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Abstract
Periconceptional maternal obesity is linked to adverse maternal and neonatal outcomes. Identifying periconceptional bio-
markers of pathways affected by maternal obesity can unravel pathophysiologic mechanisms and identify individuals at 
risk of adverse clinical outcomes. The literature was systematically reviewed to identify periconceptional biomarkers of the  
endocrine, inflammatory and one-carbon metabolic pathways influenced by maternal obesity. A search was conducted in  
Embase, Ovid Medline All, Web of Science Core Collection and Cochrane Central Register of Controlled Trials databases, com-
plemented by manual search in PubMed until December 31st, 2020. Eligible studies were those that measured biomarker(s) in  
relation to maternal obesity, overweight/obesity or body mass index (BMI) during the periconceptional period (14 weeks 
preconception until 14 weeks post conception). The ErasmusAGE score was used to assess the quality of included studies. 
Fifty-one articles were included that evaluated over 40 biomarkers. Endocrine biomarkers associated with maternal obesity 
included leptin, insulin, thyroid stimulating hormone, adiponectin, progesterone, free T4 and human chorionic gonadotro-
pin. C-reactive protein was associated with obesity as part of the inflammatory pathway, while the associated one-carbon 
metabolism biomarkers were folate and vitamin B12. BMI was positively associated with leptin, C-reactive protein and 
insulin resistance, and negatively associated with Free T4, progesterone and human chorionic gonadotropin. Concerning 
the remaining studied biomarkers, strong conclusions could not be established due to limited or contradictory data. Future 
research should focus on determining the predictive value of the optimal set of biomarkers for their use in clinical settings. 
The most promising biomarkers include leptin, adiponectin, human chorionic gonadotropin, insulin, progesterone and CRP.
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1  Introduction

The global prevalence of obesity almost tripled since 1975, 
affecting 15% of adult women worldwide [World Health 
Organization (WHO) 2016] [1]. The rise in this epidemic 
is alarming for its association with increased reproductive 
and pregnancy complications [2, 3]. These complications 
can originate during the periconceptional period (defined 
as the period from 14 weeks prior to, until 10 weeks follow-
ing, conception) during which gametogenesis, fertilization, 
implantation, embryogenesis and placentation take place [4, 
5]. From a life-course perspective, maternal obesity impacts 
the health of the woman and her offspring commencing from 
the periconceptional period, with the effects persisting into 
adulthood [4, 6].

Maternal obesity leads to impaired oogenesis, infertility 
and anovulation [7–10]. In utero, maternal obesity is linked 
to production of blastocysts with fewer cells, accelerated 
preimplantation embryonic development, decreased post-
implantation embryonic and fetal growth trajectories, and 
impaired fetal cardiac function [11–16]. Furthermore, obe-
sity continues to pose risks throughout pregnancy such as 
that for miscarriage, gestational diabetes mellitus (GDM), 
preeclampsia and delivery complications [17–19]. This, 
in turn, increases the risk of adverse birth outcomes, neu-
ral tube and congenital heart defects in offspring of obese 
women [20–26].

Unraveling the pathophysiologic mechanisms can aid 
in understanding the link between maternal obesity and 
adverse clinical outcomes. Obesity disrupts the endocrine 
and inflammatory pathways at both systemic and local lev-
els which leads to, or is a consequence of, perturbations 
in metabolic processes such as one-carbon metabolism [27, 
28]. The disruptions can be identified clinically using bio-
markers for early diagnosis, for detection and prevention 
of adverse clinical outcomes [29]. These biomarkers could 

potentially be used as screening tools to identify population 
at risk, and to predict outcomes for the mother and offspring. 
However, the applicability of these biomarkers in a clinical 
setting is limited and requires more information, particularly 
among the obese population [30]. For example, it is gener-
ally known that low folate levels increase the risk of neural 
tube defects in offspring, while first trimester inflammatory 
cytokines are associated with increased risk of preterm birth 
among obese women [31–33]. Furthermore, endocrine and 
inflammatory pathways are involved in the manifestation of 
obesity-related pregnancy complications such as GDM and 
preeclampsia [34–37].

Identification of biomarkers of the endocrine, inflamma-
tory and one-carbon metabolic pathways affected by mater-
nal obesity during the periconceptional period can aid in 
our understanding of the pathophysiologic basis of adverse 
clinical outcomes to be used as an early detection marker of 
patients at risk [4]. Therefore, the aim of this review is to 
identify how maternal obesity impacts the different types of 
biomarkers of the endocrine, inflammatory and one-carbon 
metabolic pathways during the periconceptional period.

2 � Methods

2.1 � Sources

A literature search was performed by a biomedical infor-
mation specialist (W.B.) specialized in systematic reviews 
using the databases of Embase, Ovid Medline All, Web of 
Science Core Collection and Cochrane Central Register of 
Controlled Trials until December 31st, 2020. The keywords 
used for the search strategy included but were not limited to: 
obesity, maternal obesity, pregnancy, preconception, peri-
conception, first trimester, biomarker, endocrinology, leptin, 
inflammation, carbon metabolism (Table S1). The Boolean 
operators used for the search outcome were “AND”, “OR” 
and “NEAR”. In addition, the database of PubMed was man-
ually searched to identify relevant articles. The review was 
structured in accordance to the Preferred Reporting Items for 
Systematic Review and Meta-Analyses (PRISMA) guide-
lines. A protocol of this systematic review was designed and 
registered under the PROSPERO international prospective 
registry of systematic reviews (2020: CRD42021240883).

2.2 � Eligibility

All types of observational human studies that associated 
maternal obesity with a certain biomarker measured dur-
ing the periconceptional period were eligible for inclusion. 
Biomarkers of the endocrine, inflammatory and one-carbon 
metabolic pathways were all considered, with no limitation 
on the source of samples. In addition, eligible studies had 
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to include biomarkers studied in population with obesity 
or overweight/obesity, or in relation to BMI. Inclusion and 
exclusion criteria for this systematic review are shown in 
Table 1.

Since the aim of this systematic review was to encompass 
the periconceptional period and the first trimester of preg-
nancy, articles with a time frame spanning 14 weeks precon-
ception up and until 14 weeks of gestation were considered 
eligible (we extended the post-conception period from 10 to 
14 weeks to include the first trimester of pregnancy).

2.3 � Selection strategy

An abstract – title evaluation was performed by two inde-
pendent reviewers (B.H. and S.S.) on all publications from 
the search. When both reviewers did not agree on the inclu-
sion of certain articles, a third reviewer (M.R.) repeated the 
evaluation of the articles for a final decision.

Thereafter, a full text review and data extraction was 
performed for the selected publications. Data extrac-
tion included year of publication, country, study design, 
detailed sample size, age, BMI, biomarker, biomarker class, 
gestational age when biomarker and BMI were assessed, 

biomarker source, statistical analysis and adjustments, 
results and conclusion.

The systematic review comprised the population of obese 
women with different fertility status. Obesity was classified 
based on criteria indicated by the authors of each study, or 
according to the WHO classification of BMI ≥ 30 kg/m2 
when no criteria were mentioned. Studies including out-
comes related to BMI or combined overweight/obesity were 
included if the population included obese women identified 
from the population BMI of  ≥ 30 kg/m2 or if the authors 
indicated N number of obese women, though not studied 
separately.

2.4 � Quality score assessment and risk of bias

The ErasmusAGE score was used to assess the quality of 
studies included in the systematic review (Table S2) [38]. 
This tool is based on previously published scoring systems 
and is applicable for intervention and observational studies, 
as well as for systematic reviews and meta-analysis [38]. 
The quality score is based on 5 items covering the study 
design and size, exposure and outcome, and adjustments. 
The parameters for these items were adapted, based on the 

Table 1   Inclusion and exclusion criteria

Criteria Inclusion Exclusion Reason for exclusion

Study design - Observational - Intervention The systematic review is not focused 
on the impact of intervention on 
biomarker level

Publication type - Research papers published in full text - Non-English papers
- No full text available
- Reviews
- Case reports
- Abstracts

Not relevant

Population - Women - Men
- Animal studies

The systematic review comprises the 
female population

Period - Fourteen weeks preconception period
- First trimester of pregnancy

- Pregnant women in second and third 
trimester of pregnancy

- Pregnant women with unreported 
gestational age

- Non-pregnant women at any age but not 
in the 14 weeks preconception period

The time frame of the systematic review 
encompasses the periconceptional 
period and additional part of the first 
trimester of pregnancy

Indication - Population includes obese women - Population does not include obese 
women

- Women with identified pregnancy 
related complications

- Women with polycystic ovary syndrome
- Women with identified acute and 

chronic diseases

Population does not include a group of 
obese or healthy obese women

Outcome - Endocrine, inflammatory, and one-
carbon metabolism biomarkers

- No biomarker measured
- No obesity related biomarker outcome
- Biomarkers not related to the Endocrine, 

inflammatory, and one-carbon metabolic 
pathways

The systematic review is focused on the 
biomarkers of endocrine, inflammatory, 
and one-carbon metabolic pathways
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literature and discussion with other researchers, as relevant 
for the review. The allocated scores for each item were: study 
design (0 = cross-sectional study, 1 = longitudinal study, 
2 = intervention study), study size N (small: 0 =  < 100, inter- 
mediate: 1 = 100 to 500, large: 2 =  > 500 participants), expo-
sure measurement method (0 = not reported/inadequate, 
1 = moderate quality, 2 = adequate), outcome measurement 
method (0 = not reported/inadequate, 1 = moderate quality, 
2 = adequate) and adjustments in analysis (0 = no adjust-
ments, 1 = controlled for age, 2 = controlled for additional 
confounders) (Table S2). The score ranges from 0 to 10 and 
was considered as low (ErasmusAGE score ≤ 5) or high 
(ErasmusAGE score ≥ 6) for each study.

3 � Results

3.1 � Study selection

The flowchart depicted in Fig. 1 summarizes the process 
of literature screening and study selection. The initial 
and updated electronic search of the databases resulted in 
2,102 records (including 1 identified as duplicate) and the 
manual search resulted in 19 additional records. A total of 
1,974 articles were excluded after title-abstract screening 
for the eligibility criteria, leaving 146 articles for full text 

assessment. Eventually, 51 articles were left for analysis in 
this systematic review.

3.2 � Study characteristics

Table S3 summarizes the general characteristics and Eras-
musAGE quality score of the selected studies. The included 
studies consisted of prospective (N = 28) and retrospective 
(N = 3) cohort, cross-sectional (N = 14) and case–control 
(N = 6) studies. Most studies based their obesity classifica-
tion according to WHO criteria of BMI ≥ 30 kg/m2 (N = 27), 
or BMI ≥ 25 kg/m2 based on BMI references for the Asian 
population (N = 2). Sources for biomarker sampling included 
serum, plasma, follicular fluid, placental tissue, red blood 
cells, urine and oocytes.

3.3 � Quality of studies

Details on the quality score and risk of bias assessment 
for each study are provided in Fig. 2. The quality score of 
the studies ranged between 2 to 9 (mean ErasusAGE score 
4.4 out of 10.0) (Fig. S1). Seventy-six percent of studies 
were of low quality (N = 39) and 24% were of high quality 
(N = 12). Fifty-five percent of studies had small sample size 
(N = 28), 49% did not specify the tool for anthropometrics 
screening (N = 25), 4% did not specify the analysis tool for 
biomarker measurement (N = 2), and 78% did not adjust for 

Fig. 1   PRISMA flow chart of the systematic review
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Fig. 2   Quality score assessment 
and risk of bias for all studies 
included in this systematic 
review
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confounding factors (N = 40). In studies with adjustments 
for confounding factors (N = 11), the important confound-
ers considered were maternal age (N = 11), gestational 
age (N = 7), smoking (N = 7) and gravidity/parity (N = 6). 
Other confounders were alcohol use, race/ethnicity, socio-
economic status, marital status, miscarriage, biomarkers, sex 
of newborn, day of embryo transfer, stress, nausea, weight 
gain and conception mode; where each was adjusted in one 
or two studies.

3.4 � Endocrine biomarkers

Endocrine biomarkers are considered secretions released 
into circulation from different glands in the body, interact-
ing with each other in feedback loops. These biomarkers 
are involved in regulating various body functions includ-
ing metabolism, growth, appetite and inflammation [39]. 
Tables 2 and 3 summarize associations between maternal 
obesity and the endocrine biomarkers for the preconception 
period and first trimester, respectively.

3.4.1 � Adipokines

The studied adipokines included leptin, adiponectin, visfatin 
and resistin and they were analyzed in seventeen different 
studies (cohort N = 11, cross-sectional N = 4, case–control 
N = 2) [58, 62, 65–68, 71, 74, 76–78].

Leptin  Leptin was analyzed in sixteen different studies 
(mean ErasmusAGE score 4.1 out of 10.0), three of high 
quality and thirteen of low quality.

Preconception: Higher levels of follicular fluid and serum 
leptin were observed in obese and overweight/obese women 
compared to women of normal weight in two studies [42, 
50]. Additionally, BMI was positively correlated with fol-
licular fluid leptin levels in three studies (i.e., higher levels 
of leptin with increasing BMI) [40, 45, 51].

First trimester: The levels of leptin were higher in obese 
(five studies) and overweight/obese (three studies) women 
compared to women of normal weight [58, 65, 66, 68, 71, 
74, 77, 78]. Also, BMI positively correlated with maternal 
leptin levels in five studies [35, 58, 62, 66, 76]. Furthermore, 
Fattah et al. demonstrated a positive correlation between fat 
mass and leptin levels [62].

Adiponectin  Adiponectin was analyzed in seven different 
studies of low quality (mean ErasmusAGE score 3.7 out 
of 10.0).

Preconception: No difference in follicular fluid adi-
ponectin levels was observed between obese and non-obese 
women in one study; another study reported no correlation 
with BMI [50, 51].

First trimester: Obese women exhibited lower levels of 
adiponectin compared to women of normal weight in three 
studies [65–67]. BMI was also negatively correlated with 
adiponectin levels in one study (i.e., lower levels of adi-
ponectin with increasing BMI) [66]. One study showed that 
adiponectin levels in overweight/obese women were lower 
compared to women of normal weight, while no difference 
was observed in another study [74, 77].

Visfatin and resistin  Visfatin and resistin were analyzed in 
two different studies of low quality (mean ErasmusAGE 
score 2.5 out of 10.0).

Preconception: In one study the effect of obesity and BMI 
on resistin and visfatin levels was investigated, but no differ-
ence or correlation was found [50].

First trimester: Suto et al. reported higher levels of vis-
fatin in overweight/obese women compared to women of 
normal weight, whereas no difference was observed in resis-
tin levels [77].

3.4.2 � Thyroid biomarkers

Biomarkers of the thyroid function included free T4 (FT4), 
thyroid stimulating hormone (TSH), total T4 (TT4) and thy-
roglobulin (Tg). These were analyzed in four different stud-
ies (cohort N = 2, cross-sectional N = 2) [55–57, 61].

FT4  FT4 was analyzed in four different studies of high qual-
ity (mean ErasmusAGE score 7.3 out of 10.0).

First trimester: In three different studies, FT4 levels were 
lower in obese compared to non-obese women [55–57]. In 
three further studies, BMI was negatively associated with 
FT4 levels (i.e., lower levels of FT4 with increasing BMI) 
[56, 57, 61]. Han et al. illustrated this effect by showing 
that each 1 kg/m2 increase in BMI was associated with a 
0.12 pmol/l lower FT4 levels [55].

TSH  TSH was analyzed in four different studies of high qual-
ity (mean ErasmusAGE score 7.3 out of 10.0).

First trimester: TSH levels were elevated in obese 
compared to non-obese women in three studies [56, 57]. 
Also, Han et al. showed an association between obesity 
and increased odds for higher TSH levels [55]. A positive 
association between BMI and TSH levels was shown in one 
study, whereas no association was established in two other 
studies [56, 57, 61].

Tg and TT4  First trimester: BMI was positively associated 
with Tg concentrations in one study (ErasmusAGE score 6.0 
out of 10.0), whereas lower TT4 levels were observed with 
increasing BMI class in another study (ErasmusAGE score 
8.0 out of 10.0) [56, 61].
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3.4.3 � Steroids

Steroid analyses were reported in ten studies and included 
estrogen, progesterone, androestardione, testosterone, and 
cortisol (cohort N = 6, cross-sectional N = 2, case–control 
N = 2) [41–43, 46, 48, 49, 59, 64, 67, 72].

Estrogen  Estrogen was analyzed in six different studies of 
low quality (mean ErasmusAGE score 3.3 out of 10.0).

Preconception: No difference was observed in either 
serum or follicular fluid levels of estradiol between obese 
women compared to women of normal weight in five studies, 
with an exception of a subgroup of women aged < 35 years 
that showed that lower levels were associated with obesity 
in one study [42, 43, 46, 48, 49]. Additionally, one study 
showed a negative correlation between BMI and serum 
estradiol levels [43].

First trimester: In one study, no difference was observed 
in serum estradiol and estrone levels between obese women 
compared to women of normal weight [67].

Progesterone  Progesterone was analyzed in five different 
studies (mean ErasmusAGE score 5.0 out of 10.0), one of 
high quality and four of low quality.

Preconception: In two different studies, obese women 
undergoing assisted reproductive technology (ART) treat-
ment had lower progesterone levels compared to women 
of normal weight, whereas in one study, no difference was 
observed in obese women compared to women of nor-
mal weight in natural cycle pregnancies, nor in women 
aged > 35 years [41, 43].

First trimester: Obese women had lower progesterone 
levels compared to women of normal weight in two studies 
[64, 67]. This difference was evident in the total studied 
population and in pregnancies with male fetuses; as well as 
by association between obesity and higher odds for lower 
progesterone levels [64, 67]. Also, a negative association 
was observed between BMI and progesterone levels in two 
studies [59, 64].

Androstenedione, testosterone, cortisol  Testosterone and 
androstenedione were analyzed in two different studies of 
low quality (mean ErasmusAGE score 3.5 out of 10.0), 
whereas cortisol was analyzed once (ErasmusAGE score 
4.0 out of 10.0).

Preconception: No difference in testosterone and andros-
tenedione levels was observed between obese women and 
women of normal weight in one study [48].

First trimester: One study showed that the levels of tes-
tosterone and the free androgen index were higher in obese 
women compared to women of normal weight in the total 
study population, and in pregnancies with male fetuses; 
whereas no difference was observed in androstenedione 

levels [67]. In a group of depressed and non-depressed 
women, plasma cortisol levels were negatively associated 
with fat mass and fat percentage, while no association was 
evident with BMI [72]. Further subgroup analysis showed 
that plasma cortisol levels were lower in obese compared 
to non-obese women (but only for those that were non-
depressed), and levels of cortisol associated negatively with 
BMI, fat mass and fat percentage [72].

3.4.4 � Gonadotropins

Gonadotropins were analyzed in nine different studies and 
included follicular stimulating hormone (FSH), luteinizing 
hormone (LH) and human chorionic gonadotropin (hCG) 
(cohort N = 3, cross-sectional N = 5, case–control N = 1) [42, 
43, 46–49, 52, 60, 63].

FSH and LH  FSH and LH were analyzed in four different 
studies of low quality (mean ErasmusAGE score 2.5 and 3.0 
out of 10.0, respectively).

Preconception: Apart from one study that revealed 
lower levels of serum FSH in obese compared to non-
obese women, no differences were observed in four studies 
in either serum or follicular fluid FSH levels [42, 48, 49, 
52]. Similarly, only one study with a subgroup of women 
aged < 35 years, reported lower levels of serum LH in obese 
women compared to women of normal weight, whereas no 
difference was observed in women aged > 35 years. This was 
similar to the findings of three other studies [42, 43, 48, 52]. 
Finally, in one study, BMI correlated negatively with serum 
LH levels [43].

HCG  HCG was analyzed in four different studies (mean 
ErasmusAGE score 4.3 out of 10.0), one of high and three 
of low quality.

Preconception: Lower follicular fluid hCG levels in 
obese compared to non-obese women were established in 
one study, and plasma and follicular fluid levels correlated 
negatively with BMI in two further studies [46, 47].

First trimester: Serum hCG levels were lower in obese 
compared to non-obese women, and correlated negatively 
with BMI in two studies [60, 63].

3.4.5 � Insulin

Insulin was analyzed in eleven different studies (cohort N = 9, 
case–control N = 1, cross-sectional N = 1; mean ErasmusAGE 
score 3.9 out of 10.0), predominantly of low quality (N = 10 
out of 11).

Preconception: Two studies showed that serum or fol-
licular fluid levels of insulin were higher in obese women 
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compared to women of normal weight, whereas no differ-
ence was observed in either sources in two other studies [42, 
44, 48, 50]. The increase in insulin levels was supported by 
a negative correlation between BMI and insulin sensitiv-
ity in one study, and increased insulin resistance in over-
weight/obese women compared to women of normal weight 
in another study [42, 44].

First trimester: Higher levels of insulin were observed 
in obese (four studies) and overweight/obese (one study) 
women compared to normal weight or overweight women 
[67, 69–71, 78]. HOMA-IR and HOMA2-IR scores (used to 
assess insulin resistance) were higher in obese women com-
pared to normal weight or overweight women in three stud-
ies; whereas the ISHOMA score, which assesses insulin sen-
sitivity, was lower [58, 65, 67, 70]. Also, insulin sensitivity 
decreased with increasing BMI in one study; while BMI was 
a significant explanatory factor for HOMA2-IR in another 
study [58, 70]. What is more, fat mass correlated positively 
with HOMA-IR score in one study [65]. Another study on 
insulin treated placental trophoblasts showed that, among 
obese women, genes responding to insulin (87 identified) 
were 30 times less abundant compared to women of normal 
weight (2,875 genes) [78]. Moreover, in untreated placen-
tal cells, 1,342 genes were differentially expressed between 
obese women compared to women of normal weight; with 
90% showing down regulated expression [78].

3.4.6 � Other endocrine biomarkers

Anti-Müllerian hormone (AMH), C-peptide and sex hor-
mone binding globulin (SHBG) were each analyzed in two 
different studies of low quality (mean ErasmusAGE score 
2.5, 4.5 and 3.5 out of 10.0, respectively), whereas betat-
rophin, glucagon, glucagon-like peptide-1 (GLP-1), ghre-
lin, insulin like growth factor-1 (IGF-1), and soluble leptin 
receptor (sOB-R) were analyzed only once (ErasmusAGE 
scores ≤ 5.0 out of 10).

Preconception: Serum IGF-1 and follicular fluid IGF-1, 
glucagon, GLP-1 and C-peptide were analyzed once and 
showed higher levels in obese women compared to women 
of normal weight [44, 50]. One other study reported lower 
serum SHBG levels in obese women compared to women of 
normal weight [48]. AMH, proAMH and ghrelin were each 
analyzed once and showed no difference between obese and 
non-obese women [48, 50].

First trimester: One study analyzed AMH and reported 
a negative correlation with BMI and waist circumference 
[75]. Also, levels of sOB-R and betatrophin were each 
lower in obese and overweight/obese women compared to 
women of normal weight, respectively [65, 73]. In contrast, 
obese women had higher levels of C-peptide compared to 
women of normal weight in one study [58]. No difference 

was observed in SHBG levels between obese women and 
women of normal weight in one study [67].

Highlight  Obesity alters several endocrine biomarkers 
throughout the periconceptional period. In particular, leptin 
and insulin levels are increased, whereas levels of adiponec-
tin, FT4, hCG and progesterone are decreased.

3.5 � Inflammatory biomarkers

It is widely accepted that obesity represents a state of 
chronic inflammation. The inflammatory process is a body 
defense mechanism against injury or infection triggered by 
cellular and tissue damage during which various substances 
are released into circulation. These represent inflammatory 
biomarkers. These biomarkers can be used as a measure of 
health status and disease progression. Tables 2 and 3 sum-
marize associations between maternal obesity and inflam-
matory biomarkers for the preconception period and first 
trimester, respectively.

3.5.1 � CRP

CRP was analyzed in twelve studies (cohort N = 7, case–control 
N = 3, cross-sectional N = 2; mean ErasmusAGE score 4.3 out 
of 10.0), three of high quality and nine of low quality.

Preconception: Higher levels of serum or follicular fluid 
CRP in obese and overweight/obese women, compared to 
women of normal weight, were established in three studies, 
whereas one study of overweight/obese women showed no 
difference in serum levels [42, 44, 49]. Also, a positive cor-
relation was observed between BMI and CRP levels in two 
studies, in which each 1kg/m2 increase in BMI was associ-
ated with 14% increase in follicular fluid CRP [49, 51].

First trimester: CRP was shown to be higher among obese 
women compared to lower BMI groups in five studies [70, 
79–81, 87]. However, one study reported non-significantly 
higher levels of CRP among obese women [86]. Also, BMI 
was positively correlated with serum CRP levels in five studies 
[70, 79, 81, 82, 85]. In the Bodnar et al. study, a 5 unit increase 
in BMI was associated with 46% increase in serum CRP [81].

3.5.2 � Interleukins (ILs)

The ILs were analyzed in nine studies of low quality and 
included IL-2, IL-4, IL-6, IL-8, IL-10, IL-18, IL-33, IL-1α 
and IL-1β (cohort N = 4, cross-sectional N = 3, case–control 
N = 2; mean ErasmusAGE 2.8 out of 10.0).

Preconception: Higher levels of follicular fluid IL-6 were 
observed in obese women compared to lower BMI groups in 
one study; whereas no difference was reported in the serum 
levels in two other studies [42, 49, 54]. BMI positively cor-
related with serum IL-18 levels in one study [53]. However, 
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no effect of obesity was found on the levels of serum IL-1α, 
IL-1β, IL-2, IL-4, IL-8, IL-10 and IL-18, nor follicular fluid 
levels of IL-8 and IL-18 [49, 52, 54]. Also, BMI did not cor-
relate with follicular fluid levels of IL-6, IL-10 or IL-18 in 
two studies [51, 53].

First trimester: Levels of IL-6 were higher among obese 
women compared to women of normal weight in one study 
[86]. In another study, BMI correlated negatively with IL-33 
levels [35]. No significant difference was observed in serum 
levels of IL-1β, IL-8 and IL-10 between obese women com-
pared to women of normal weight in any study [83, 86].

3.5.3 � TNF‑α

TNF-α was analyzed in five different studies of low quality 
(mean ErasmusAGE score 2.6 out of 10.0).

Preconception: No difference was observed in serum or 
follicular fluid TNF-α levels in obese and overweight/obese 
women compared to women of normal weight; and there was 
no correlation with BMI in three studies [42, 49, 51]. How-
ever, in one study, obesity class II women had higher TNF-α 
levels compared to lower BMI groups [54]. In another study, 
TNF-α levels correlated positively with fat percentage [42].

First trimester: No difference in TNF-α levels was 
observed between obese women and women of normal 
weight [86].

3.5.4 � Other inflammatory biomarkers

Monocyte chemotactic factor-1 (MCP-1) was analyzed 
in three different studies of low quality (mean Erasmus-
AGE score 3.0 out of 10.0), whereas chemokine (C–C 
motif) ligand 2 (CCL2), chemokine (C-X-C motif) ligand 3 
(CXCL3) and IL-34 genes, eotaxin, epidermal growth factor 
(EGF), fibroblast growth factor 21 (FGF21), glycoprotein 
acetylation A (GlycA), granulocyte macrophage-colony 
stimulating factor (GM-CSF), and soluble intercellular 
adhesion molecule-1 (sICAM-1) were analyzed only once 
(ErasmusAGE scores ≤ 5.0 out of 10.0).

Preconception: Ten genes involved in chemokine and 
cytokine pathways were differentially regulated between 
overweight/obese women and women of normal weight, 
with BMI correlating positively with CXCL3 and IL-34 
gene expression [42]. One study showed higher serum and 
follicular fluid MCP-1 levels in obese women compared to 
women of normal weight and a positive correlation with 
BMI, whereas no correlation between follicular fluid MCP-1 
and BMI was observed in another study [49, 51]. Serum lev-
els of CCL2 were higher in overweight/obese women com-
pared to women of normal weight, whereas no difference 
was observed in follicular fluid levels [42]. However, BMI 
correlated positively with GM-CSF levels [49]; although no 

difference was observed in the serum levels of GM-CSF, 
EGF or eotaxin between obese women compared to women 
of normal weight [49]. Also, BMI did not correlate with 
sICAM-1 levels in follicular fluid [51].

First trimester: Serum MCP-1 levels were higher by 42% 
in obese women compared to women of normal weight 
in one study [83]. Levels of GlycA were higher in obese 
women compared to overweight women and showed a posi-
tive association with BMI [70]. Also, FGF21 levels were 
positively correlated with BMI and fat mass [84].

Highlight  Obesity increases CRP levels thus exacerbating 
the inflammatory process across the periconceptional period.

3.6 � One‑carbon metabolism biomarkers

One-carbon metabolism is a sequence of interlinked meta-
bolic cycles providing one-carbon units for biosynthetic 
processes fundamental for cellular function [90]. Tables 2 
and 3 summarize associations between maternal obesity and 
one-carbon metabolism biomarkers for the preconception 
period and first trimester, respectively.

3.6.1 � Folate

Folate was analyzed in three studies (cohort N = 2, case–control 
N = 1; mean ErasmusAGE score 5.7 out of 10.0), one of high 
quality and two of low quality.

First trimester: Obese women had lower serum folate 
levels compared to women of normal weight in two studies, 
and higher odds for folate deficiency in one study, whereas 
no difference was observed in either serum or red blood 
cell (RBC) in two studies [80, 88, 89]. In one study, BMI 
negatively associated with serum folate levels whereas no 
association was observed with RBC folate [88].

3.6.2 � Vitamin B12

Vitamin B12 was analyzed in two cohorts (mean ErasmusAGE 
score 6.5 out of 10.0), one of high and one of low quality.

First trimester: Obese women had lower levels of vitamin 
B12 compared to women of normal weight in two studies, 
and they revealed higher odds for vitamin B12 deficiency 
in one study [80, 88]. Also, BMI negatively associated with 
vitamin B12 levels in one study [88].

3.6.3 � Methionine

Preconception: Methionine was analyzed in one study 
(ErasmusAGE score 2.0 out of 10.0) and showed higher 
levels in obese women compared to women of normal 
weight; and there was a positive correlation with BMI [50].
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3.6.4 � Folate transporters

First trimester: One study analyzed placental tissue 
(ErasmusAGE score 4.0 out of 10.0) and reported that 
obese women had lower mean expression of microvil-
lus plasma membrane (MVM) reduced folate carrier (by 
19%), MVM folate receptor alpha (by 17%) and methyl 
tetrahydrofolate uptake (by 52%) compared to women of 
normal weight [89]. However, no difference in expres-
sion levels were observed for MVM proton coupled folate 
transporter between obese women and women of normal 
weight [89].

Highlight  Obesity reduces folate and vitamin B12 levels in 
the first trimester of pregnancy which interferes with one-
carbon metabolic pathways.

4 � Discussion

This systematic review addressed the impact of maternal 
obesity on several biomarkers of the endocrine, inflamma-
tory and one-carbon metabolic pathways during the peri-
conceptional period, extended to cover the first trimester of 
pregnancy. Outcomes were presented as a function of obe-
sity, combined overweight/obesity or BMI. Throughout the 
periconceptional period, obesity was associated with a vari-
ety of biomarkers of the endocrine, inflammatory, as well 
as one-carbon metabolic pathways. Dysregulation in these 
three pathways, as a consequence of obesity, can lead to 
adverse maternal, fetal and offspring health outcomes. Here 
we focus on biomarkers relevant to obesity and pregnancy 
that were analyzed in multiple studies, as well as biomarkers 
from single studies of high quality based on ErasmusAGE 
scores.

4.1 � Endocrine biomarkers

4.1.1 � Adipokines

Leptin  The present review demonstrated that levels of leptin 
are elevated in obese women and correlate positively with 
BMI at both systemic and local levels throughout the peri-
conceptional period [35, 40, 42, 45, 50, 51, 62, 65, 66, 68, 
71, 74, 76–78]. The results are consistent with other studies, 
confirming the effect of obesity on increasing leptin levels 
[91, 92]. Moreover, levels of leptin in follicular fluid are also 
positively correlated with serum levels in pregnant and non-
pregnant women, suggesting a connection between serum 
and follicular fluid levels [45]. Leptin is directly secreted 
from the white adipose tissue and its levels are proportional 

to the level of adiposity [93, 94]. Circulating leptin acts on 
the brain to regulate energy homeostasis via its actions on 
satiety [95]. Leptin transport across the blood brain barrier 
is decreased and endoplasmic reticulum stress is increased in 
obese individuals, which may contribute to the development 
of leptin resistance, a pathological condition that induces 
hyperleptinemia [95]. Weight loss is associated with reduced 
adiposity, therefore decreasing leptin levels. This was dem-
onstrated by a recent meta-analysis that showed that Orlistat 
use (a weight loss drug) was effective in decreasing leptin 
levels [96].

Adiponectin  Obesity increases CRP levels and is linked 
to mitochondrial dysfunction in adipose tissue leading to 
decreased adiponectin synthesis [97–99]. Moreover, obesity 
increases the expression of caveolin-1, a major component of 
the caveolae (small membrane invaginations), which attenu-
ates leptin-dependent adiponectin secretion [100, 101]. This 
is consistent with results from the first trimester when obe-
sity was related to reduced adiponectin levels; which would 
hinder its anti-inflammatory effect [65–67, 102]. Consist-
ent with our findings, two previous studies demonstrated 
that obese women have low circulating adiponectin levels 
compared to non-obese women [103, 104]. Moreover, a 
decrease in body weight during a weight loss program was 
associated with increased serum adiponectin levels in over-
weight/obese women [105]. On the other hand, adiponectin 
concentrations in follicular fluid were not altered by obesity 
preconceptionally and were not related to serum levels. This 
suggests that regulatory mechanisms controlling adiponec-
tin concentrations are different at systemic and local levels  
[106, 107].

4.1.2 � Thyroid biomarkers

Thyroid hormones are involved in regulating body metabo-
lism, yet it is unclear whether altered thyroid function is 
a cause or consequence of obesity [108]. In this review, 
obese women exhibited reduced FT4 levels; whereas levels 
of TSH were increased during first trimester [55–57, 61]. 
Similarly, TSH and FT4 levels in pregnant women were 
influenced by maternal weight [109]. Placental secretion of 
hCG contributes to increased FT4 levels in normal pregnan-
cies whereas, in obese women, levels of hCG are decreased 
which diminishes the thyrotropic effect of hCG [110]. Sub-
sequently, low FT4 levels reduce the negative feedback of 
FT4 on TSH secretion [111]. Moreover, higher Tg antibody 
positivity and iodine deficiency, associated with obesity, 
might contribute to the lower TT4 levels reported [55, 56]. 
However, no association between BMI and TSH levels at 
a mean of 16.6 weeks gestational age was observed [113]. 
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This suggests that other factors, such as gestational age and 
iodine status, can influence the association between adipos-
ity and thyroid hormone levels.

4.1.3 � Steroids and gonadotropins

Estrogen, LH, FSH  Obesity did not alter estradiol and LH 
levels except in an Asian population of younger women [42, 
43, 46, 48, 49, 52]. Results are consistent with other studies 
demonstrating the absence of effect [114, 115]. However, 
the effect of ethnicity requires further exploration [116]. 
Because estrogen was not influenced by obesity, its effect 
on FSH may be similar to that observed in women of nor-
mal weight, which was reported in the majority of studies 
analyzing FSH [42, 48, 52, 117]. Nevertheless, Buyuk et al. 
reported lower FSH levels with no alteration in estradiol 
[49]. However, the small sample size beholds the possibility 
of bias. Also, the purpose of ART treatment is to provide 
optimal conditions for successful ovulation, which might 
explain the absence of difference in sex hormones measured 
after a short time of hormonal treatment.

Progesterone  A negative relationship between obesity 
and progesterone levels was demonstrated during the first 
trimester which can in part be explained by the effect of 
leptin on reducing progesterone secretion [59, 64, 67, 
118]. Also, lower hCG levels associated with obesity 
might contribute to low progesterone levels, as hCG sup-
ports the production of progesterone by the corpus luteum 
[119]. Lower progesterone levels were present in obese 
pregnant women with a male but not a female fetus [67]. 
Likewise, the association between progesterone levels and 
fetal steroid profile, timing of delivery and birth weight 
were also dependent on fetal sex [59, 120, 121]. During 
the preconception period, the effect of obesity on proges-
terone levels was only established in sub-fertile women 
undergoing ART treatment and in younger women, which 
suggests an additional effect of age and mode of concep-
tion on progesterone levels [41, 43].

HCG  HCG is secreted from trophoblasts, used for preg-
nancy testing and required for the maintenance of pregnancy 
[122]. During the preconception period, hCG is detectable in 
women undergoing ART or can originate from tumors [123, 
124]. The levels of hCG in the periconceptional period, as 
a result of exogenous hCG treatment or pregnancy, were 
decreased in obese women and associated negatively with 
BMI [46, 47, 60, 63]. The pathophysiology of this relation-
ship is unclear, but results are consistent with previous stud-
ies, supporting this negative relationship [125, 126]. By way 
of illustration, when obese women are injected with hCG, 
they have lower Cmax and hCG compared to women of nor-
mal weight [127].

4.1.4 � Insulin

Metabolic alterations during pregnancy can lead to 
decreased insulin sensitivity which might be exacerbated in 
obese women [128, 129]. The associated increase in insulin 
levels and in insulin resistance with obesity was reported 
during the first trimester of pregnancy; observations compa-
rable to other studies, emphasizing the risk of hyperinsuline-
mia among obese women [58, 65, 67, 69–71, 78, 130, 131]. 
During the preconception period, two out of four studies 
did not show an effect of obesity on insulin levels, however, 
they were of small sample size and did not adjust for any 
confounders [42, 48]. The mechanisms behind the impact 
of obesity on insulin levels can be related to a decrease 
in total and high affinity insulin receptors, thus requiring 
increased insulin secretion [132]. Moreover, CRP impairs 
insulin receptor substrate 1 (IRS-1) which might explain the 
state of insulin resistance in obesity due to elevated CRP 
levels [133].

4.1.5 � Other endocrine biomarkers

Visfatin and resistin were analyzed only once at each time 
period and from different sources, with inconsistent out-
comes, thus a relationship cannot be established, espe-
cially since the involved outcomes were from low quality 
score studies [50, 77]. Increased testosterone levels in the 
first trimester might be due to the increased expression of 
17beta-hydroxysteroid dehydrogenase type 5 (involved in 
the conversion of androstenedione to testosterone) in obese 
individuals [134, 135]. Yet, no change in testosterone levels 
were reported for the preconception period, which suggests 
a possible role of pregnancy in modifying biomarker lev-
els in obese women [134, 135]. However, outcomes were 
from small sample sizes, thus lacking power to establish 
clear relationships. The relationship between cortisol and 
obesity was dependent on emotional state demonstrating a 
potential role of stress on cortisol levels, which is consistent 
with other findings [72, 136–138]. Outcomes on the effect of 
obesity on AMH levels were from low quality score studies, 
thus they lacked power to establish a clear relationship with 
obesity. However, lower levels were previously reported in 
obese women [139, 140].

4.2 � Inflammatory biomarkers

4.2.1 � CRP

Obesity is a chronic inflammatory state associated with 
elevated CRP levels, a recognized marker of systemic 
inflammation. This was evident in the present systematic 
review throughout the periconceptional period [70, 79–82, 
85–87]. Outcomes are in line with a previous meta-analysis 
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that showed an association between BMI and CRP levels in 
women [141]. Moreover, increased CRP levels were also 
reported in follicular fluid suggesting the activation of an 
inflammatory cascade in follicles of obese women [42, 44, 
51]. This effect can be related to the role of adipose tissue 
inducing CRP gene expression in obese individuals [142]. 
For example, genes involved in chemokine and cytokine 
pathways were differentially expressed in the obese state 
[42]. Moreover, adipose tissue secretes IL-6, which can be 
elevated in obese individuals, promoting the release of CRP 
[54, 86, 143, 144].

4.2.2 � Interleukins

There was no effects of obesity on the majority of inter-
leukins studied during the periconceptional period [42, 
49–54, 83, 86]. Outcomes for IL-6 were inconsistent, where 
two studies showed no effect preconceptionally, while one 
study reported elevated levels in obese individuals during 
the preconception period and first trimester [42, 49, 54, 
86]. Increased serum IL-6 during the first trimester can 
be explained by the increased expression of IL-6 and IL-6 
receptor in adipose tissue of obese women, and the effect 
of leptin in inducing IL-6 secretion by trophoblasts [118, 
143]. Considering ILs, all studies were of low quality, thus 
limiting confidence in the effects of obesity, especially as 
the results contradict other studies in humans and rodents 
reporting a relationship with obesity [145–147].

4.2.3 � TNF‑α

TNF-α is implicated in the state of inflammation and meta-
bolic complications associated with obesity [148]. From this 
review, the association between obesity and TNF-α levels 
during the periconceptional period remains controversial, 
with the majority of studies not showing a relationship [42, 
49, 51, 86, 149]. Despite an absence of differences in TNF-α 
levels between overweight/obese and normal weight women, 
TNF-α levels correlated positively with fat mass which is 
a better indicator for adiposity [42]. Moreover, these stud-
ies were of low quality and those showing no relationship 
contradict others that showed increased levels, and adipose 
tissue expression, of TNF-α in obese individuals [42, 49, 
51, 86, 150, 151].

4.2.4 � Other inflammatory biomarkers

MCP-1 levels were elevated in obese women during the peri-
conceptional period [49, 83]. Outcomes were from low qual-
ity score studies but comparable to others showing induced 
overexpression and levels of MCP-1 in obese individuals, 
suggesting an effect of obesity during the periconceptional 
period [152, 153]. In a mouse model, obesity was proposed 

to be a FGF21- resistant condition which might explain why 
its positive association with BMI was reported in the first 
trimester [84, 154]. Other inflammatory biomarkers such as 
CCL2, GM-CSF, EGF, sICAM-1, eotaxin and GlycA were 
analyzed once in low quality score studies, thus making it 
difficult to establish clear relationships.

4.3 � One‑carbon metabolism biomarkers

Obesity was associated with lower vitamin B12 levels dur-
ing the first trimester, whereas associations between obe-
sity and folate levels were inconsistent; two studies showed 
decreased levels whereas one study, with a small sample 
size, demonstrated no association [80, 88, 89]. Low levels 
of folate and vitamin B12 perturb the functioning of one-
carbon metabolism impairing DNA synthesis and chroma-
tin methylation [4]. Previous studies reported a relationship 
between obesity and low folate and vitamin B12 levels; 
however, the cause-consequence relationship remains con-
troversial [155, 156]. Inadequate dietary intake, altered dis-
tribution and absorption of micronutrients may contribute 
to the effect of obesity on lowering serum folate and vitamin 
B12 levels [157, 158]. On the other hand, folate deficiency 
and low vitamin B12 levels induce adipogenesis, which is 
attenuated with increased vitamin B12 and folate levels  
[159–161].

Obesity was associated with increased methionine levels 
in one low quality score study which had a small sample size 
[50]. This is not consistent with what would be expected 
due to the effect of obesity on reducing folate and vitamin 
B12 levels, both acting as cofactors in the remethylation 
of homocysteine to methionine, thus reducing methionine 
levels [4, 162].

4.4 � The endocrine, inflammatory and one‑carbon 
metabolic axes

Figure 3 illustrates the possible connections between the 
major biomarkers of the endocrine, inflammatory and one-
carbon metabolic pathways affected by obesity during the 
periconceptional period based on human and animal stud-
ies. As leptin is a potential biomarker of obesity, an inter-
play between leptin and other biomarkers can be consid-
ered. In trophoblast cells, the secretion of hCG and IL-6 
was stimulated with the treatment and secretion of leptin 
[118, 163]. In turn, hCG has a stimulatory effect on leptin 
secretion and expression via the mitogen-activated protein 
kinase (MAPK) pathway [164, 165]. Yet, reduced levels 
were observed in obese individuals. In mice, obesity acti-
vates the MAPK pathway, suggesting that other biomarkers 
might also be involved through this pathway; stimulating 
leptin expression independent of hCG levels [165, 166]. In 
the obese state, leptin is elevated and this reduces insulin 
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responsiveness and progesterone secretion [118, 167]. At 
the same time, insulin and cortisol promote the production 
of leptin in human adipocytes, indicating the possibility of 
crosstalk among biomarkers within the endocrine pathway 
of obese individuals [168]. Subsequently, elevated levels of 
C-peptide are related to elevated insulin levels as demon-
strated in the present systematic review [50, 58]. The cause-
consequence link between obesity and thyroid dysfunction 
is controversial. Low FT4 levels reduce negative feedback 
inhibition on TSH secretion. TSH stimulates leptin secre-
tion, and hypothyroidism is linked to increased weight gain 

[169, 170]. Simultaneously, leptin induces TSH by stimulat-
ing expression of thyroid-releasing hormone [171]. In addi-
tion, leptin influences the inflammatory pathway through 
its actions on CRP [172]. On the other hand, CRP impairs 
IRS-1 and a positive association was found between insulin 
and CRP [133, 173]. Moreover, co-incubation of adipocytes 
with CRP reduced adiponectin gene expression [99]. On the 
other hand, a reduction in CRP levels is observed with folic 
acid supplement use, as well as improvement in adiponectin 
levels and insulin resistance with vitamin B12 supplement 
use [174–176].

Fig. 3   Major biomarkers of the endocrine, inflammatory and one-
carbon metabolic pathways affected by maternal obesity, and pos-
sible connections throughout the periconceptional period based on 
human and animal studies. Levels of leptin, TSH, insulin, C-pep, 
MCP-1 and CRP are increased (↑) in obese women, whereas the lev-
els of adiponectin, hCG, progesterone, vitamin B12, folate and FT4 
are decreased (↓). FT4 inhibits (-) TSH secretion. TSH promotes (+) 
leptin secretion. Leptin promotes (+) TSH and CRP and inhibits (-) 

progesterone secretion. CRP and leptin increase (+) IR. IR increases 
(+) insulin levels. Insulin promotes (+) leptin secretion and increases 
(+) C-pep production. CRP inhibits (-) adiponectin production. Folate 
decreases (-) CRP production. Abbreviations: CRP, C-reactive pro-
tein; C-pep, C-peptide; FT4, free T4; IR; insulin resistance; MCP-1, 
monocyte chemoattractant protein-1; TSH, thyroid stimulating hor-
mone; vit.; vitamin; 1-C, one-carbon
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4.5 � Dysregulation in endocrine, inflammatory 
and one‑carbon metabolism biomarkers 
and clinical outcomes

Dysregulation in biomarker levels of the endocrine, inflam-
matory, and one-carbon metabolic pathways, as a result of 
maternal obesity, may impose adverse clinical outcomes 
related to fertility, pregnancy, and offspring health. Figure 4 
illustrates the relationship between biomarkers of these 
three pathways and clinical outcomes. Obese women are at 
increased risk of subfertility which can be related to lower 
progesterone and increased leptin levels [40, 177]. Leptin 
can modulate reproductive function by affecting ovarian 
folliculogenesis and ovulation, and by perturbing the hypo-
thalamic-pituitary-gonadal axis, such as by lowering pro-
gesterone and gonadotropin-releasing hormone levels [178, 
179]. Subsequently, decreased progesterone levels can lead 
to changes in the endometrium physiology adversely affect-
ing fertility, implantation and the maintenance of pregnancy  

[180]. Besides low progesterone levels, maternal obesity 
was also associated with lower HCG and higher TSH levels 
which can partly explain the increased risk of pregnancy loss 
among this population [181–187]. Low levels of HCG affect 
the uterine vasculature and placentation, whereas TSH is 
involved in endometrial physiology [188, 189]. During preg-
nancy, obese women showed increased insulin resistance, 
increased leptin and CRP levels, and decreased FT4 and adi-
ponectin levels, which are associated with increased risk of 
cardio-metabolic pregnancy complications such as GDM and 
preeclampsia [34–37, 54, 81, 85, 173, 190, 191]. Endothe-
lial dysfunction can be promoted by leptin, FT4, insulin  
and CRP while adiponectin improves endothelial dysfunc-
tion by inducing the production of nitric oxide [192–196].  
Furthermore, leptin and CRP increase insulin resistance 
whereas adiponectin improves insulin sensitivity; primary 
features of GDM.

In terms of offspring health, high leptin levels are associ-
ated with increased infant BMI [197]. Similarly, increased 

Fig. 4   Hypothesized connection between maternal obesity, biomarkers 
of the endocrine, inflammatory and one-carbon metabolic pathways, 
and important clinical outcomes. Abbreviations: 1-C, one-carbon; 
BMI, body mass index; CRP, C-reactive protein; FT4, free T4; GDM, 

gestational diabetes mellitus; hCG, human chorionic gonadotropin; 
LGA, large for gestational age; NTD, neural tube defect; PE, preec-
lampsia; TSH, thyroid stimulating hormone. (↑) Increased levels. (↓) 
Decreased levels
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insulin levels (mainly due to insulin resistance) and decreased 
adiponectin levels are correlated with increased risk of mac-
rosomia and LGA newborns [191, 198–200]. Alterations 
in these biomarkers can influence placental nutrient trans-
port, leading to a larger baby [201, 202]. Furthermore, pla-
cental and embryonic cerebellar growth can be influenced 
by the perturbations in one-carbon metabolism during the 
periconceptional period [203, 204]. Both folate and vitamin 
B12 deficiency can increase the risk of neural tube defects. 
Despite folic acid supplement use, obese women have an ele-
vated risk of giving rise to children with neural tube defects, 
which can partly be explained by the lower expression of 
certain MVM placental folate transporters [89, 205].

4.6 � Strengths and limitations

This systematic review included a study population of obese 
women from different regions of the world supporting the 
general applicability of outcomes. Results are presented 
separately for associations between obesity, BMI or over-
weight/obesity and biomarkers; and between pre- and post-
conception periods, permitting longitudinal interpretations 
and providing a clearer distinction of the origin of outcomes 
observed.

Limitations to be considered are, firstly, half of the stud-
ies (N = 25, 49%) did not report the tool for anthropomet-
rics screening. Also, eight studies (14%) reported obesity 
based on self-reported anthropometrics. Though this tool 
is widely used in studies, the risk of self-reporting bias 
cannot be excluded [206, 207]. A second limitation relates 
to heterogeneity in time of reporting and measurement 
of body weight. Thus, outcomes were based on different 
BMI time-point measurements, although all were within 
the periconceptional period. Moreover, there was hetero-
geneity in the obese and control strata. For example, some 
studies included groups of combined overweight/obese 
women, which may interfere with interpreting the results 
solely attributable to obesity. With respect to the control 
group, some studies considered controls as non-obese or 
low BMI with BMI ranges transcending the known clas-
sifications, or they only had an overweight control group. 
Thirdly, several biomarkers analyzed for their relation to 
obesity or BMI were determined only on one occasion, 
thus making it difficult to interpret any dynamic effect. 
Also, some biomarkers were analyzed in low quality score 
studies, and/or in a small population, increasing the risk 
of a type II error. However, most observations were inter-
preted with support from high quality score studies for 
the same biomarker. Fourthly, the majority of included 
studies were not adjusted for covariates which are known 
to influence biomarker levels; particularly age and lifestyle 

factors [208, 209]. Finally, publication bias was not for-
mally assessed, for example by using a funnel plot test, 
due to the different type of outcomes and few number of 
studies that analyzed each biomarker (N = 20, 46% of bio-
markers were analyzed in one study; N = 15, 35% of bio-
markers were analyzed in two to four studies; N = 5, 12% 
of biomarkers were analyzed in five to nine studies; N = 3, 
7% of biomarkers were analyzed in at least ten studies).

4.7 � Implications for clinical practice and future 
research

This review suggests that maternal obesity is associated with 
altered periconceptional biomarker levels of the endocrine, 
inflammatory and one-carbon metabolic pathways which can 
affect fertilization, pregnancy, maternal and offspring health. 
The majority of these biomarkers were analyzed in clinical 
settings (i.e., by means of blood or follicular fluid sampling). 
Therefore, implementation into clinical practice could be 
considered appropriate for routine laboratory testing, as an 
early screening tool to identify and monitor the obese popu-
lation at risk preconceptionally and shortly after conception, 
so within the periconceptional period. For example, analyz-
ing and monitoring levels of leptin, adiponectin, FT4, insulin 
and CRP could assist in early identification of women at risk 
for preeclampsia or development of GDM. Identification of 
a high-risk population will allow for anticipatory obstetri-
cal management including counseling for healthier lifestyle 
behaviour and more antenatal appointments. Besides their 
predictive value, these biomarkers can be also used for more 
personalized and effective management of adverse associ-
ated health risks later in life [210–212]. Of foremost impor-
tance, findings of this review support the known importance 
of weight loss to counteract the detrimental effects caused 
by obesity. This can be complemented by monitoring the 
reported biomarker levels. Furthermore, patient-tailored 
interventions (particularly those targeting lifestyle) to opti-
mize health and biomarker levels among obese women, in 
general and more specifically the ones wanting to conceive, 
are recommended. For example, a change in dietary pat-
terns and physical training were effective in reducing leptin, 
insulin and CRP levels, and increasing adiponectin levels in 
obese adults [213–215].

In light of these findings, additional research to identify 
the predictive value of the most promising biomarkers, 
particularly leptin, adiponectin, hCG, insulin, progesterone 
and CRP is recommended. Also, we encourage separate 
studies with obese and overweight individuals, and to have 
a normal BMI control group identified based on previously 
established criteria.
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5 � Conclusion

Findings from this systematic review reveal that maternal 
obesity can alter levels of several biomarkers throughout the 
periconceptional period associated with disruption of the 
endocrine, inflammatory and one-carbon metabolic pathways. 
Importantly, maternal obesity was associated with higher lep-
tin, insulin, TSH and CRP levels, and lower adiponectin, pro-
gesterone, FT4, hCG, folate and vitamin B12 levels. These 
biomarkers help to identify possible underlying pathophysi-
ological mechanisms leading to adverse clinical outcomes. 
While the measurement of biomarkers is an applicable tool to 
potentially predict the risk of future adverse health outcomes, 
their clinical usefulness is still limited. Additional research on 
the predictive value of the optimal set of biomarkers is war-
ranted for their use in clinical settings. Based on the current 
analysis, biomarkers of most interest include leptin, adiponec-
tin, hCG, insulin, progesterone and CRP.
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