
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11154-022-09767-0

The role of testosterone, the androgen receptor, 
and hypothalamic‑pituitary–gonadal axis in depression in ageing Men

Richard L. Hauger1,2  · Ursula G. Saelzler2 · Meghana S. Pagadala3,4 · Matthew S. Panizzon1,2

Accepted: 20 October 2022 
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022

Abstract
Considerable research has shown that testosterone regulates many physiological systems, modulates clinical disorders, and 
contributes to health outcome. However, studies on the interaction of testosterone levels with depression and the antidepres-
sant effect of testosterone replacement therapy in hypogonadal men with depression have been inconclusive. Current findings 
indicate that low circulating levels of total testosterone meeting stringent clinical criteria for hypogonadism and testosterone 
deficiency induced by androgen deprivation therapy are associated with increased risk for depression and current depressive 
symptoms. The benefits of testosterone replacement therapy in men with major depressive disorder and low testosterone 
levels in the clinically defined hypogonadal range remain uncertain and require further investigation. Important considera-
tions going forward are that major depressive disorder is a heterogeneous phenotype with depressed individuals differing 
in inherited polygenic determinants, onset and clinical course, symptom complexes, and comorbidities that contribute to 
potential multifactorial differences in pathophysiology. Furthermore, polygenic mechanisms are likely to be critical to the 
biological heterogeneity that influences testosterone-depression interactions. A genetically informed precision medicine 
approach using genes regulating testosterone levels and androgen receptor sensitivity will likely be essential in gaining 
critical insight into the role of testosterone in depression.
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1 Introduction

Testicular androgens have crucial roles in physiological 
homeostasis, health outcome, and disease pathophysiol-
ogy. Testosterone and the more biological active androgen, 
dihydrotestosterone (DHT), formed by conversion of tes-
tosterone by 5α-reductase, act as the primary sex hormones 
in men regulating male sexual development during puberty 
and spermatogenesis and sexual function in adulthood [1–3] 

(Fig. 1). Other classical, well-established roles of testoster-
one include stimulation of erythropoiesis and maintenance 
of muscular strength and volumetric bone density mass [4, 
5] (Fig. 1). Subsequent research, however, has discovered 
that androgens have more extensive physiological actions 
regulating cardiovascular, metabolic, hepatic, and immune 
systems and, importantly, the central nervous system [6–10] 
(Fig. 1).

The prevalence of major depressive disorder is two-
folder higher in women compared to men suggesting that 
physiological levels of testosterone in the healthy range may 
reduce the risk of depression [11]. Preclinical research has 
provided further evidence that androgens may reduce the 
risk of depression in men due to their antidepressant and 
neuroprotective actions in the hippocampus, limbic system, 
and other brain regions regulating mood [12, 13]. Consid-
erable work has shown that low testosterone levels, clini-
cal hypogonadism, pharmacologically induced testosterone 
deficiency by androgen deprivation therapy, and androgen 
receptor antagonist treatment are significantly associated 
with depression in men, although some studies have not 
observed this effect. An important research question is 
whether low testosterone levels are a trait biomarker for the 

Fig. 1  Regulation of the hypothalamic-pituitary–gonadal axis, tes-
ticular synthesis of androgens, and physiological actions of testos-
terone resulting from androgen receptor signaling in targeted tissues. 
The complex, multilevel regulation of the hypothalamic-pituitary–
gonadal axis is mediated by stimulatory and inhibitory neurocircuits 
acting on gonadotropin-releasing hormone (GnRH) neurons in the 
arcuate/infundibular nucleus  and  medial preoptic area of the hypo-
thalamus. Testosterone secreted by the testis exerts negative feed-
back control of hypothalamic GnRH release, while estradiol formed 
by 5α-reductase conversion of testosterone exerts negative feedback 
control of anterior pituitary luteinizing hormone (LH) secretion. Syn-
thesis of testosterone and dihydrotestosterone (DHT) by the testis is 
stimulated by LH activating G protein-coupled LH receptors in Ley-
dig cells. ACTH-stimulated synthesis of DHEA, 5-Adiol, and andros-
tenedione by adrenocortical cells may contribute to testicular synthe-
sis of testosterone and DHT via the “backdoor” pathway, although 
some studies indicate that DHEA and 5-Adiol secreted by the adrenal 
cortex may serve as substrates for peripheral conversion of testoster-
one by androgen receptor-regulated target tissues. Testosterone and 
DHT secreted by the testis bind to and activate the androgen receptor 
(AR) expressed in peripheral organs and the central nervous system. 
The slower genomic actions resulting from classical, canonical andro-
gen receptor signaling involve dissociation of cytosolic AR from heat 
shock proteins, translocation of AR with chaperones to the nucleus, 
and then binding of AR and co-regulators to androgen response ele-
ments on target genes to activate or repress their expression. In con-
trast, rapid, non-genomic actions result for membrane androgen 
receptors signaling via downstream Akt and ERK-MAP kinase path-
ways. The complex mechanisms governing testosterone hormone 
action regulate many physiological systems, modulate clinical disor-
ders, and contribute to health outcome. The dotted line indicates an 
inhibitory action, while the solid line indicates a stimulatory action

◂
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depression risk, or a state biomarker associated with a major 
depressive episode and its severity. Alternatively, however, 
low testosterone levels may be a result of co-morbid medical 

conditions associated with depression. The focus of this 
review will assess the role of testosterone in mood regula-
tion regarding the above important issues.
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2  Testosterone levels, hypogonadism, 
and depression

2.1  Testosterone decline and hypogonadism 
during aging

In young, healthy men, circulating levels of total testoster-
one range from 300–1000 ng/dl (10.4–34.7 nmol/L SI units) 
with 0.5% to 3.0% being free testosterone unbound to sex 
hormone binding globulin (SHBG) or albumin [1, 2]. The 
Baltimore Longitudinal Study of Aging has reported that 
80% of 60-year-old men and 50% of 80-year-old men exhibit 
total testosterone levels within the normal range of young 
men [14, 15]. Other men, however, experience a substan-
tial age-related decline in total testosterone into the clinical 
hypogonadal range below 280–300 ng/dl (9.7–10.4 nmol/L 
SI units). Many early cross-sectional studies reported that 
total testosterone levels in men begin to decline at the age of 
40 by a rate of 0.4% per year [15, 16]. Other cross-sectional 
research found that free testosterone levels decreased more 
rapidly at a rate of 1.5–2.0% in older men due to the age-
dependent upregulation of SHBG [16]. A smaller number 
of longitudinal studies reported a greater rate of testosterone 
decline during aging with total testosterone decreasing by 
1–2% per year [15, 16].

Although most studies on testosterone decline during 
aging have involved older men, a recent longitudinal study 
of young, healthy men (average age 34) found that the age at 
baseline did not predict changes in the trajectories of testos-
terone, dihydrotestosterone, androstenedione, and estradiol 
measured by LC–MS/MS mass spectrometry over a twelve-
year period [17]. Furthermore, gonadotropin secretion was 
upregulated and the testosterone/ luteinizing hormone ratio 
was decreased indicating declining Leydig cell function 
despite these men being young. BMI was negatively associ-
ated with circulating levels of total and free testosterone, 
DHT, androstenedione, and estradiol [17].

Research has shown that the age-related decrease in tes-
tosterone is mediated by several important mechanisms: (1) 
impaired luteinizing hormone (LH) receptor signaling via 
the protein kinase A-cyclic AMP pathway; (2) dysregulation 
of cholesterol transport and metabolism in mitochondrial 
due to oxidative stress [18], (3) the attrition of Leydig cells 
[128]. Furthermore, it is well established that the rate of tes-
tosterone decline can be accelerated by modifiable lifestyle 
factors including obesity and alcohol consumption. Several 
studies have shown that certain chronic medical disorders, 
especially type 2 diabetes, may be more important in pro-
moting testosterone decline than increasing age [2, 16, 19, 
20]. Importantly, recent research has shown that genetic fac-
tors can regulate the trajectory of testosterone during aging 
[21–23].

2.2  Relationship of circulating levels 
of testosterone and depression

Early studies discovered a significant association  of increas-
ing severity of major depressive disorder with low circulating 
levels of total testosterone in men [24]. Subsequently, obser-
vational, cross-sectional, or longitudinal studies reported an 
inverse relationship of depression scores in men with circu-
lating testosterone levels in the low physiological and hypo-
gonadal ranges, while other studies did not find a relation-
ship of depressive symptoms and testosterone levels [20, 25, 
26]. In 1999, the Rancho Bernardo Study reported that lower 
plasma levels of bioavailable testosterone, calculated using 
SHBG and albumin, and dihydrotestosterone were associ-
ated with higher Beck Depression Inventory (BDI) scores 
in their large cohort of community-dwelling older men (50 
to 89 years) [27]. Total testosterone and estradiol were not 
significantly associated with depressive symptoms. It is also 
important to note that none of the men in the Rancho Ber-
nardo Study had testosterone levels in the hypogonadal range. 
Higher estradiol levels have been reported to be associated 
with depression in young, obese men. Further investigation 
is required to elucidate the role of estradiol and its interaction 
with testosterone in depression especially in older men with 
hypogonadal testosterone level, which has been difficult to 
study due in part to mass spectrometry being necessary for 
specific, sensitive, and quantitative measurement. In addi-
tion, the roles of dihydrotestosterone, androstenedione, and 
other androgenic steroids in depression also warrants further 
investigation.

2.3  Relationship of testosterone deficiency 
in hypogonadism and depression

Many clinical symptoms of hypogonadism resemble the 
symptoms of major depressive disorder. Hypogonadal 
men frequently experience a depressed mood, anhedonia, 
fatigue, and cognitive impairment, which are four of the 
five diagnostic criteria A specified for major depressive dis-
order in the Fifth Edition of the Diagnostic and Statistical 
Manual of Mental Disorders [25]. In 2018, the Endocrine 
Society Clinical Practice Guideline established criteria for 
hypogonadism requiring that two morning serum testos-
terone levels are below 280–300 ng/dl (9.7–10.4 nmol/L 
SI units) [1]. When clinical criteria for hypogonadism are 
used, consistent  increases in depressive symptomatology 
and incidence of clinical depression  have been reported in 
hypogonadal men with confirmed testosterone deficiency 
compared to eugonadal men with testosterone levels in 
the normal physiological range. In 2004, a careful study 
using the Department of Veterans Affairs Healthcare Sys-
tem electronic medical record and a Kaplan–Meier survival 
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analysis reported a two-year incidence of major depressive 
disorder of 21.7% and a shorter time to the development of 
depression [OR = 3.5, p = 0.01] in men with an average age 
of 64.5 years and a stringent diagnosis of hypogonadism 
defined as total testosterone below 200 ng/dl (6.93 nmol/L 
SI units) compared to eugonadal men [28]. In 2005, using 
less stringent cutoff for hypogonadal levels defined as total 
testosterone below 250 ng/dl (8.67 nmol/L SI units), older, 
hypogonadal men (average age 69 years) with no history of 
depression had a higher incidence of a depressive episode 
(by ICD-9 diagnosis) and a more rapid onset of depression 
[adjusted HR = 2.1, p = 0.002] over a two-year period com-
pared to eugonadal men [28]. Increasing age and a higher 
number of co-morbid medical disorders were important fac-
tors [28].

In 2006, a Canadian study reported that total and bioavail-
able testosterone were significantly lower in middle-aged 
depressed men (40–65 years) who had considerably higher 
BDI and Hamilton depression scores than  men enrolled 
in the Rancho Bernardo Study [29]. Furthermore, using a 
logistic regression, this study found that high depression 
scores were present in 61% of men with hypogonadism 
compared to only 14% of eugonadal men [29]. The cross-
sectional Health in Men Study (HIMS) in Australia reported 
that the risk of depression increased threefold in men with 
free testosterone level below 60 pg/ml compared to men with 
a free testosterone level above 100 pg/ml [30]. These find-
ings emphasize that the degree of testosterone deficiency is 
important. Likewise, in an adjusted linear regression analy-
sis, the prospective Longitudinal Aging Study Amsterdam 
observed greater depressive symptoms in men with the low-
est quartile of calculated free testosterone compared to men 
in the highest free testosterone quartile [31]. Furthermore, 
there was  twofold increase in the development of depression 
[HR = 1.989] in men with free testosterone in the hypogo-
nadal range (< 220 pmol/L SI units; < 63.4 pg/ml) over a 
ten-year follow-up period [31].

In 2016, the Health in Men Study  provided further sup-
port for the association of hypogonadism and depression 
by finding that total testosterone levels below 6.41 nmol/L 
(185 ng/dl) predicted a high risk of developing incident 
depression in older men (71–88 years) over a ten-year 
period after adjusting for age, cardiovascular disorders, 
and diabetes [HR = 1.86] [32]. Men with normal total tes-
tosterone levels had a considerably longer depression-free 
survival period [32]. This study also reported that low 
levels of dihydrotestosterone, estradiol, and free testoster-
one (calculated) did not confer risk for developing inci-
dent depression. In addition to being a prospective study, 
another strength of the HIMS study was measuring total 
testosterone levels using LC–MS/MS mass spectrometry, 
which is a critical methodology for accurately measuring   

hypogonadal testosterone levels [32]. Importantly, a recent 
investigation of 169,886 male participants (40–69 years) 
without a history of depression in the prospective UK 
Biobank study also found men with hypogonadal total tes-
tosterone levels (< 6 nmol/L) had a higher five-year inci-
dence of major depressive episode [adjusted OR = 1.60] 
[33]. The association of major depressive disorder inci-
dence with testosterone levels in the hypogonadal range 
had the largest effect size among the 57 laboratory tests 
analyzed in the UK Biobank.

2.4  Hypogonadotropic hypogonadism 
and depression

A previous study found that young men with congenital 
hypogonadotropic hypogonadism due to a GnRH defi-
ciency who had very low testosterone levels (78 ng/dl; 
2.70 nmol/L SI units) compared to normal controls (483 ng/
dl; 16.74 mmol/L SI units) exhibited a high incidence of 
depression [34]. When hypogonadotropic hypogonadal men 
were treated with testosterone replacement therapy, their 
Beck depression score decreased by 90% and was similar to 
normal male controls [34].

2.5  Meta‑analyses of testosterone levels 
and depression

An earlier meta-analysis of five studies found a significant 
association of total testosterone levels in the hypogonadal 
range with Hamilton depression (HAM-D) scores [Z = -3.84; 
p = 0.0001] [35]. A recent meta-analysis of seven studies 
involving 1,452 men with mean ages ranging from 36 to 
74 years demonstrated that low testosterone levels were 
significantly associated with major depressive disorder 
[Z = -2.53; p = 0.012] [36]. These meta-analyses further 
strengthen the concept that clinical hypogonadism confers 
a high risk for depression in men.

3  Hypothalamic‑pituitary–gonadal axis 
in depression

3.1  Regulation of the hypothalamic‑pituitary–
gonadal axis

Dysregulation of the hypothalamic-pituitary–gonadal (HPG) axis 
has been observed in patients with major depressive episodes. 
Androgen regulation of the hypothalamic-pituitary–gonadal 
(HPG) axis is critical for homeostatic regulation of synthesis 
and secretion of testosterone and the most potent androgen dihy-
drotestosterone (DHT) by the testis (Fig. 1). Because circulating 
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levels of gonadotropins do not change when pituitary androgen 
receptors are knocked out in transgenic mice, gonadotrophs in 
the anterior pituitary do not appear to be a site for testosterone 
negative feedback [37]. Increasing testosterone levels have been 
found to inhibit hypothalamic GnRH release via classical nega-
tive feedback thereby reducing anterior pituitary secretion of LH 
and FSH and their stimulation of testosterone steroidogenesis 
[38]. After research indicated GnRH neurons do not express 
androgen receptors, kisspeptin and its G protein-coupled recep-
tor KISS1R were discovered as important regulators of GnRH 
neurons [39]. Testosterone feedback without interacting directly 
with GnRH neurons targets AR-expressing kisspeptin neurons in 
the arcuate nucleus of the hypothalamus to negatively regulate 
pulsatile GnRH release and the HPG axis [38, 40].

In addition to regulating the HPG axis via kisspeptin sign-
aling, testosterone also regulates kisspeptin neurons in the 
amygdala and hippocampus [39]. Interestingly, kisspeptin 
has been found to have an antidepressant action possibly by 
modulating brain serotonergic neurons [41]. Considering that 
the brain serotonergic neuronal system has a critical role in 
depression and antidepressant treatment, the interaction of 
testosterone and kisspeptin neurotransmission may have 
an unrecognized role in major depressive disorder. Other 
research has shown that testosterone may exert an antidepres-
sant action by activating androgen receptor MAPK-ERK2 
signaling in the hippocampus [12].

3.2  Dysregulation of the hypothalamic‑pituitary–
gonadal axis and depression

In a circadian study, daytime and nocturnal total testosterone 
levels and the 24-h mean testosterone secretion were signifi-
cantly lower in men with severe major depressive episodes 
based on high Hamilton scores and high 24-h mean cortisol 
secretion [42]. The role of hypothalamic–pituitary–adrenal 
hypersecretion observed in severe major depressive episodes 
and the well-known ability of high cortisol to suppress the 
hypothalamic-pituitary–gonadal axis in the relationship of 
testosterone and depression requires further investigation.

Subsequent neuroendocrine research including meta-
analyses  have found that basal testosterone levels and 24-h 
testosterone secretion are abnormally low in men with major 
depressive episodes [25, 36, 43]. Basal secretion of LH and 
FSH, LH pulse frequency, and GnRH-stimulation gonad-
otropin secretion by the anterior pituitary are not altered 
in major depressive disorder indicating that anterior pitui-
tary gonadotropin dysregulation may not contribute to low 
testosterone levels [36, 43, 44]. A recent meta-analysis of 
hypothalamic-pituitary–gonadal dysregulation in depression 
raised the caveat that new LH and FSH assays with greater 
sensitivity and improved quality control should be used to 
reassess the role of gonadotropin secretion  in depression.

4  Androgen deprivation therapy 
and depression

4.1  Androgen deprivation therapy and testosterone 
levels

Androgen deprivation therapy (ADT) is the first line treat-
ment for advanced, metastatic, and recurrent prostate cancer 
due to its ability to dramatically reduce circulating testoster-
one. ADT involves treatment with a gonadotrophin-releasing 
hormone (GnRH) superagonist to desensitize and downregu-
late pituitary GnRH receptors, thereby depleting testosterone 
[45, 46]. The result is a profound reduction in circulating 
levels of testosterone and dihydrotestosterone, by up to 97% 
without any change in SHBG. Importantly, ADT produces 
a more severe testosterone deficiency decreasing circulating 
testosterone to castration levels below 20 ng/dl (0.69 nmol/L 
SI units), in contrast to the considerably smaller reduc-
tion in testosterone levels defining clinical hypogonadism 
(< 280–300 ng/dl; < 9.7–10.4 nmol/L SI units) [45, 46]. 
ADT decreases to a lesser extent (~ 40%) the secretion of 
adrenocortical androgens DHEA, its sulfate metabolite 
DHEA-S, and androstenedione, which is regulated by ACTH 
[45] (Fig. 1). ADT results in many adverse physiological 
effects, far more frequent and intense than occurring in clini-
cal hypogonadism, which includes severe fatigue, increased 
adiposity and obesity, dyslipidemia, insulin resistance, car-
diovascular dysregulation, sarcopenia, osteoporosis and 
fractures, sexual dysfunction, and increased inflammation 
[47, 48]. These systemic changes can lead to coronary artery 
disease, type 2 diabetes, and dyslipidemia, and increase the 
risk of developing depression [49–51].

4.2  Studies of androgen deprivation therapy 
and depression

The rate of depression is significantly higher in men with 
prostate cancer compared to cancer-free men [52]. Treatment 
of prostate cancer with radical prostatectomy or radiation 
therapy has also been associated with depression [52, 53]. 
However, androgen deprivation therapy has been shown to 
have a substantially stronger  induction of depression. The 
association of androgen deprivation therapy and depression 
represents the most extensively studied psychiatric outcome 
variable due to its detrimental impact on survivorship [49, 51]. 
Androgen deprivation therapy has been reported to provoke 
depressive symptoms and increase the incidence of major 
depressive episodes in many but not all studies. Since 2000, 
several small, cross-sectional studies have reported that ADT 
treatment for 3 to 12 months is associated with significant 
increases in self-reported depression compared to men with 
prostate cancer without ADT or healthy controls [50, 54–61]. 
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One early study reported the prevalence of major depressive 
disorder based on DSM-4 criteria in older men (> 65 years) 
treated with ADT was 12.8%, which was eightfold higher 
than the national prevalence rate in men at the same age not 
receiving ADT [59]. In an Asian cohort, the rate of incident 
depression over a three-year period was 13.9% in men with 
prostate cancer treated with ADT who had no prior diagnosis 
of a depressive disorder [62]. Using a Cox proportional hazard 
regression analysis, this study reported the risk for depression 
was significantly higher for ADT compared to no treatment 
with ADT [adjusted HR = 1.93; p = 0.041]. Other small, cross-
sectional prostate cancer studies, however, have found no sta-
tistical difference in self-reported depressive symptomatology 
between ADT-treated men compared to men not receiving 
ADT [50, 57, 63, 64]. The inconsistent findings on the effect 
of ADT on mood  may have resulted from the cross-section 
design, insufficient statistical control of variables and biases, 
lack of statistical power, and other methodological limitations.

Recently, however, three studies with large sample sizes 
and statistical control of variables have shown a strong asso-
ciation of ADT with a depression diagnosis. A retrospective, 
observational cohort study (N = 79,930) using the electronic 
medical record of the Department of Veterans Affairs Health-
care System found that ADT significantly increases the risk 
for developing a depressive episode over a ten-year period 
[SHR = 1.50; p < 0.001] using a multivariate competing risks 
regression model [65]. Using an adjusted Cox proportional 
hazards analysis and propensity matching and controlling for 
a past diagnosis of depression, a research group at the Harvard 
Medical School detected increased risks of new onset depres-
sion [AHR = 1.23; p < 0.001] and psychiatric hospitalization 
[AHR = 1.29; p < 0.001] from androgen deprivation therapy for 
6 to 36 months compared to no ADT treatment in men with 
prostate cancer older than 65 [N = 78,552] from the National 
Cancer Institute’s Surveillance, Epidemiology, and End Results 
(SEER)-Medicare-linked database [66]. This study uniquely 
investigated the time-dependence for adverse effects of ADT on 
mood demonstrating a dose–response relationship of ADT dura-
tion and depression. They also found progressive increases in the 
cumulative incidence of depression [AHR = 1.37; p < 0.001] and 
risk of inpatient psychiatric treatment [AHR = 1.47; p < 0.001] 
with prolonged ADT treatment for 1.0 to 2.5 years. This find-
ing provided evidence for the heightened risk of developing a 
depressive episode with prolonged ADT treatment [66].

An earlier population-based analysis of the SEER-Medicare 
database also reported a significantly increased incidence of 
a depressive disorders in men with prostate cancer after ADT 
compared to men with prostate cancer not receiving ADT and 
men without cancer [67]. The observed depressogenic effect 
of ADT was reduced, however, after adjustment of the Cox 
proportional hazards regression for a diagnosis of a depres-
sive disorder 12 months before the prostate cancer diagnosis 
or study entry in addition to other variables including age, 

ancestry, tumor grade/staging, medical comorbidity, and 
treatment (radical prostatectomy or radiation therapy) [67]. 
The findings of these two studies indicate that men with pros-
tate cancer and a history of depression are especially vulner-
able to the depressogenic effect of ADT. In 2021, the role of 
ADT in depression was assessed  in a new study  of younger 
men (aged 40–64 years) with nonmetastatic prostate can-
cer with and without ADT using the TRICARE insurance 
data and controlling for a past diagnosis of depression [66, 
68]. Kaplan–Meier analyses detected that an increasing risk 
of new onset depression from ADT over a six-year period, 
while a Cox proportional hazards regression analysis found 
that ADT was associated with an increased risk of new-onset 
depression [AHR = 2.07; p < 0.001] [68]. Again, there was a 
dose–response positive relationship between the duration of 
ADT treatment and the risk for depression [68].

4.3  Meta‑analyses of androgen deprivation therapy 
and depression

There have been two meta-analyses strongly supporting the 
relationship of androgen deprivation therapy with depres-
sion. In 2017, a meta-analysis that identified 18 independent 
studies with a total of 168,756 men with prostate cancer con-
firmed that ADT significantly increases the risk of depression 
by 41% [RR = 1.41; p < 0.001] using a random effects model 
[57]. The significant association of ADT with depression held 
when the meta-analysis was restricted to studies of localized 
prostate cancer or a clinical diagnosis of a depressive disorder 
rather than a depressive inventory by a physician or patient 
self-report. Continuous ADT did not confer an increased 
depression risk compared to intermittent ADT [57]. In 2020, 
another meta-analysis across six studies also confirmed that 
ADT significantly increases the risk of depression [HR = 1.51, 
p < 0.0002] [51].

4.4  Androgen receptor antagonist, androgen 
synthesis inhibitor, and depression

A retrospective study using a large male cohort with prostate 
cancer (N = 30,069) from the NCI’s SEER-Medicare-linked 
database and the Texas Cancer Registry (TCR)-Medicare-
linked database compared the cumulative incidence of depres-
sion, defined by ICD-9/10 criteria, in men who were treated 
with second generation anti-androgen treatment, which 
included the CYP17 inhibitor abiraterone and an androgen 
receptor antagonist (bicalutamide, nilutamide, flutamide, 
enzalutamide, apalutamide, darolutamide) to men treated with 
only ADT [69]. Using a multivariate Cox proportional hazards 
analysis and propensity-scored weighting, the risk of incident 
depression over a two-year period was substantially higher in 
the second-generation anti-androgen treatment group compared 
to the ADT group [HR = 2.26; p < 0.001] and the control group 
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without any treatment [HR = 2.15; p < 0.001]. In men with 
metastatic prostate cancer, second-generation anti-androgen 
treatment resulted in the highest rate of incident depression 
[69]. This important new finding indicates inhibiting androgen 
receptor signaling in brain regions regulating mood generates a 
stronger depressogenic action than inducing very low testoster-
one levels with ADT in men with prostate cancer.

5  Testosterone replacement therapy 
and depression

5.1  Testosterone trials

The Testosterone Trials consisting of seven double-blind, 
placebo-controlled trials has been the largest investiga-
tion to date of the efficacy and benefits of testosterone 
replacement therapy (TRT) in men older than 65 years 
who have developed age-related hypogonadism based 
on strict clinical criteria [15, 70–72]. In the Testosterone 
Trials cohort of hypogonadal men were characterized  as 
having two morning total testosterone levels less than 
275 ng/dl (9.53 nmol/L SI units), sexual dysfunction, 
and diminished physical functioning including low vital-
ity.  TRT was confirmed to have the following beneficial 
effects: (1) libido and sexual activity increased with a 
lesser improvement in erectile function; (2) hemoglobin 
levels increased by ~ 1.0 g/L in men with iron-deficiency 
and chronic anemias; (3) volumetric bone mineral density 
increased especially in the trabecular bone architecture 
of lumbar spine vertebrae. It is important to note that the 
Testosterone Trials found that TRT improved mood and 
decreased depressive symptoms in hypogonadal men. 
TRT, however, failed to improve cognitive function and 
increased coronary artery noncalcified plague volume in 
coronary arteries by 40  mm3/year [15, 70, 71, 73, 74]. This 
latter finding was not associated with a greater prevalence 
of cardiovascular events.

5.2  Testosterone treatment and depression

The mood effect of testosterone treatment has been exten-
sively investigated and meta-analyzed in eugonadal and 
hypogonadal men with depressive symptoms or major 
depressive disorder with inconclusive results [20, 26, 
35, 50, 75–79]. Three early interventional studies of 
TRT using testosterone gel or intramuscular testosterone 
undecanoate in men with hypogonadism based on mean 
total testosterone levels ranging from 230 to 300 ng/dl 
(7.97–10.40 SI units) reported a significant reduction in 
depressive symptoms [80–82]. In 2014, a meta-analysis 

of six studies of testosterone treatment in eugonadal and 
hypogonadal men, including the above three studies, con-
cluded that TRT improved mood and decreased depressive 
symptoms in men with low to hypogonadal levels of total 
testosterone [26].

Randomized, placebo-controlled clinical trials have 
evaluated the benefit of testosterone treatment in men 
with major depressive disorder. In 2003, a small RCT 
study reported that the mean Hamilton score (21.8) in 
younger men (mean age 46.9 years) with hypogonadism 
and major depressive disorder refractory to antidepres-
sant medications decreased by ~ 60% when their total 
testosterone levels were increased from 293 to 789 ng/
dl (10.16–27.36 nmol/L SI units) by TRT compared to 
placebo treatment [83]. Findings from subsequent clinical 
trials and meta-analyses, however, have  reported incon-
sistent findings with some studies showing an antidepres-
sant effect of TRT and other studies finding no benefit 
when men with major depressive disorder were treated 
with testosterone, although the effect of hypogonadal tes-
tosterone levels has not always been analyzed [20, 26, 35, 
50, 75–79]. Nevertheless, the largest random effects meta-
analysis of testosterone treatment in eugonadal or hypogo-
nadal men with depression included 27 randomized con-
trolled trials and found a significant antidepressant effect 
of TRT compared to placebo [OR = 2.30; p = 0.004] [79]. 
In addition, a dose–response relationship was observed 
with the strongest antidepressant effect occurring when 
men were treated with testosterone  doses higher than 
500 mg/week [79].

Interestingly, in two randomized, double-blind, placebo-
controlled clinical trials completed in 2009, testosterone 
treatment of men with dysthymic disorder, which is a 
milder, but persistent depressive disorder characterized by 
an early, insidious onset and a chronic course, had a stronger 
antidepressant effect [84, 85]. In the Vitality Trial of the 
Testosterone Trials, mild depressive symptoms in hypogo-
nadal men measured by the Patient Health Questionnaire 
PHQ-9 were significantly reduced by 29% (p = 0.004) by 
TRT compared to 18% decrease by placebo over a nine-
month treatment period [86]. Furthermore, meta-analyses 
have shown that TRT has a more consistent antidepressant 
effect in men with less severe, subclinical depression [20, 
75, 78, 79, 87].  The TRAVERSE trial is now being com-
pleted to determine whether testosterone replacement ther-
apy provides significant benefit in clinical disorders includ-
ing depression. At present, however, the Testosterone Trials 
and other studies have only found that TRT can be beneficial 
in men with dysthymic disorder or subsyndrome depression 
that does not meet criteria for major depressive syndrome. 
These findings suggest that hypogonadal levels of testoster-
one dysregulate mood and induce depressive symptoms that 
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can be ameliorated by testosterone treatment, but TRT is 
unlikely to be an antidepressant treatment for major depres-
sive disorder.

6  Androgen receptor regulation 
and depression

6.1  Molecular biology of androgen receptor 
structure

These ubiquitous actions of testosterone and dihydrotestos-
terone (DHT), the most potent androgen, are signaled by 
the androgen receptor, AR, (NC-IUPHAR nomenclature: 
NR3C4), which is a member of the superfamily of nuclear 
steroid hormone receptors and encoded by the AR gene on 
the long arm of the X chromosome at Xq11-12. The andro-
gen receptor protein consists of a transcriptional regula-
tion domain at the N-terminus that activates or represses 
target genes, the highly conserved DNA binding domain 
with two zinc fingers that bind promoter or enhancer 
DNA consensus sequences of target genes, a small hinge 
region, and a ligand binding domain at the C-terminus [88, 
89]. Testosterone and DHT binding to the ligand bind-
ing domain stimulates the androgen receptor protein to 
assume an active conformation. Testosterone binds to the 
androgen receptor with a low nanomolar affinity, while 
the stronger biological action of DHT is mediated by its 
two-fold higher affinity and five-fold lower rate of disso-
ciation from the AR compared to testosterone. Androgen 
receptor signaling exerts important biological actions in 
the testis, prostate, bone, skeletal muscle, heart, vascular 
smooth muscle, kidney, pulmonary epithelial cells, bone, 
adipose tissue, and the central nervous system [89, 90]. In 
the central nervous system, androgen receptors are highly 
expressed in the arcuate nucleus and other medial basal 
region of the hypothalamus, the bed nucleus of the stria 
terminalis and amygdala in limbic pathway, the hippocam-
pus, and the temporal lobe, which are brain regions regu-
lating mood and cognitive function [91, 92]. Androgen 
receptor expression has been found to be decreased by 
2.7-fold in hypothalamus of men with major depressive 
disorder compared to male controls [93].

6.2  Canonical and non‑canonical androgen 
receptor signaling

Prior to ligand activation, the androgen receptor is seques-
tered in the cytoplasm where AR is stabilized by heat 
shock proteins and associated with cytoskeletal proteins 
and other chaperones [88, 89, 94]. After binding testoster-
one or DHT, the cytosolic androgen receptor  assumes an 

active confirmation, dissociates from these cytoplasmic 
proteins, and translocates to the nucleus where the acti-
vated AR dimerizes and functions as a ligand-dependent 
nuclear transcriptional regulator (Fig. 1). The AR then 
binds to androgen response elements on androgen target 
genes to activate or repress their expression [88–90]. AR 
transcriptional regulation is modulated by co-regulators 
that bind to activated androgen receptors in a ligand-
dependent manner to co-activate or co-repress target 
genes. AR regulation of gene transcription also involves 
recruitment of transcriptional factors, remodeling of chro-
matin, and modification of histones.

In addition to the slower genomic actions of the cyto-
solic AR after translocating to the nucleus, androgen 
receptors expressed on the cell surface have rapid, non-
genomic actions by signaling via downstream calcium, 
Akt, MAPK-ERK kinase, and protein kinase pathways 
(Fig. 1), which can regulate synaptic plasticity and have 
other brain actions [88, 94, 95]. The non-canonical actions 
of membrane androgen receptors may be coordinated with 
the canonical actions of androgen receptors in the nucleus. 
Membrane androgen receptor signaling via non-canonical 
cascades may be especially important in brain neurons 
and relevant to antidepressant actions of testosterone by 
promote cell survival, neurogenesis, synaptic density, and 
synaptic remodeling in the hippocampus, prefrontal cortex, 
and other brain regions [96].

6.3  Androgen receptor genetics and depression

Missense mutations in the AR ligand binding result in com-
plete or partial androgen insensitivity syndrome, although 
mutations in the N-terminal domain encoded by exon 1 
have recently been shown to induce resistance to androgen 
actions [97]. The androgen insensitivity syndrome is the 
most common genetically driven sex developmental abnor-
mality characterized by a female phenotype in a genetically 
male 46, XY individual and has reported to increase the 
risk for depression and be associated with a 36% incidence 
of depression [98].

Androgen receptor affinity and expression can also be 
genetically regulated by trinucleotide CAG repeat sequences 
in exon 1 that vary in length from 9 to 36 repeats [99, 100]. 
Shorter CAG repeat lengths confer higher affinity and sen-
sitivity of the androgen receptor to testosterone and DHT 
while longer CAG repeat lengths render the androgen recep-
tor less sensitive to androgens [99, 100]. In men, CAG repeat 
length is normally distributed with an average of 22 repeats 
and has been shown to be identical in peripheral leukocytes 
and brain regions regulating mood and cognitive function 
[101]. Variation in the AR gene has been associated with 
male reproductive function, cardiovascular health, prostate 
cancer, bone density, muscle mass, level of testosterone, and 
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rate of change in testosterone with increasing age [99, 100, 
102].

An androgen receptor with higher affinity and sensitiv-
ity for testosterone due to shorter CAG repeat length in the 
presence of low testosterone levels has been associated 
with depression in men with European or African ancestry 
[103–105].   However, a study using a logistic regression 
analysis with stratification for AR CAG repeat length found 
that the risk for depression was significantly lower in men 
with a highly sensitive androgen receptor due to short CAG 
repeats if their testosterone levels were high [103]. This 
latter finding suggests that men with an androgen receptor 
having higher sensitivity and transcription activity due to 
shorter CAG repeats is more strongly impacted by higher 
testosterone levels and will be more responsive to testoster-
one replacement therapy. The androgen receptor  may not 
have important roles in the susceptibility to depression or 
the positive response to TRT if the androgen receptor has 
less sensitivity to testosterone due to longer CAG repeats 
[104, 106–108].

7  Neuronal and molecular mechanisms 
mediating testosterone and depression

Functional neuroimaging studies (fMRI and PET) have 
found that testosterone can regulate cerebral blood flow 
and neuronal activity in the amygdala, hippocampus, and 
frontal and temporal cortex [109–111]. Testosterone can 
also promote synaptic plasticity and synaptic remodeling in 
limbic brain neurons expressing the androgen receptor and 
regulating mood [112–114]. Testosterone activated androgen 
receptor signaling in the hippocampus has been shown to 
upregulate neurogenesis, which may promote antidepressant 
responses in depression [115].

In preclinical research, androgen receptor signaling in brain 
regions regulating mood   has been reported to have anti-stress 
and antidepressant effects [12]. Orchiectomy abolishes this 
antidepressant action of testosterone-activated brain AR sign-
aling, while a transgenic mouse with a deletion of the andro-
gen receptor gene has been  shown to develop depressive-like 
behavior in response to chronic stress compared to wild-type 
controls [12, 116].  Other research has found that testosterone 
promotes an antidepressant response by activating androgen 
receptor signaling via the MAPK-ERK2 cascade in the hip-
pocampus [12, 117].

Deficient serotonergic neurotransmission and reduced 
serotonin 5-HT1A and 5-HT1B receptor signaling has an 
important role in the pathophysiology of major depressive 
disorder and form the basis of the serotonin hypothesis of 
depression [118]. Increasing synaptic levels of serotonin 

with selective serotonin reuptake in inhibitors contributes to 
antidepressant responses in depression [118]. Testosterone 
treatment upregulates serotonin transporter expression and 
increases the firing rate of serotonergic dorsal raphe neurons 
[119, 120] which has been proposed to promote an anti-
depressant action. Using PET imaging, a recent study has 
reported that testosterone regulates hippocampal serotonin 
5-HT4 receptors and increases brain serotonergic  function 
[121]. Testosterone can also regulate monoamine oxidase 
and catechol-o-methyl transferase in amygdala, hippocam-
pus, and other limbic brain areas involved in depression and 
mediating antidepressant responses [12, 122, 123].

8  Summary, conclusions, and future 
directions

Current findings indicate that low circulating levels of total 
testosterone meeting stringent clinical criteria for hypog-
onadism and testosterone deficiency induced by androgen 
deprivation therapy are associated with increased risk for 
depression and current depressive symptoms. Furthermore, 
the Testosterone Trials and other studies have  reported that 
testosterone replacement therapy  may only be beneficial in 
men with dysthymic disorder or subsyndromal depression 
that does not meet criteria for major depressive syndrome. 
These findings suggest that hypogonadal levels of testos-
terone can dysregulate mood and induce depressive symp-
toms. The studies reviewed here also suggest that a substan-
tial deficiency in testosterone can cause a depressive-like 
state that can  respond to TRT. At present, there is no clinical 
justification to use TRT as an antidepressant treatment for 
major depressive disorder. Therefore, the benefits of testos-
terone replacement therapy on major depressive disorder in 
men with clinically defined hypogonadism remains uncer-
tain and will hopefully be elucidated by the TRAVERSE 
Trial and other ongoing research.

Important considerations are that major depressive 
disorder is a clinically heterogeneous phenotype with 
depressed individuals differing in inherited polygenic deter-
minants, onset and clinical course, symptom complexes, 
and comorbidities that contribute to potential multifacto-
rial differences in pathophysiology. Furthermore, polygenic 
mechanisms are likely to be critical to the biological het-
erogeneity that influences testosterone-depression interac-
tions. A recent study has identified certain regulatory vari-
ants linked to genetic risk for major depressive disorder in 
a GWAS, which include hippocampal transcription factors 
enriched for ZMIZ1, a zinc finger co-activator that increases 
ligand-dependent transcription of the androgen receptor 
and promotes androgen receptor sumoylation required for 
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androgen receptor function [124]. Research on male twins 
has provided heritability estimates of 57–58% for total 
testosterone [125, 126]. Genome-wide association studies 
(GWAS) from the UK Biobank and other large cohorts have 
identified the SNP-based heritability for total testosterone 
to be ~ 20% and free testosterone to be ~ 15% [21–23, 127]. 
Recent GWAS research has identified significant associa-
tions of GCKR, BAIAP2L1, JMJD1C, FKBP4, SERPINA1, 
SHBG, FAM9B, and other gene variants with total testos-
terone levels [21–23, 127] (Fig. 2). Polygenic scores derived 
from testosterone GWAS data predict testosterone levels 
and their association with important phenotypes and clini-
cal disorders. As mentioned earlier, a recent investigation of 
169,886 male participants (40–69 years) without a history 
of depression in the prospective UK Biobank study reported 
that hypogonadal men with very low total testosterone lev-
els (< 6.0 nmol/L; 173 ng/dl) had high incidence of devel-
oping a major depressive episode over a five-year period 
[adjusted OR = 1.60] [33]. The association of major depres-
sive disorder incidence with testosterone levels in the severe 
hypogonadal range had the largest effect size among the 
57 laboratory tests analyzed in the UK Biobank. Using the 
UK Biobank genetic database, Mendelian randomization 
analyses found a beneficial, protective effect of genetically 
predicted, lifelong free testosterone on depression in men 
[22]. A genetically informed precision medicine approach 
using genes regulating testosterone levels and androgen 
receptor sensitivity will likely provide critical insight into 
the role of testosterone in depression.
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