Imberski RB. Circadian rhythm of sperm movement in the male reproductive tract of the gypsy moth, Lymantria dispar. J Insect Physiol. 1988;34(6):527–32. https://doi.org/10.1016/0022-1910(88)90194-1.

    Article  Google Scholar 

  172. Oakberg EF, Gosslee DG, Huckins C, Cummings CC. Do spermatogonial stem cells have a circadian rhythm? Cell Tissue Kinet. 1986;19(4):367–75. https://doi.org/10.1111/j.1365-2184.1986.tb00735.x.

    Article  CAS  PubMed  Google Scholar 

  173. Kihlstro JE. Diurnal variation in the spontaneous ejaculations of the male albino rat. Nature. 1966;209(5022):513–4. https://doi.org/10.1038/209513a0.

    Article  Google Scholar 

  174. Zhang P, Li C, Gao Y, Leng Y. Altered circadian clock gene expression in the sperm of infertile men with asthenozoospermia. J Assist Reprod Genet. 2022;39(1):165–72. https://doi.org/10.1007/s10815-021-02375-y.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Valsa J, Skandhan KP, Sumangala B, Amith S, Skandhan Avni KP. Effect of different timings of the day on semen and calcium and magnesium in it. Urologia. 2016;83(4):207–10. https://doi.org/10.5301/uro.5000029.

    Article  PubMed  Google Scholar 

  176. Biljan MM, Tkalec DD, Lachgar H. Absence of diurnal variation in semen parameters in normospermic men. Fertil Steril. 2005;83(2):477–9. https://doi.org/10.1016/j.fertnstert.2004.10.026.

    Article  PubMed  Google Scholar 

  177. Cagnacci A, Maxia N, Volpe A. Diurnal variation of semen quality in human males. Human Reprod. 1999;14(1):106–9. https://doi.org/10.1093/humrep/14.1.106.

    Article  CAS  Google Scholar 

  178. Ding H, Zhao J, Liu H, Wang J, Lu W. BMAL1 knockdown promoted apoptosis and reduced testosterone secretion in TM3 Leydig cell line. Gene. 2020;747:144672. https://doi.org/10.1016/j.gene.2020.144672.

  179. Zhang J, Ding X, Li Y, Xia Y, Nie J, Yi C, et al. Association of CLOCK gene variants with semen quality in idiopathic infertile Han-Chinese males. Reprod Biomed Online. 2012;25(5):536–42. https://doi.org/10.1016/j.rbmo.2012.07.018.

    Article  CAS  PubMed  Google Scholar 

  180. Moustafa A. Effect of light-dark cycle misalignment on the hypothalamic-pituitary-gonadal axis, testicular oxidative stress, and expression of clock genes in adult male rats. Int J Endocrinol. 2020;2020. https://doi.org/10.1155/2020/1426846.

  181. Kwak BK, Lee SH. Effect of feeding time shift on the reproductive system in male rats. Dev Reprod. 2012;16(1):53–8.

    Google Scholar 

  182. Syrova Z, Sauman I, Giebultowicz JM. Effects of light and temperature on the circadian system controlling sperm release in moth Spodoptera littoralis. Chronobiol Int. 2003;20(5):809–21. https://doi.org/10.1081/cbi-120024217.

    Article  PubMed  Google Scholar 

  183. Kholkute SD, Jayaraman S, Kumar RA, Puri CP. Continuous light environment has no effect on the circadian testosterone rhythm, spermatogenesis or fertility of the marmoset (Callithrix jacchus). Int J Androl. 1987;10(4):635–42. https://doi.org/10.1111/j.1365-2605.1987.tb00363.x.

    Article  CAS  PubMed  Google Scholar 

  184. Hardy MP, Mendis-Handagama SM, Zirkin BR, Ewing LL. Photoperiodic variation of Leydig cell numbers in the testis of the golden hamster: a possible mechanism for their renewal during recrudescence. J Exp Zool. 1987;244(2):269–76. https://doi.org/10.1002/jez.1402440211.

    Article  CAS  PubMed  Google Scholar 

  185. Woodard AE, Snyder RL, Fuqua L. The effect of photoperiod and feed restriction on semen production in the turkey. Poult Sci. 1979;58(1):217–21. https://doi.org/10.3382/ps.0580217.

    Article  CAS  PubMed  Google Scholar 

  186. Demirkol MK, Yıldırım A, Gıca Ş, Doğan NT, Resim S. Evaluation of the effect of shift working and sleep quality on semen parameters in men attending infertility clinic. Andrologia. 2021;53(8):e14116. https://doi.org/10.1111/and.14116.

  187. Moreno-Mendoza D, Riera-Escamilla A, Fede GD, Bassas L, Sanchez-Curbelo JR, Krausz C, et al. General health and semen quality in night shift workers. Andrology. 2018;6:48–9. https://doi.org/10.1111/andr.12541.

  188. Kohn TP, Pastuszak AW, Pickett SM, Kohn JR, Lipshultz LI. Shift work is associated with altered semen parameters in infertile men. J Urol. 2017;197(4):e273–e274.

    Google Scholar 

  189. Singh D, Rani S, Kumar V. Daily expression of six clock genes in central and peripheral tissues of a night-migratory songbird: evidence for tissue-specific circadian timing. Chronobiol Int. 2013;30(10):1208–17. https://doi.org/10.3109/07420528.2013.810632.

    Article  CAS  PubMed  Google Scholar 

  190. Bebas P, Goodall CP, Majewska M, Neumann A, Giebultowicz JM, Chappell PE. Circadian clock and output genes are rhythmically expressed in extratesticular ducts and accessory organs of mice. FASEB J. 2009;23(2):523–33. https://doi.org/10.1096/fj.08-113191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lambert CM, Weaver DR. Peripheral gene expression rhythms in a diurnal rodent. J Biol Rhythms. 2006;21(1):77–9. https://doi.org/10.1177/0748730405281843.

    Article  PubMed  Google Scholar 

  192. Alvarez JD, Sehgal A. The thymus is similar to the testis in its pattern of circadian clock gene expression. J Biol Rhythms. 2005;20(2):111–21. https://doi.org/10.1177/0748730404274078.

    Article  CAS  PubMed  Google Scholar 

  193. Tong Y, Guo H, Brewer JM, Lee H, Lehman MN, Bittman EL. Expression of haPer1 and haBmal1 in Syrian hamsters: heterogeneity of transcripts and oscillations in the periphery. J Biol Rhythms. 2004;19(2):113–25. https://doi.org/10.1177/0748730403262871.

    Article  CAS  PubMed  Google Scholar 

  194. Morse D, Cermakian N, Brancorsini S, Parvinen M, Sassone-Corsi P. No circadian rhythms in testis: Period1 expression is clock independent and developmentally regulated in the mouse. Mol Endocrinol. 2003;17(1):141–51. https://doi.org/10.1210/me.2002-0184.

    Article  CAS  PubMed  Google Scholar 

  195. Gvakharia BO, Kilgore JA, Bebas P, Giebultowicz JM. Temporal and spatial expression of the period gene in the reproductive system of the codling moth. J Biol Rhythms. 2000;15(1):4–12. https://doi.org/10.1177/074873040001500102.

    Article  CAS  PubMed  Google Scholar 

  196. Lu Y, Zheng X, Hu W, Bian S, Zhang Z, Tao D, et al. Cancer/testis antigen PIWIL2 suppresses circadian rhythms by regulating the stability and activity of BMAL1 and CLOCK. Oncotarget. 2017;8(33):54913–24. https://doi.org/10.18632/oncotarget.18973.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Bittman EL, Doherty L, Huang L, Paroskie A. Period gene expression in mouse endocrine tissues. Am J Physiol Regul Integr Comp Physiol. 2003;285(3):R561–R569. https://doi.org/10.1152/ajpregu.00783.2002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Siwen Luo for the careful revision of this review.

Funding

This work was supported by the National Key R&D Program of China under Grant [2022YFC2702900], National Natural Science Foundation of China under Grant [81871208], Key Program of National Natural Science Foundation of China under Grant [82130097], and Army Medical University Research Program under Grant [2021XZL01].

Author information

Authors and Affiliations

Authors

Contributions

M.C.H. and K.L. designed the review, conducted the literature research, and drafted the paper. Q.C. and J.C. designed the review, revised the content critically, and approved the final draft.

Corresponding authors

Correspondence to Jia Cao or Qing Chen.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Liu, K., Cao, J. et al. An update on the role and potential mechanisms of clock genes regulating spermatogenesis: A systematic review of human and animal experimental studies. Rev Endocr Metab Disord 24, 585–610 (2023). https://doi.org/10.1007/s11154-022-09783-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-022-09783-0

Keywords

Navigation