Skip to main content

Advertisement

Log in

Posttranslational modifications in diabetes: Mechanisms and functions

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

As one of the most widespread chronic diseases, diabetes and its accompanying complications affect approximately one tenth of individuals worldwide and represent a growing cause of morbidity and mortality. Accumulating evidence has proven that the process of diabetes is complex and interactive, involving various cellular responses and signaling cascades by posttranslational modifications (PTMs). Therefore, understanding the mechanisms and functions of PTMs in regulatory networks has fundamental importance for understanding the prediction, onset, diagnosis, progression, and treatment of diabetes. In this review, we offer a holistic summary and illustration of the crosstalk between PTMs and diabetes, including both types 1 and 2. Meanwhile, we discuss the potential use of PTMs in diabetes treatment and provide a prospective direction for deeply understanding the metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

modified by PTMs). PTMs: posttranslational modifications, APCs: antigen-presenting cells, ROS: reactive oxygen species, OS: oxidative stress, ERS: endoplasmic reticulum stress, DN: double-negative cell, DP: double-positive cell, SP: single-positive cell, MHC: major histocompatibility complex

Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

There were no original data used in this manuscript.

Abbreviations

PTM:

Posttranslational modification

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

Arg:

Arginine

PAD:

Peptidyl arginine deiminase

tTG:

Tissue transglutaminase

OGT:

O-GlcNAc transferase

ERS:

Endoplasmic reticulum stress

OS:

Oxidative stress

ER:

Endoplasmic reticulum

ROS:

Reactive oxygen species

IFN:

Interferon

HLA:

Human leukocyte antigen

FFAs:

Free fatty acids

mTECs:

Medullary thymic epithelial cells

DCs:

Dendritic cells

IAAs:

Islet autoantibodies

MHC:

Major histocompatibility complex

ZnT-8:

Zinc transporter-8

IA-2:

Islet antigen-2

ICA69:

Islet cell autoantigen 69

GAD65:

Glutamate decarboxylase 65

IAPP:

Islet amyloid polypeptide

GRP78:

Glucose-regulated Protein 78

AAB:

Autoantibody

Th :

T helper

Lys:

Lysine

Pro:

Proline

Thr:

Threonine

P4Hb:

Prolyl 4-hydroxylase beta

SUMO:

Small ubiquitin-related modifier

Tyr:

Tyrosine

PDX-1:

Pancreatic/duodenal homeobox-1

HNF1A:

Hepatocyte nuclear factor 1 alpha

SENPs:

Sentrin/SUMO-specific proteases

IRF4:

Interferon regulator factor 4

His:

Histidine

Cys:

Cysteine

Phe:

Phenylalanine

PDC-E2:

Pyruvate dehydrogenase complex-E2

Ser:

Serine

FOX:

Forkhead box

O-GlcNAcylation:

O-linked-N-acetylglucosaminylation

UDP-GlcNAc:

N-acetylglucosamine

OGA:

O-GlcNAcase

HBP:

Hexosamine biosynthesis pathway

NeuroD1:

Neurogenic differentiation factor 1

GPR40:

G protein-coupled receptor 40

AKT:

Protein kinase B

IR:

Insulin receptor

IRS:

Insulin receptor substrate

PI3K:

Phosphoinositide 3-kinase

PDK1:

Phosphoinositide-dependent kinase 1

ChREBP:

Carbohydrate responsive element-binding protein

FXR:

Farnesoid X receptor

CRTC2:

Protein (CREB)-regulated transcriptional coactivator 2

PGC-1α:

Peroxisome proliferator-activated receptor-gamma coactivator-1alpha

LXR:

Liver X receptor

SERCA:

Sarco(endo)plasmic reticulum calcium transport ATPase

GlcN:

Glucosamine

SGK1:

Glucocorticoid-induced kinase 1

C/EBP:

CCAAT enhancer-binding protein

GSIS:

Glucose-stimulated insulin secretion

PPARγ:

Peroxisome proliferator–activated receptor γ

References

  1. Standl E, Khunti K, Hansen TB, Schnell O. The global epidemics of diabetes in the 21st century: Current situation and perspectives. Eur J Prev Cardiol. 2019;26(2_suppl):7–14.

  2. Koye DN, Magliano DJ, Nelson RG, Pavkov ME. The Global Epidemiology of Diabetes and Kidney Disease. Adv Chronic Kidney Dis. 2018;25(2):121–32.

    Article  PubMed  Google Scholar 

  3. Bauer W, Gyenesei A, Krętowski A. The Multifactorial Progression from the Islet Autoimmunity to Type 1 Diabetes in Children. Int J Mol Sci. 2021;22(14).

  4. Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet. 2016;387(10035):2340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Quinn LM, Wong FS, Narendran P. Environmental Determinants of Type 1 Diabetes: From Association to Proving Causality. Front Immunol. 2021;12: 737964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ismail L, Materwala H, Al Kaabi J. Association of risk factors with type 2 diabetes: A systematic review. Comput Struct Biotechnol J. 2021;19:1759–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tinajero MG, Malik VS. An Update on the Epidemiology of Type 2 Diabetes: A Global Perspective. Endocrinol Metab Clin North Am. 2021;50(3):337–55.

    Article  PubMed  Google Scholar 

  8. Weisman A, Fazli GS, Johns A, Booth GL. Evolving Trends in the Epidemiology, Risk Factors, and Prevention of Type 2 Diabetes: A Review. Can J Cardiol. 2018;34(5):552–64.

    Article  PubMed  Google Scholar 

  9. Tarazona OA, Pourquié O. Exploring the Influence of Cell Metabolism on Cell Fate through Protein Post-translational Modifications. Dev Cell. 2020;54(2):282–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Santos AL, Lindner AB. Protein Posttranslational Modifications: Roles in Aging and Age-Related Disease. Oxid Med Cell Longev. 2017;2017:5716409.

    Article  PubMed  PubMed Central  Google Scholar 

  11. James EA, Pietropaolo M, Mamula MJ. Immune Recognition of β-Cells: Neoepitopes as Key Players in the Loss of Tolerance. Diabetes. 2018;67(6):1035–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Callebaut A, Derua R, Vig S, Delong T, Mathieu C, Overbergh L. Identification of Deamidated Peptides in Cytokine-Exposed MIN6 Cells through LC-MS/MS Using a Shortened Digestion Time and Inspection of MS2 Spectra. J Proteome Res. 2021;20(2):1405–14.

    Article  CAS  PubMed  Google Scholar 

  13. Marré ML, Profozich JL, Coneybeer JT, Geng X, Bertera S, Ford MJ, et al. Inherent ER stress in pancreatic islet β cells causes self-recognition by autoreactive T cells in type 1 diabetes. J Autoimmun. 2016;72:33–46.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marre ML, McGinty JW, Chow IT, DeNicola ME, Beck NW, Kent SC, et al. Modifying Enzymes Are Elicited by ER Stress, Generating Epitopes That Are Selectively Recognized by CD4(+) T Cells in Patients With Type 1 Diabetes. Diabetes. 2018;67(7):1356–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang ML, Doyle HA, Clarke SG, Herold KC, Mamula MJ. Oxidative Modifications in Tissue Pathology and Autoimmune Disease. Antioxid Redox Signal. 2018;29(14):1415–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nyström T. Role of oxidative carbonylation in protein quality control and senescence. Embo j. 2005;24(7):1311–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pérez-Torres I, Soto ME, Castrejón-Tellez V, Rubio-Ruiz ME, Manzano Pech L, Guarner-Lans V. Oxidative, Reductive, and Nitrosative Stress Effects on Epigenetics and on Posttranslational Modification of Enzymes in Cardiometabolic Diseases. Oxid Med Cell Longev. 2020;2020:8819719.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McLaughlin RJ, de Haan A, Zaldumbide A, de Koning EJ, de Ru AH, van Veelen PA, et al. Human islets and dendritic cells generate post-translationally modified islet autoantigens. Clin Exp Immunol. 2016;185(2):133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buitinga M, Callebaut A, Marques Câmara Sodré F, Crèvecoeur I, Blahnik-Fagan G, Yang ML, et al. Inflammation-Induced Citrullinated Glucose-Regulated Protein 78 Elicits Immune Responses in Human Type 1 Diabetes. Diabetes. 2018;67(11):2337–48.

  20. Schuit FC, In’t Veld PA, Pipeleers DG. Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc Natl Acad Sci U S A. 1988;85(11):3865–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Papa FR. Endoplasmic reticulum stress, pancreatic β-cell degeneration, and diabetes. Cold Spring Harb Perspect Med. 2012;2(9): a007666.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tsai YC, Weissman AM. The Unfolded Protein Response, Degradation from Endoplasmic Reticulum and Cancer. Genes Cancer. 2010;1(7):764–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21(8):421–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marroqui L, Dos Santos RS, Coomans de Brachène A, Marselli L, Marchetti P, Eizirik DL. Interferon-α mediates human beta cell HLA class I overexpression, endoplasmic reticulum stress and apoptosis, three hallmarks of early human type 1 diabetes. Diabetologia. 2017;60(4):656–67.

  25. Ramos-Rodríguez M, Raurell-Vila H, Colli ML, Alvelos MI, Subirana-Granés M, Juan-Mateu J, et al. The impact of proinflammatory cytokines on the β-cell regulatory landscape provides insights into the genetics of type 1 diabetes. Nat Genet. 2019;51(11):1588–95.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yeung WC, Rawlinson WD, Craig ME. Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ. 2011;342: d35.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lönnrot M, Salminen K, Knip M, Savola K, Kulmala P, Leinikki P, et al. Enterovirus RNA in serum is a risk factor for beta-cell autoimmunity and clinical type 1 diabetes: a prospective study Childhood Diabetes in Finland (DiMe) Study Group. J Med Virol. 2000;61(2):214–20.

    Article  PubMed  Google Scholar 

  28. Akhbari P, Richardson SJ, Morgan NG. Type 1 Diabetes: Interferons and the Aftermath of Pancreatic Beta-Cell Enteroviral Infection. Microorganisms. 2020;8(9).

  29. Colli ML, Paula FM, Marselli L, Marchetti P, Roivainen M, Eizirik DL, et al. Coxsackievirus B Tailors the Unfolded Protein Response to Favour Viral Amplification in Pancreatic β Cells. J Innate Immun. 2019;11(4):375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Santin I, Eizirik DL. Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and β-cell apoptosis. Diabetes Obes Metab. 2013;15(Suppl 3):71–81.

    Article  CAS  PubMed  Google Scholar 

  31. Colli ML, Moore F, Gurzov EN, Ortis F, Eizirik DL. MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA. Hum Mol Genet. 2010;19(1):135–46.

    Article  CAS  PubMed  Google Scholar 

  32. Heikkila RE, Winston B, Cohen G. Alloxan-induced diabetes-evidence for hydroxyl radical as a cytotoxic intermediate. Biochem Pharmacol. 1976;25(9):1085–92.

    Article  CAS  PubMed  Google Scholar 

  33. Takasu N, Komiya I, Asawa T, Nagasawa Y, Yamada T. Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets H2O2 as mediator for DNA fragmentation. Diabetes. 1991;40(9):1141–5.

    Article  CAS  PubMed  Google Scholar 

  34. Bedoya FJ, Solano F, Lucas M. N-monomethyl-arginine and nicotinamide prevent streptozotocin-induced double strand DNA break formation in pancreatic rat islets. Experientia. 1996;52(4):344–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sandler S, Swenne I. Streptozotocin, but not alloxan, induces DNA repair synthesis in mouse pancreatic islets in vitro. Diabetologia. 1983;25(5):444–7.

    Article  CAS  PubMed  Google Scholar 

  36. Campbell-Thompson M, Wasserfall C, Montgomery EL, Atkinson MA, Kaddis JS. Pancreas organ weight in individuals with disease-associated autoantibodies at risk for type 1 diabetes. JAMA. 2012;308(22):2337–9.

    Article  CAS  PubMed  Google Scholar 

  37. Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxid Med Cell Longev. 2020;2020:8609213.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Drews G, Krippeit-Drews P, Düfer M. Oxidative stress and beta-cell dysfunction. Pflugers Arch. 2010;460(4):703–18.

    Article  CAS  PubMed  Google Scholar 

  39. Piganelli JD, Mamula MJ, James EA. The Role of β Cell Stress and Neo-Epitopes in the Immunopathology of Type 1 Diabetes. Front Endocrinol (Lausanne). 2020;11: 624590.

    Article  Google Scholar 

  40. Doyle HA, Mamula MJ. Autoantigenesis: the evolution of protein modifications in autoimmune disease. Curr Opin Immunol. 2012;24(1):112–8.

    Article  CAS  PubMed  Google Scholar 

  41. Vandamme C, Kinnunen T. B cell helper T cells and type 1 diabetes. Scand J Immunol. 2020;92(4): e12943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yi L, Swensen AC, Qian WJ. Serum biomarkers for diagnosis and prediction of type 1 diabetes. Transl Res. 2018;201:13–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mariño E, Batten M, Groom J, Walters S, Liuwantara D, Mackay F, et al. Marginal-zone B-cells of nonobese diabetic mice expand with diabetes onset, invade the pancreatic lymph nodes, and present autoantigen to diabetogenic T-cells. Diabetes. 2008;57(2):395–404.

    Article  PubMed  Google Scholar 

  44. Mariño E, Tan B, Binge L, Mackay CR, Grey ST. B-cell cross-presentation of autologous antigen precipitates diabetes. Diabetes. 2012;61(11):2893–905.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Martin S, Wolf-Eichbaum D, Duinkerken G, Scherbaum WA, Kolb H, Noordzij JG, et al. Development of type 1 diabetes despite severe hereditary B-cell deficiency. N Engl J Med. 2001;345(14):1036–40.

    Article  CAS  PubMed  Google Scholar 

  46. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391(10138):2449–62.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gonzalez-Duque S, Azoury ME, Colli ML, Afonso G, Turatsinze JV, Nigi L, et al. Conventional and Neo-antigenic Peptides Presented by β Cells Are Targeted by Circulating Naïve CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metab. 2018;28(6):946-960.e946.

    Article  CAS  PubMed  Google Scholar 

  48. Culina S, Lalanne AI, Afonso G, Cerosaletti K, Pinto S, Sebastiani G, et al. Islet-reactive CD8(+) T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci Immunol. 2018;3(20).

  49. Monti P, Heninger AK, Bonifacio E. Differentiation, expansion, and homeostasis of autoreactive T cells in type 1 diabetes mellitus. Curr Diab Rep. 2009;9(2):113–8.

    Article  CAS  PubMed  Google Scholar 

  50. Oling V, Reijonen H, Simell O, Knip M, Ilonen J. Autoantigen-specific memory CD4+ T cells are prevalent early in progression to Type 1 diabetes. Cell Immunol. 2012;273(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  51. Chujo D, Foucat E, Nguyen TS, Chaussabel D, Banchereau J, Ueno H. ZnT8-Specific CD4+ T cells display distinct cytokine expression profiles between type 1 diabetes patients and healthy adults. PLoS ONE. 2013;8(2): e55595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arif S, Tree TI, Astill TP, Tremble JM, Bishop AJ, Dayan CM, et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest. 2004;113(3):451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Lummel M, Duinkerken G, van Veelen PA, de Ru A, Cordfunke R, Zaldumbide A, et al. Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. Diabetes. 2014;63(1):237–47.

    Article  PubMed  Google Scholar 

  54. Pugliese A. Autoreactive T cells in type 1 diabetes. J Clin Invest. 2017;127(8):2881–91.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hill JA, Southwood S, Sette A, Jevnikar AM, Bell DA, Cairns E. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J Immunol. 2003;171(2):538–41.

    Article  CAS  PubMed  Google Scholar 

  56. James EA, Moustakas AK, Bui J, Papadopoulos GK, Bondinas G, Buckner JH, et al. HLA-DR1001 presents “altered-self” peptides derived from joint-associated proteins by accepting citrulline in three of its binding pockets. Arthritis Rheum. 2010;62(10):2909–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Espino L, Núñez C. The HLA complex and coeliac disease. Int Rev Cell Mol Biol. 2021;358:47–83.

    Article  PubMed  Google Scholar 

  58. Wang Y, Sosinowski T, Novikov A, Crawford F, Neau DB, Yang J, et al. C-terminal modification of the insulin B:11–23 peptide creates superagonists in mouse and human type 1 diabetes. Proc Natl Acad Sci U S A. 2018;115(1):162–7.

    Article  CAS  PubMed  Google Scholar 

  59. McGinty JW, Chow IT, Greenbaum C, Odegard J, Kwok WW, James EA. Recognition of posttranslationally modified GAD65 epitopes in subjects with type 1 diabetes. Diabetes. 2014;63(9):3033–40.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gottlieb PA, Delong T, Baker RL, Fitzgerald-Miller L, Wagner R, Cook G, et al. Chromogranin A is a T cell antigen in human type 1 diabetes. J Autoimmun. 2014;50:38–41.

    Article  CAS  PubMed  Google Scholar 

  61. Delong T, Baker RL, He J, Barbour G, Bradley B, Haskins K. Diabetogenic T-cell clones recognize an altered peptide of chromogranin A. Diabetes. 2012;61(12):3239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Donnelly C, Williams A. Investigating the potential impact of post translational modification of auto-antigens by tissue transglutaminase on humoral islet autoimmunity in type 1 diabetes. Metabol Open. 2020;8: 100062.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sidney J, Vela JL, Friedrich D, Kolla R, von Herrath M, Wesley JD, et al. Low HLA binding of diabetes-associated CD8+ T-cell epitopes is increased by post translational modifications. BMC Immunol. 2018;19(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Babon JA, DeNicola ME, Blodgett DM, Crèvecoeur I, Buttrick TS, Maehr R, et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat Med. 2016;22(12):1482–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rondas D, Crèvecoeur I, D’Hertog W, Ferreira GB, Staes A, Garg AD, et al. Citrullinated glucose-regulated protein 78 is an autoantigen in type 1 diabetes. Diabetes. 2015;64(2):573–86.

    Article  CAS  PubMed  Google Scholar 

  66. Sun B, Chang HH, Salinger A, Tomita B, Bawadekar M, Holmes CL, et al. Reciprocal regulation of Th2 and Th17 cells by PAD2-mediated citrullination. JCI Insight. 2019;4(22).

  67. Mannering SI, Harrison LC, Williamson NA, Morris JS, Thearle DJ, Jensen KP, et al. The insulin A-chain epitope recognized by human T cells is posttranslationally modified. J Exp Med. 2005;202(9):1191–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Strollo R, Vinci C, Napoli N, Fioriti E, Maddaloni E, Åkerman L, et al. Antibodies to oxidized insulin improve prediction of type 1 diabetes in children with positive standard islet autoantibodies. Diabetes Metab Res Rev. 2019;35(4): e3132.

    Article  PubMed  Google Scholar 

  69. Arif Z, Neelofar K, Arfat MY, Zaman A, Tarannum A, Parveen I, et al. Hyperglycemia induced reactive species trigger structural changes in human serum albumin of type 1 diabetic subjects. Int J Biol Macromol. 2018;107(Pt B):2141–9.

    Article  CAS  PubMed  Google Scholar 

  70. Shao C, Cobb MH. Sumoylation regulates the transcriptional activity of MafA in pancreatic beta cells. J Biol Chem. 2009;284(5):3117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mziaut H, Trajkovski M, Kersting S, Ehninger A, Altkrüger A, Lemaitre RP, et al. Synergy of glucose and growth hormone signalling in islet cells through ICA512 and STAT5. Nat Cell Biol. 2006;8(5):435–45.

    Article  CAS  PubMed  Google Scholar 

  72. Kishi A, Nakamura T, Nishio Y, Maegawa H, Kashiwagi A. Sumoylation of Pdx1 is associated with its nuclear localization and insulin gene activation. Am J Physiol Endocrinol Metab. 2003;284(4):E830-840.

    Article  CAS  PubMed  Google Scholar 

  73. Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med. 2001;345(13):971–80.

    Article  CAS  PubMed  Google Scholar 

  74. Kaci A, Keindl M, Solheim MH, Njølstad PR, Bjørkhaug L, Aukrust I. The E3 SUMO ligase PIASγ is a novel interaction partner regulating the activity of diabetes associated hepatocyte nuclear factor-1α. Sci Rep. 2018;8(1):12780.

    Article  PubMed  PubMed Central  Google Scholar 

  75. He X, Lai Q, Chen C, Li N, Sun F, Huang W, et al. Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function. Diabetologia. 2018;61(4):881–95.

    Article  CAS  PubMed  Google Scholar 

  76. Hajmrle C, Ferdaoussi M, Plummer G, Spigelman AF, Lai K, Manning Fox JE, et al. SUMOylation protects against IL-1β-induced apoptosis in INS-1 832/13 cells and human islets. Am J Physiol Endocrinol Metab. 2014;307(8):E664-673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shao L, Zhou HJ, Zhang H, Qin L, Hwa J, Yun Z, et al. SENP1-mediated NEMO deSUMOylation in adipocytes limits inflammatory responses and type-1 diabetes progression. Nat Commun. 2015;6:8917.

    Article  CAS  PubMed  Google Scholar 

  78. Hsu CY, Yeh LT, Fu SH, Chien MW, Liu YW, Miaw SC, et al. SUMO-defective c-Maf preferentially transactivates Il21 to exacerbate autoimmune diabetes. J Clin Invest. 2018;128(9):3779–93.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang F, Sun F, Luo J, Yue T, Chen L, Zhou H, et al. Loss of ubiquitin-conjugating enzyme E2 (Ubc9) in macrophages exacerbates multiple low-dose streptozotocin-induced diabetes by attenuating M2 macrophage polarization. Cell Death Dis. 2019;10(12):892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aribi M. Candidate genes implicated in type 1 diabetes susceptibility. Curr Diabetes Rev. 2008;4(2):110–21.

    Article  CAS  PubMed  Google Scholar 

  81. Strollo R, Vinci C, Arshad MH, Perrett D, Tiberti C, Chiarelli F, et al. Antibodies to post-translationally modified insulin in type 1 diabetes. Diabetologia. 2015;58(12):2851–60.

    Article  CAS  PubMed  Google Scholar 

  82. Nuti F, Gallo A, Real-Fernandez F, Crulli M, Rentier C, Piarulli F, et al. Antibodies to post-translationally modified mitochondrial peptide PDC-E2(167–184) in type 1 diabetes. Arch Biochem Biophys. 2018;659:66–74.

    Article  CAS  PubMed  Google Scholar 

  83. Ramakrishnan P, Clark PM, Mason DE, Peters EC, Hsieh-Wilson LC, Baltimore D. Activation of the transcriptional function of the NF-κB protein c-Rel by O-GlcNAc glycosylation. Sci Signal. 2013;6(290):ra75.

  84. de Jesus TJ, Tomalka JA, Centore JT, Staback Rodriguez FD, Agarwal RA, Liu AR, et al. Negative regulation of FOXP3 expression by c-Rel O-GlcNAcylation. Glycobiology. 2021;31(7):812–26.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Draznin B, Aroda VR, Bakris G, Benson G, Brown FM, Freeman R, et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022;45(Supplement_1):S125-43.

  86. Sodré FMC, Bissenova S, Bruggeman Y, Tilvawala R, Cook DP, Berthault C, et al. Peptidylarginine Deiminase Inhibition Prevents Diabetes Development in NOD Mice. Diabetes. 2021;70(2):516–28.

    Article  PubMed  Google Scholar 

  87. Kawalkowska J, Quirke AM, Ghari F, Davis S, Subramanian V, Thompson PR, et al. Abrogation of collagen-induced arthritis by a peptidyl arginine deiminase inhibitor is associated with modulation of T cell-mediated immune responses. Sci Rep. 2016;6:26430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Knight JS, Subramanian V, O’Dell AA, Yalavarthi S, Zhao W, Smith CK, et al. Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann Rheum Dis. 2015;74(12):2199–206.

    Article  CAS  PubMed  Google Scholar 

  89. Kawaguchi H, Matsumoto I, Osada A, Kurata I, Ebe H, Tanaka Y, et al. Peptidyl arginine deiminase inhibition suppresses arthritis via decreased protein citrullination in joints and serum with the downregulation of interleukin-6. Mod Rheumatol. 2019;29(6):964–9.

    Article  CAS  PubMed  Google Scholar 

  90. Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol. 2021;17(3):150–61.

    Article  CAS  PubMed  Google Scholar 

  91. Taylor R. Type 2 diabetes: etiology and reversibility. Diabetes Care. 2013;36(4):1047–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vercoutter-Edouart AS, El Yazidi-Belkoura I, Guinez C, Baldini S, Leturcq M, Mortuaire M, et al. Detection and identification of O-GlcNAcylated proteins by proteomic approaches. Proteomics. 2015;15(5–6):1039–50.

    Article  CAS  PubMed  Google Scholar 

  93. Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem. 1991;266(8):4706–12.

    Article  CAS  PubMed  Google Scholar 

  94. McClain DA, Lubas WA, Cooksey RC, Hazel M, Parker GJ, Love DC, et al. Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proc Natl Acad Sci U S A. 2002;99(16):10695–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vosseller K, Wells L, Lane MD, Hart GW. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc Natl Acad Sci U S A. 2002;99(8):5313–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sermikli BP, Aydogdu G, Yilmaz E. Role of the O-GlcNAc modification on insulin resistance and endoplasmic reticulum stress in 3T3-L1 cells. Mol Biol Rep. 2020;47(8):5927–42.

    Article  CAS  PubMed  Google Scholar 

  97. Teo CF, Wollaston-Hayden EE, Wells L. Hexosamine flux, the O-GlcNAc modification, and the development of insulin resistance in adipocytes. Mol Cell Endocrinol. 2010;318(1–2):44–53.

    Article  CAS  PubMed  Google Scholar 

  98. Alejandro EU, Bozadjieva N, Kumusoglu D, Abdulhamid S, Levine H, Haataja L, et al. Disruption of O-linked N-Acetylglucosamine Signaling Induces ER Stress and β Cell Failure. Cell Rep. 2015;13(11):2527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Andrali SS, Qian Q, Ozcan S. Glucose mediates the translocation of NeuroD1 by O-linked glycosylation. J Biol Chem. 2007;282(21):15589–96.

    Article  CAS  PubMed  Google Scholar 

  100. Kebede M, Ferdaoussi M, Mancini A, Alquier T, Kulkarni RN, Walker MD, et al. Glucose activates free fatty acid receptor 1 gene transcription via phosphatidylinositol-3-kinase-dependent O-GlcNAcylation of pancreas-duodenum homeobox-1. Proc Natl Acad Sci U S A. 2012;109(7):2376–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kang ES, Han D, Park J, Kwak TK, Oh MA, Lee SA, et al. O-GlcNAc modulation at Akt1 Ser473 correlates with apoptosis of murine pancreatic beta cells. Exp Cell Res. 2008;314(11–12):2238–48.

    Article  CAS  PubMed  Google Scholar 

  102. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu K, Paterson AJ, Chin E, Kudlow JE. Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells: linkage of O-linked GlcNAc to beta cell death. Proc Natl Acad Sci U S A. 2000;97(6):2820–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Federici M, Hribal M, Perego L, Ranalli M, Caradonna Z, Perego C, et al. High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes. 2001;50(6):1290–301.

    Article  CAS  PubMed  Google Scholar 

  105. Very N, Vercoutter-Edouart AS, Lefebvre T, Hardivillé S, El Yazidi-Belkoura I. Cross-Dysregulation of O-GlcNAcylation and PI3K/AKT/mTOR Axis in Human Chronic Diseases. Front Endocrinol (Lausanne). 2018;9:602.

    Article  Google Scholar 

  106. Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked beta-N-acetylglucosamine in 3T3-L1 adipocytes. J Biol Chem. 2010;285(8):5204–11.

    Article  PubMed  Google Scholar 

  107. Nie H, Yi W. O-GlcNAcylation, a sweet link to the pathology of diseases. J Zhejiang Univ Sci B. 2019;20(5):437–48.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature. 2008;451(7181):964–9.

    Article  CAS  PubMed  Google Scholar 

  109. McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F, et al. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci U S A. 2004;101(24):8852–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  CAS  PubMed  Google Scholar 

  111. Lim JM, Wollaston-Hayden EE, Teo CF, Hausman D, Wells L. Quantitative secretome and glycome of primary human adipocytes during insulin resistance. Clin Proteomics. 2014;11(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bacigalupa ZA, Bhadiadra CH, Reginato MJ. O-GlcNAcylation: key regulator of glycolytic pathways. J Bioenerg Biomembr. 2018;50(3):189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sharma NS, Saluja AK, Banerjee S. “Nutrient-sensing” and self-renewal: O-GlcNAc in a new role. J Bioenerg Biomembr. 2018;50(3):205–11.

    Article  CAS  PubMed  Google Scholar 

  114. Baldini SF, Steenackers A, Olivier-Van Stichelen S, Mir AM, Mortuaire M, Lefebvre T, et al. Glucokinase expression is regulated by glucose through O-GlcNAc glycosylation. Biochem Biophys Res Commun. 2016;478(2):942–8.

    Article  CAS  PubMed  Google Scholar 

  115. Koch LG, Britton SL, Wisløff U. A rat model system to study complex disease risks, fitness, aging, and longevity. Trends Cardiovasc Med. 2012;22(2):29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cieniewski-Bernard C, Lambert M, Dupont E, Montel V, Stevens L, Bastide B. O-GlcNAcylation, contractile protein modifications and calcium affinity in skeletal muscle. Front Physiol. 2014;5:421.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Macauley MS, Shan X, Yuzwa SA, Gloster TM, Vocadlo DJ. Elevation of Global O-GlcNAc in rodents using a selective O-GlcNAcase inhibitor does not cause insulin resistance or perturb glucohomeostasis. Chem Biol. 2010;17(9):949–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Macauley MS, Bubb AK, Martinez-Fleites C, Davies GJ, Vocadlo DJ. Elevation of global O-GlcNAc levels in 3T3-L1 adipocytes by selective inhibition of O-GlcNAcase does not induce insulin resistance. J Biol Chem. 2008;283(50):34687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Macauley MS, He Y, Gloster TM, Stubbs KA, Davies GJ, Vocadlo DJ. Inhibition of O-GlcNAcase using a potent and cell-permeable inhibitor does not induce insulin resistance in 3T3-L1 adipocytes. Chem Biol. 2010;17(9):937–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yang YR, Jang HJ, Choi SS, Lee YH, Lee GH, Seo YK, et al. Obesity resistance and increased energy expenditure by white adipose tissue browning in Oga(+/-) mice. Diabetologia. 2015;58(12):2867–76.

    Article  CAS  PubMed  Google Scholar 

  121. Ida S, Morino K, Sekine O, Ohashi N, Kume S, Chano T, et al. Diverse metabolic effects of O-GlcNAcylation in the pancreas but limited effects in insulin-sensitive organs in mice. Diabetologia. 2017;60(9):1761–9.

    Article  CAS  PubMed  Google Scholar 

  122. Dentin R, Hedrick S, Xie J, Yates J 3rd, Montminy M. Hepatic glucose sensing via the CREB coactivator CRTC2. Science. 2008;319(5868):1402–5.

    Article  CAS  PubMed  Google Scholar 

  123. Robinson KA, Ball LE, Buse MG. Reduction of O-GlcNAc protein modification does not prevent insulin resistance in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab. 2007;292(3):E884-890.

    Article  CAS  PubMed  Google Scholar 

  124. Hwang JS, Park JW, Nam MS, Cho H, Han IO. Glucosamine enhances body weight gain and reduces insulin response in mice fed chow diet but mitigates obesity, insulin resistance and impaired glucose tolerance in mice high-fat diet. Metabolism. 2015;64(3):368–79.

    Article  CAS  PubMed  Google Scholar 

  125. Rossetti L, Hawkins M, Chen W, Gindi J, Barzilai N. In vivo glucosamine infusion induces insulin resistance in normoglycemic but not in hyperglycemic conscious rats. J Clin Invest. 1995;96(1):132–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wells L, Vosseller K, Hart GW. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science. 2001;291(5512):2376–8.

    Article  CAS  PubMed  Google Scholar 

  127. Wang Z, Gucek M, Hart GW. Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci U S A. 2008;105(37):13793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446(7139):1017–22.

    Article  CAS  PubMed  Google Scholar 

  129. Zhang Y, Zhang Y, Yu Y. Global Phosphoproteomic Analysis of Insulin/Akt/mTORC1/S6K Signaling in Rat Hepatocytes. J Proteome Res. 2017;16(8):2825–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stafeev IS, Sklyanik IA, Yah’yaev KA, Shestakova EA, Yurasov AV, Karmadonov AV, et al. Low AS160 and high SGK basal phosphorylation associates with impaired incretin profile and type 2 diabetes in adipose tissue of obese patients. Diabetes Res Clin Pract. 2019;158: 107928.

    Article  CAS  PubMed  Google Scholar 

  131. Li X, Molina H, Huang H, Zhang YY, Liu M, Qian SW, et al. O-linked N-acetylglucosamine modification on CCAAT enhancer-binding protein beta: role during adipocyte differentiation. J Biol Chem. 2009;284(29):19248–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lin Y, Liu J, Chen J, Yao C, Yang Y, Wang J, et al. FADD Phosphorylation Modulates Blood Glucose Levels by Decreasing the Expression of Insulin-Degrading Enzyme. Mol Cells. 2020;43(4):373–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen L, Sun X, Xiao H, Xu F, Yang Y, Lin Z, et al. PAQR3 regulates phosphorylation of FoxO1 in insulin-resistant HepG2 cells via NF-κB signaling pathway. Exp Cell Res. 2019;381(2):301–10.

    Article  CAS  PubMed  Google Scholar 

  134. Rada P, Mosquera A, Muntané J, Ferrandiz F, Rodriguez-Mañas L, de Pablo F, et al. Differential effects of metformin glycinate and hydrochloride in glucose production, AMPK phosphorylation and insulin sensitivity in hepatocytes from non-diabetic and diabetic mice. Food Chem Toxicol. 2019;123:470–80.

    Article  CAS  PubMed  Google Scholar 

  135. Cochrane VA, Wu Y, Yang Z, ElSheikh A, Dunford J, Kievit P, et al. Leptin modulates pancreatic β-cell membrane potential through Src kinase-mediated phosphorylation of NMDA receptors. J Biol Chem. 2020;295(50):17281–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kim JS, Kim WK, Oh KJ, Lee EW, Han BS, Lee SC, et al. Protein Tyrosine Phosphatase, Receptor Type B (PTPRB) Inhibits Brown Adipocyte Differentiation through Regulation of VEGFR2 Phosphorylation. J Microbiol Biotechnol. 2019;29(4):645–50.

    Article  CAS  PubMed  Google Scholar 

  137. Davey JS, Carmichael RE, Craig TJ. Protein SUMOylation regulates insulin secretion at multiple stages. Sci Rep. 2019;9(1):2895.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Rajan S, Torres J, Thompson MS, Philipson LH. SUMO downregulates GLP-1-stimulated cAMP generation and insulin secretion. Am J Physiol Endocrinol Metab. 2012;302(6):E714-723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dai XQ, Plummer G, Casimir M, Kang Y, Hajmrle C, Gaisano HY, et al. SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans. Diabetes. 2011;60(3):838–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fu J, Githaka JM, Dai X, Plummer G, Suzuki K, Spigelman AF, et al. A glucose-dependent spatial patterning of exocytosis in human β-cells is disrupted in type 2 diabetes. JCI Insight. 2019;5(12).

  141. Yuan W, Ma C, Zhou Y, Wang M, Zeng G, Huang Q. Negative regulation of eNOS-NO signaling by over-SUMOylation of PPARγ contributes to insulin resistance and dysfunction of vascular endothelium in rats. Vascul Pharmacol. 2019;122–123: 106597.

    Article  PubMed  Google Scholar 

  142. Lan D, Shen X, Yuan W, Zhou Y, Huang Q. Sumoylation of PPARγ contributes to vascular endothelium insulin resistance through stabilizing the PPARγ-NcoR complex. J Cell Physiol. 2019;234(11):19663–74.

    Article  CAS  PubMed  Google Scholar 

  143. Li N, Zhang S, Xiong F, Eizirik DL, Wang CY. SUMOylation, a multifaceted regulatory mechanism in the pancreatic beta cells. Semin Cell Dev Biol. 2020;103:51–8.

    Article  CAS  PubMed  Google Scholar 

  144. Hu X, Zhang Q, Zheng J, Kong W, Zhang HH, Zeng TS, et al. Alteration of FXR phosphorylation and sumoylation in liver in the development of adult catch-up growth. Exp Biol Med (Maywood). 2017;242(3):297–304.

    Article  CAS  Google Scholar 

  145. Braun H, Koop R, Ertmer A, Nacht S, Suske G. Transcription factor Sp3 is regulated by acetylation. Nucleic Acids Res. 2001;29(24):4994–5000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Benhamed F, Filhoulaud G, Caron S, Lefebvre P, Staels B, Postic C. O-GlcNAcylation Links ChREBP and FXR to Glucose-Sensing. Front Endocrinol (Lausanne). 2014;5:230.

    Google Scholar 

  147. Balasubramaniyan N, Luo Y, Sun AQ, Suchy FJ. SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes. J Biol Chem. 2013;288(19):13850–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 2007;6(2):105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bricambert J, Miranda J, Benhamed F, Girard J, Postic C, Dentin R. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest. 2010;120(12):4316–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ceseña TI, Cui TX, Subramanian L, Fulton CT, Iñiguez-Lluhí JA, Kwok RP, et al. Acetylation and deacetylation regulate CCAAT/enhancer binding protein beta at K39 in mediating gene transcription. Mol Cell Endocrinol. 2008;289(1–2):94–101.

    Article  PubMed  Google Scholar 

  151. Watanabe H, Inaba Y, Kimura K, Matsumoto M, Kaneko S, Kasuga M, et al. Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein. Nat Commun. 2018;9(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Dominy JE Jr, Lee Y, Jedrychowski MP, Chim H, Jurczak MJ, Camporez JP, et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol Cell. 2012;48(6):900–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lee Y, Dominy JE, Choi YJ, Jurczak M, Tolliday N, Camporez JP, et al. Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature. 2014;510(7506):547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang C, Zhong T, Li Y, Li X, Yuan X, Liu L, et al. The hepatic AMPK-TET1-SIRT1 axis regulates glucose homeostasis. Elife. 2021;10.

  155. Sharabi K, Lin H, Tavares CDJ, Dominy JE, Camporez JP, Perry RJ, et al. Selective Chemical Inhibition of PGC-1α Gluconeogenic Activity Ameliorates Type 2 Diabetes. Cell. 2017;169(1):148-160.e115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sharma S, Taliyan R. Histone deacetylase inhibitors: Future therapeutics for insulin resistance and type 2 diabetes. Pharmacol Res. 2016;113(Pt A):320–6.

    Article  CAS  PubMed  Google Scholar 

  157. Katafuchi T, Holland WL, Kollipara RK, Kittler R, Mangelsdorf DJ, Kliewer SA. PPARγ-K107 SUMOylation regulates insulin sensitivity but not adiposity in mice. Proc Natl Acad Sci U S A. 2018;115(48):12102–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chen Y, Zhao X, Wu H. Metabolic Stress and Cardiovascular Disease in Diabetes Mellitus: The Role of Protein O-GlcNAc Modification. Arterioscler Thromb Vasc Biol. 2019;39(10):1911–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gurel Z, Sheibani N. O-Linked β-N-acetylglucosamine (O-GlcNAc) modification: a new pathway to decode pathogenesis of diabetic retinopathy. Clin Sci (Lond). 2018;132(2):185–98.

    Article  CAS  Google Scholar 

  160. Pontrelli P, Oranger A, Barozzino M, Conserva F, Papale M, Gesualdo L. The pathological role of the ubiquitination pathway in diabetic nephropathy. Minerva Med. 2018;109(1):53–67.

    PubMed  Google Scholar 

  161. Marré ML, Piganelli JD. Environmental Factors Contribute to β Cell Endoplasmic Reticulum Stress and Neo-Antigen Formation in Type 1 Diabetes. Front Endocrinol (Lausanne). 2017;8:262.

    Article  Google Scholar 

  162. Strollo R, Vinci C, Napoli N, Pozzilli P, Ludvigsson J, Nissim A. Antibodies to post-translationally modified insulin as a novel biomarker for prediction of type 1 diabetes in children. Diabetologia. 2017;60(8):1467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Springhorn C, Matsha TE, Erasmus RT, Essop MF. Exploring leukocyte O-GlcNAcylation as a novel diagnostic tool for the earlier detection of type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97(12):4640–9.

    Article  CAS  PubMed  Google Scholar 

  164. Lieberman SM, Evans AM, Han B, Takaki T, Vinnitskaya Y, Caldwell JA, et al. Identification of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc Natl Acad Sci U S A. 2003;100(14):8384–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mukherjee R, Wagar D, Stephens TA, Lee-Chan E, Singh B. Identification of CD4+ T cell-specific epitopes of islet-specific glucose-6-phosphatase catalytic subunit-related protein: a novel beta cell autoantigen in type 1 diabetes. J Immunol. 2005;174(9):5306–15.

    Article  CAS  PubMed  Google Scholar 

  166. Yang J, Danke NA, Berger D, Reichstetter S, Reijonen H, Greenbaum C, et al. Islet-specific glucose-6-phosphatase catalytic subunit-related protein-reactive CD4+ T cells in human subjects. J Immunol. 2006;176(5):2781–9.

    Article  CAS  PubMed  Google Scholar 

  167. Strollo R, Rizzo P, Spoletini M, Landy R, Hughes C, Ponchel F, et al. HLA-dependent autoantibodies against post-translationally modified collagen type II in type 1 diabetes mellitus. Diabetologia. 2013;56(3):563–72.

    Article  CAS  PubMed  Google Scholar 

  168. Scotto M, Afonso G, Larger E, Raverdy C, Lemonnier FA, Carel JC, et al. Zinc transporter (ZnT)8(186–194) is an immunodominant CD8+ T cell epitope in HLA-A2+ type 1 diabetic patients. Diabetologia. 2012;55(7):2026–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dang M, Rockell J, Wagner R, Wenzlau JM, Yu L, Hutton JC, et al. Human type 1 diabetes is associated with T cell autoimmunity to zinc transporter 8. J Immunol. 2011;186(10):6056–63.

    Article  CAS  PubMed  Google Scholar 

  170. Lockridge A, Jo S, Gustafson E, Damberg N, Mohan R, Olson M, et al. Islet O-GlcNAcylation Is Required for Lipid Potentiation of Insulin Secretion through SERCA2. Cell Rep. 2020;31(5): 107609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jo S, Lockridge A, Alejandro EU. eIF4G1 and carboxypeptidase E axis dysregulation in O-GlcNAc transferase-deficient pancreatic β-cells contributes to hyperproinsulinemia in mice. J Biol Chem. 2019;294(35):13040–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chattopadhyay T, Maniyadath B, Bagul HP, Chakraborty A, Shukla N, Budnar S, et al. Spatiotemporal gating of SIRT1 functions by O-GlcNAcylation is essential for liver metabolic switching and prevents hyperglycemia. Proc Natl Acad Sci U S A. 2020;117(12):6890–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Oliveri LM, Buzaleh AM, Gerez EN. An increase in O-GlcNAcylation of Sp1 down-regulates the gene expression of pi class glutathione S-transferase in diabetic mice. Biochem Biophys Rep. 2021;27: 101049.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Gonzalez-Rellan MJ, Fondevila MF, Fernandez U, Rodríguez A, Varela-Rey M, Veyrat-Durebex C, et al. O-GlcNAcylated p53 in the liver modulates hepatic glucose production. Nat Commun. 2021;12(1):5068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Berthier A, Vinod M, Porez G, Steenackers A, Alexandre J, Yamakawa N, et al. Combinatorial regulation of hepatic cytoplasmic signaling and nuclear transcriptional events by the OGT/REV-ERBα complex. Proc Natl Acad Sci U S A. 2018;115(47):E11033-e11042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gaborit B, Govers R, Altié A, Brunel JM, Morange P, Peiretti F. The aminosterol Claramine inhibits β-secretase 1-mediated insulin receptor cleavage. J Biol Chem. 2021;297(1): 100818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang X, Qiao Y, Wu Q, Chen Y, Zou S, Liu X, et al. The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat Commun. 2017;8:15280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ruan HB, Han X, Li MD, Singh JP, Qian K, Azarhoush S, et al. O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability. Cell Metab. 2012;16(2):226–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Guinez C, Filhoulaud G, Rayah-Benhamed F, Marmier S, Dubuquoy C, Dentin R, et al. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes. 2011;60(5):1399–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Housley MP, Rodgers JT, Udeshi ND, Kelly TJ, Shabanowitz J, Hunt DF, et al. O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem. 2008;283(24):16283–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Anthonisen EH, Berven L, Holm S, Nygård M, Nebb HI, Grønning-Wang LM. Nuclear receptor liver X receptor is O-GlcNAc-modified in response to glucose. J Biol Chem. 2010;285(3):1607–15.

    Article  CAS  PubMed  Google Scholar 

  182. Yang Y, Fu M, Li MD, Zhang K, Zhang B, Wang S, et al. O-GlcNAc transferase inhibits visceral fat lipolysis and promotes diet-induced obesity. Nat Commun. 2020;11(1):181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yang Y, Li X, Luan HH, Zhang B, Zhang K, Nam JH, et al. OGT suppresses S6K1-mediated macrophage inflammation and metabolic disturbance. Proc Natl Acad Sci U S A. 2020;117(28):16616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Parker GJ, Lund KC, Taylor RP, McClain DA. Insulin resistance of glycogen synthase mediated by o-linked N-acetylglucosamine. J Biol Chem. 2003;278(12):10022–7.

    Article  CAS  PubMed  Google Scholar 

  185. Qin X, Li X, Liu C, Chen Z. A novel mechanism of pre-transplant insulin resistance contributing to post-transplant complications: Cyclosporin A-induced O-GlcNAcylation. Biochem Biophys Res Commun. 2017;492(2):172–7.

    Article  CAS  PubMed  Google Scholar 

  186. Weyrauch LA, McMillin SL, Witczak CA. Insulin resistance does not impair mechanical overload-stimulated glucose uptake, but does alter the metabolic fate of glucose in mouse muscle. Int J Mol Sci. 2020;21(13).

  187. Shi H, Munk A, Nielsen TS, Daughtry MR, Larsson L, Li S, et al. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity. Mol Metab. 2018;11:160–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wang X, Feng Z, Wang X, Yang L, Han S, Cao K, et al. O-GlcNAcase deficiency suppresses skeletal myogenesis and insulin sensitivity in mice through the modulation of mitochondrial homeostasis. Diabetologia. 2016;59(6):1287–96.

    Article  CAS  PubMed  Google Scholar 

  189. Moore M, Avula N, Jo S, Beetch M, Alejandro EU. Disruption of O-Linked N-Acetylglucosamine Signaling in Placenta Induces Insulin Sensitivity in Female Offspring. Int J Mol Sci. 2021;22(13).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC), China [grant number 81760160]. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The first draft of this article was written by Ang Hu and Haohong Zou. The manuscript was strictly reviewed, modified, and edited by Jianing Zhong and Bin Chen. All authors approved the final version submitted and agree on its submission to this journal.

Corresponding author

Correspondence to Jianing Zhong.

Ethics declarations

Competing Interests

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, A., Zou, H., Chen, B. et al. Posttranslational modifications in diabetes: Mechanisms and functions. Rev Endocr Metab Disord 23, 1011–1033 (2022). https://doi.org/10.1007/s11154-022-09740-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-022-09740-x

Keywords

Navigation