Skip to main content

Advertisement

Log in

Cognitive deficits in primary hyperparathyroidism – what we know and what we do not know: A narrative review

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Classic symptoms of primary hyperparathyroidism (PHPT) are seen in approximately 20% of patients. While features such as kidney stones and skeletal disease are often highlighted as directly related to the disease, others can be even more prevalent. For example, cognitive dysfunction and reduced quality of life are common complaints in many patients, even among those who are classified as being asymptomatic. The pathophysiology of PHPT involves the impact of excess parathyroid hormone (PTH) on calcium metabolism. Referencing putative neurocognitive issues, many animal studies have illustrated the potential roles of PTH and PTH receptors in the brain. Functional imaging and pre-and post-parathyroidectomy studies have suggested a link between the neuronal impact of elevated PTH levels on specific functional aspects of the central nervous system, such as cognition. Confounding a direct role for PTH are hypercalcemia and vitamin D deficiency, both of which could conceivably alter CNS function in PHPT. The lack of strong evidence that parathyroidectomy improves cognition in patients with PHPT raises the question as to whether parathyroid surgery should be recommended on this basis alone. This narrative review summarizes the available literature on neurocognitive function in PHPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lundgren E, Hagström EG, Lundin J, et al. Primary hyperparathyroidism revisited in menopausal women with serum calcium in the upper normal range at population-based screening 8 years ago. World J Surg. 2002;26(8):931–6.

    Article  PubMed  Google Scholar 

  2. Bilezikian JP. Primary Hyperparathyroidism. J Clin Endocrinol Metab. 2018;103(11):3993–4004.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Albright F, Reifenstein E Jr. The parathyroid glands and metabolic bone disease. selected studies. Fuller Albright, A.B., M.D., and Edward C. Reifenstein, Jr., A.B., M.D., F.A.C.P. Baltimore, The Williams and Wilkins Company, 1948. $8.00. JBJS 1949; 31(4).

  4. Minisola S, Gianotti L, Bhadada S, Silverberg SJ. Classical complications of primary hyperparathyroidism. Best Pract Res Clin Endocrinol Metab. 2018;32(6):791–803.

    Article  PubMed  Google Scholar 

  5. Chiodini I, Cairoli E, Palmieri S, Pepe J, Walker MD. Non classical complications of primary hyperparathyroidism. Best Pract Res Clin Endocrinol Metab. 2018;32(6):805–20.

    Article  CAS  PubMed  Google Scholar 

  6. Murman DL. The impact of age on cognition. Semin Hear. 2015;36(3):111–21.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Salthouse T. Consequences of age-related cognitive declines. Annu Rev Psychol. 2012;63:201–26.

    Article  PubMed  Google Scholar 

  8. Coker LH, Rorie K, Cantley L, et al. Primary hyperparathyroidism, cognition, and health-related quality of life. Ann Surg. 2005;242(5):642–50.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alex G, Morris L, Pasieka J, Perrier N. Nonclassical symptoms of primary hyperparathyroidism and their response to parathyroidectomy. Am Surg. 2013;79(4):337–43.

    Article  PubMed  Google Scholar 

  10. Regard J, Sato I, Coughlin S. Anatomical profiling of G protein-coupled receptor expression. Cell. 2008;135:561–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gardella TJ, J-P Vilardaga. International union of basic and clinical pharmacology. XCIII. The parathyroid hormone receptors-family B G protein-coupled receptors. Pharmacol Rev. 2015;67(2):310–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Potts JT. Parathyroid hormone: past and present. J Endocrinol. 2005;187(3):311–25.

    Article  CAS  PubMed  Google Scholar 

  13. Gensure RC, Gardella TJ, Jüppner H. Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem Biophys Res Commun. 2005;328(3):666–78.

    Article  CAS  PubMed  Google Scholar 

  14. Nemeth EF, Scarpa A. Rapid mobilization of cellular Ca2+ in bovine parathyroid cells evoked by extracellular divalent cations. Evidence for a cell surface calcium receptor. J Biol Chem. 1987;262(11):5188–96.

    Article  CAS  PubMed  Google Scholar 

  15. Conigrave AD. The calcium-sensing receptor and the parathyroid: past, present, future. Front Physiol. 2016;7.

  16. Tfelt-Hansen J, Brown EM. The calcium-sensing receptor in normal physiology and pathophysiology: a review. Crit Rev Clin Lab Sci. 2005;42(1):35–70.

    Article  CAS  PubMed  Google Scholar 

  17. Chou YH, Pollak MR, Brandi ML, et al. Mutations in the human Ca(2+)-sensing-receptor gene that cause familial hypocalciuric hypercalcemia. Am J Hum Genet. 1995;56(5):1075–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pollak MR, Brown EM, Chou YH, et al. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell. 1993;75(7):1297–303.

    Article  CAS  PubMed  Google Scholar 

  19. Pollak MR, Brown EM, Estep HL, et al. Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation. Nat Genet. 1994;8(3):303–7.

    Article  CAS  PubMed  Google Scholar 

  20. Taylor CW, Tovey SC. From parathyroid hormone to cytosolic Ca2+ signals. Biochem Soc Trans. 2012;40(1):147–52.

    Article  CAS  PubMed  Google Scholar 

  21. Usdin TB, Dobolyi A, Ueda H, Palkovits M. Emerging functions for tuberoinfundibular peptide of 39 residues. Trends Endocrinol Metab. 2003;14(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  22. Harvey S, Hayer S. Parathyroid hormone binding sites in the brain. Peptides. 1993;14(6):1187–91.

    Article  CAS  PubMed  Google Scholar 

  23. Dobolyi A, Dimitrov E, Palkovits M, Usdin TB. The neuroendocrine functions of the parathyroid hormone 2 receptor. Front Endocrinol (Lausanne). 2012;3:121-.

  24. Usdin TB, Hoare SR, Wang T, Mezey E, Kowalak JA. TIP39: a new neuropeptide and PTH2-receptor agonist from hypothalamus. Nat Neurosci. 1999;2(11):941–3.

    Article  CAS  PubMed  Google Scholar 

  25. Dobolyi A, Ueda H, Uchida H, Palkovits M, Usdin TB. Anatomical and physiological evidence for involvement of tuberoinfundibular peptide of 39 residues in nociception. Proc Natl Acad Sci U S A. 2002;99(3):1651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dobolyi A, Palkovits M, Usdin TB. The TIP39-PTH2 receptor system: unique peptidergic cell groups in the brainstem and their interactions with central regulatory mechanisms. Prog Neurobiol. 2010;90(1):29–59.

    Article  CAS  PubMed  Google Scholar 

  27. Coutellier L, Logemann A, Kuo J, Rusnak M, Usdin TB. TIP39 modulates effects of novelty-induced arousal on memory. Genes Brain Behav. 2011;10(1):90–9.

    Article  CAS  PubMed  Google Scholar 

  28. Venkatesh G, Sankar V, Ramanathan M. Molecular mechanism of tuberoinfundibular peptide of 39 on glucocorticoid receptor mediated glutamate/GABA imbalance and cerebral abnormalities against cognitive deficit model. J Pharm Pharmacol. 2019;71(6):996–1006.

    Article  CAS  PubMed  Google Scholar 

  29. Faber CA, Dobolyi A, Sleeman M, Usdin TB. Distribution of tuberoinfundibular peptide of 39 residues and its receptor, parathyroid hormone 2 receptor, in the mouse brain. J Comp Neurol. 2007;502(4):563–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Kloet ER. Hormones, brain and stress. Endocr Regul. 2003;37(2):51–68.

    PubMed  Google Scholar 

  31. Alkadhi K. Brain Physiology and Pathophysiology in Mental Stress. ISRN Physiology. 2013;2013: 806104.

    Article  Google Scholar 

  32. Henckens MJ, van Wingen GA, Joëls M, Fernández G. Time-dependent corticosteroid modulation of prefrontal working memory processing. Proc Natl Acad Sci U S A. 2011;108(14):5801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Veintramuthu S, Gunasekaran V, Ramanathan M, Selvaraj D. Tuberoinfundibular peptide of 39 attenuates chronic unpredictable mild stress induced HPA axis dysregulation, inflammation and oxidative damage in depressive rats. Curr Bioact Compd. 2018;14(4):451–60.

    Article  CAS  Google Scholar 

  34. Gunasekaran V, Mathew MM, Gautam M, Ramanathan M. Neuroprotective role of Pterocarpus marsupium Roxb in streptozotocin-induced diabetic neuropathic pain in Type 2 diabetic rats. J Pharm Res. 2017;11:1–7.

    Google Scholar 

  35. Usdin TB, Gruber C, Bonner TI. Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J Biol Chem. 1995;270(26):15455–8.

    Article  CAS  PubMed  Google Scholar 

  36. Toescu EC, Vreugdenhil M. Calcium and normal brain ageing. Cell Calcium. 2010;47(2):158–64.

    Article  CAS  PubMed  Google Scholar 

  37. Cermik TF, Kaya M, Uğur-Altun B, Bedel D, Berkarda S, Yiğitbaşi ON. Regional cerebral blood flow abnormalities in patients with primary hyperparathyroidism. Neuroradiology. 2007;49(4):379–85.

    Article  PubMed  Google Scholar 

  38. Walker MD, Fleischer J, Rundek T, et al. Carotid vascular abnormalities in primary hyperparathyroidism. J Clin Endocrinol Metab. 2009;94(10):3849–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khudaverdyan DN, Asratyan AA. Effect of the parathyroid hormone—Calcium system on functional activity of the hypothalamus-neurohypophysis complex. Bull Exp Biol Med. 1996;122(5):1069–71.

    Article  Google Scholar 

  40. Cope O. The story of hyperparathyroidism at the Massachusetts General Hospital. N Engl J Med. 1966;274(21):1174–82.

    Article  CAS  PubMed  Google Scholar 

  41. Albright F, Aub JC, Bauer W. Hyperparathyroidism: a common and polymorphic condition as illustrated by seventeen proved cases from one clinic. J Am Med Assoc. 1934;102(16):1276–87.

    Article  Google Scholar 

  42. Silverberg SJ. Non-classical target organs in primary hyperparathyroidism. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research. 2002;17:N117–25.

    Google Scholar 

  43. Silverberg SJ, Lewiecki EM, Mosekilde L, Peacock M, Rubin MR. Presentation of asymptomatic primary hyperparathyroidism: proceedings of the third international workshop. J Clin Endocrinol Metab. 2009;94(2):351–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wilhelm SM, Wang TS, Ruan DT, et al. The American Association of Endocrine Surgeons guidelines for definitive management of primary hyperparathyroidism. JAMA Surg. 2016;151(10):959–68.

    Article  PubMed  Google Scholar 

  45. Voci C. Dementia Improvement after Primary Hyperparathyroidism Surgery. Case Rep Med. 2020;2020:1095414.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chiang CY, Andrewes DG, Anderson D, Devere M, Schweitzer I, Zajac JD. A controlled, prospective study of neuropsychological outcomes post parathyroidectomy in primary hyperparathyroid patients. Clin Endocrinol (Oxf). 2005;62(1):99–104.

    Article  Google Scholar 

  47. Roman SA, Sosa JA, Mayes L, et al. Parathyroidectomy improves neurocognitive deficits in patients with primary hyperparathyroidism. Surgery. 2005;138(6):1121–8; discussion 8–9

  48. Benge JF, Perrier ND, Massman PJ, Meyers CA, Kayl AE, Wefel JS. Cognitive and affective sequelae of primary hyperparathyroidism and early response to parathyroidectomy. J Int Neuropsychol Soc. 2009;15(6):1002–11.

    Article  PubMed  Google Scholar 

  49. Perrier ND, Balachandran D, Wefel JS, et al. Prospective, randomized, controlled trial of parathyroidectomy versus observation in patients with “asymptomatic” primary hyperparathyroidism. Surgery. 2009;146(6):1116–22.

    Article  PubMed  Google Scholar 

  50. Dotzenrath CM, Kaetsch AK, Pfingsten H, et al. Neuropsychiatric and cognitive changes after surgery for primary hyperparathyroidism. World J Surg. 2006;30(5):680–5.

    Article  PubMed  Google Scholar 

  51. Numann P, Torppa A, Blumetti A. Neuropsychologic deficits associated with primary hyperparathyroidism. Surgery. 1984;96(6):1119–23.

    CAS  PubMed  Google Scholar 

  52. Babińska D, Barczyński M, Stefaniak T, et al. Evaluation of selected cognitive functions before and after surgery for primary hyperparathyroidism. Langenbecks Arch Surg. 2012;397(5):825–31.

    Article  PubMed  Google Scholar 

  53. Casella C, Pata G, Di Betta E, Nascimbeni R. Neurological and psychiatric disorders in primary hyperparathyroidism: the role of parathyroidectomy. Annali Italiani Di Chirurgia 2008;79(3):157–61; discussion 61.

  54. Mittendorf EA, Wefel JS, Meyers CA, et al. Improvement of sleep disturbance and neurocognitive function after parathyroidectomy in patients with primary hyperparathyroidism. Endocr Pract. 2007;13(4):338–44.

    Article  PubMed  Google Scholar 

  55. Prager G, Kalaschek A, Kaczirek K, et al. Parathyroidectomy improves concentration and retentiveness in patients with primary hyperparathyroidism. Surgery. 2002;132(6):930–6.

    Article  PubMed  Google Scholar 

  56. Roman SA, Sosa JA, Pietrzak RH, et al. The effects of serum calcium and parathyroid hormone changes on psychological and cognitive function in patients undergoing parathyroidectomy for primary hyperparathyroidism. Ann Surg. 2011;253(1):131–7.

    Article  PubMed  Google Scholar 

  57. Walker MD, McMahon DJ, Inabnet WB, et al. Neuropsychological features in primary hyperparathyroidism: a prospective study. J Clin Endocrinol Metab. 2009;94(6):1951–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cogan MG, Covey CM, Arieff AI, et al. Central nervous system manifestations of hyperparathyroidism. Am J Med. 1978;65(6):963–70.

    Article  CAS  PubMed  Google Scholar 

  59. Goyal A, Chumber S, Tandon N, Lal R, Srivastava A, Gupta S. Neuropsychiatric manifestations in patients of primary hyperparathyroidism and outcome following surgery. Indian J Med Sci. 2001;55(12):677–86.

    CAS  PubMed  Google Scholar 

  60. Liu M, Sum M, Cong E, et al. Cognition and cerebrovascular function in primary hyperparathyroidism before and after parathyroidectomy. J Endocrinol Invest. 2020;43(3):369–79.

    Article  CAS  PubMed  Google Scholar 

  61. Zanocco K, Butt Z, Kaltman D, et al. Improvement in patient-reported physical and mental health after parathyroidectomy for primary hyperparathyroidism. Surgery. 2015;158(3):837–45.

    Article  PubMed  Google Scholar 

  62. Lourida I, Thompson-Coon J, Dickens CM, et al. Parathyroid hormone, cognitive function and dementia: a systematic review. PLoS ONE. 2015;10(5): e0127574.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pretorius M, Lundstam K, Hellström M, et al. Effects of parathyroidectomy on quality of life: 10 years of data from a prospective randomized controlled trial on primary hyperparathyroidism (the SIPH-Study). J Bone Miner Res. 2021;36(1):3–11.

    Article  PubMed  Google Scholar 

  64. Sheldon DG, Lee FT, Neil NJ, Ryan JA Jr. Surgical treatment of hyperparathyroidism improves health-related quality of life. Arch Surg. 2002;137(9):1022–6; discussion 6–8.

  65. Caillard C, Sebag F, Mathonnet M, et al. Prospective evaluation of quality of life (SF-36v2) and nonspecific symptoms before and after cure of primary hyperparathyroidism (1-year follow-up). Surgery. 2007;141(2):153–9; discussion 9–60.

  66. Ambrogini E, Cetani F, Cianferotti L, et al. Surgery or surveillance for mild asymptomatic primary hyperparathyroidism: a prospective, randomized clinical trial. J Clin Endocrinol Metab. 2007;92(8):3114–21.

    Article  CAS  PubMed  Google Scholar 

  67. Mihai R, Sadler GP. Pasieka’s parathyroid symptoms scores correlate with SF-36 scores in patients undergoing surgery for primary hyperparathyroidism. World J Surg. 2008;32(5):807–14.

    Article  PubMed  Google Scholar 

  68. Bollerslev J, Jansson S, Mollerup CL, et al. Medical observation, compared with parathyroidectomy, for asymptomatic primary hyperparathyroidism: a prospective, randomized trial. J Clin Endocrinol Metab. 2007;92(5):1687–92.

    Article  CAS  PubMed  Google Scholar 

  69. Kowdley KV, Coull BM, Orwoll ES. Cognitive impairment and intracranial calcification in chronic hypoparathyroidism. Am J Med Sci. 1999;317(5):273–7.

    Article  CAS  PubMed  Google Scholar 

  70. Bonelli RM, Cummings JL. Frontal-subcortical dementias. Neurologist. 2008;14(2):100–7.

    Article  PubMed  Google Scholar 

  71. Llewellyn DJ, Lang IA, Langa KM, Melzer D. Vitamin D and cognitive impairment in the elderly U.S. population. J Gerontol A Biol Sci Med Sci. 2011;66(1):59–65.

    Article  PubMed  Google Scholar 

  72. Giustina A, Bouillon R, Binkley N, et al. Controversies in Vitamin D: A statement from the third international conference. JBMR Plus. 2020;4(12):e10417-n/a.

  73. Michos ED, Carson KA, Schneider AL, et al. Vitamin D and subclinical cerebrovascular disease: the Atherosclerosis Risk in Communities brain magnetic resonance imaging study. JAMA Neurol. 2014;71(7):863–71.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Moon JH, Lim S, Han JW, et al. Serum 25-hydroxyvitamin D level and the risk of mild cognitive impairment and dementia: the Korean Longitudinal Study on Health and Aging (KLoSHA). Clin Endocrinol (Oxf). 2015;83(1):36–42.

    Article  CAS  Google Scholar 

  75. Grant WB. Does vitamin D reduce the risk of dementia? J Alzheimers Dis. 2009;17(1):151–9.

    Article  CAS  PubMed  Google Scholar 

  76. Silverberg SJ. Vitamin D deficiency and primary hyperparathyroidism. J Bone Miner Res. 2007;22(Suppl 2):V100–4.

    Article  CAS  PubMed  Google Scholar 

  77. Crosson B, Ford A, McGregor KM, et al. Functional imaging and related techniques: an introduction for rehabilitation researchers. J Rehabil Res Dev. 2010;47(2):vii-xxxiv.

  78. Gazes Y, Liu M, Sum M, et al. Functional magnetic resonance imaging in primary hyperparathyroidism. Eur J Endocrinol. 2020;183(1):21–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Perrier ND, Coker LH, Rorie KD, et al. Preliminary report: functional MRI of the brain may be the ideal tool for evaluating neuropsychologic and sleep complaints of patients with primary hyperparathyroidism. World J Surg. 2006;30(5):686–96.

    Article  PubMed  Google Scholar 

  80. Çermik TF, Kaya M, Uğur-Altun B, Bedel D, Berkarda Ş, Yiğitbaşı ÖN. Regional cerebral blood flow abnormalities in patients with primary hyperparathyroidism. Neuroradiology. 2007;49(4):379–85.

    Article  PubMed  Google Scholar 

  81. Kundu P, Benson BE, Rosen D, et al. The integration of functional brain activity from adolescence to adulthood. J Neurosci. 2018;38(14):3559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen SHA, Wu C-Y, Lua R-p, Akoshi MM, Nakai T. Age-related changes in resting-state and task-activated functional MRI networks. IEEE. 2013;218–22.

  83. Lou Y, Zhao L, Yu S, et al. Brain asymmetry differences between Chinese and Caucasian populations: a surface-based morphometric comparison study. Brain Imaging Behav. 2019;14(6):2323–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MC: Conceptualization, Drafting and editing of manuscript, Figure conceptualization and creation. LYLT: Drafting of manuscript. MCJ: Editing. JPB: Editing and Expert Input. RP: Conceptualization, Editing of manuscript, Figure conceptualization.

Corresponding author

Correspondence to Manju Chandran.

Ethics declarations

Ethical approval

The article complied with all ethical standards.

Conflict of interest

None of the authors have any conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandran, M., Yeh, L.T.L., de Jong, M.C. et al. Cognitive deficits in primary hyperparathyroidism – what we know and what we do not know: A narrative review. Rev Endocr Metab Disord 23, 1079–1087 (2022). https://doi.org/10.1007/s11154-022-09750-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-022-09750-9

Keywords

Navigation