Skip to main content

Advertisement

Log in

Calcium citrate: from biochemistry and physiology to clinical applications

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Adequate daily calcium intake should normally be achieved by dietary sources. Since low calcium diets are quite common in subjects that do not reach the recommended intake and particularly those at risk of fractures, calcium supplements may become necessary. Different forms of calcium salts are available, but products containing calcium citrate and calcium carbonate complexes are the most frequently used. Although only limited evidence on the efficacy and long-term safety of calcium citrate is available, these supplements may represent a valuable product for the management of different chronic pathological conditions. The aim of this review was to evaluate the current and potential clinical applications of calcium citrate. In particular, we focused on the use of calcium citrate supplementation in subjects with osteoporosis or in bariatric patients. Other pathological conditions that could benefit calcium citrate supplementation may include achloridria, chronic hypoparathyroidism and hypocitraturic subjects with moderate/high risk of nephrolithiasis. Indeed, citrate salts are widely used in the treatment of nephrolithiasis, since they have shown an inhibitory effect on kidney stone formation and recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ATF6α:

activating transcription factor 6α

CaSR:

calcium sensing receptor

BMD:

bone mineral density

CI:

confidence interval

CIC:

mitochondrial citrate carrier

CTX:

C-terminal telopeptide (serum Beta cross laps)

ER:

endoplasmic reticulum

PCC:

potassium calcium citrate

PFK1:

phosphofructokinase 1

PFK2:

6-phosphofructo-2-kinase/fructose-2,6-biphosphatases

PTH:

parathyroid hormone

RR:

relative risk

TRPV6:

transient receptor potential vanilloid type 6

References

  1. Peacock M. Calcium metabolism in health and disease. Clin J Am Soc Nephrol. 2010;5(Suppl 1):S23–30.

    Article  CAS  PubMed  Google Scholar 

  2. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians Need to know. J Clin Endocrinol Metab. 2011;96:53–8.

    Article  CAS  PubMed  Google Scholar 

  3. Christakos S. Mechanism of action of 1,25-dihydroxyvitamin D3 on intestinal calcium absorption. Rev Endocr Metab Disord. 2012;13:39–44.

    Article  CAS  PubMed  Google Scholar 

  4. Vautour L, Goltzman D. Regulation of Calcium Homeostasis. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism [Internet]. John Wiley & Sons, Ltd; 2018 [cited 2019 Jun 20]. p. 163–72. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119266594.ch22

  5. Fraser DR, Kodicek E. Regulation of 25-hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone. Nat New Biol. 1973;241:163–6.

    Article  CAS  PubMed  Google Scholar 

  6. Portillo MR, Rodríguez-Ortiz ME. Secondary Hyperparthyroidism: pathogenesis, diagnosis, preventive and therapeutic strategies. Rev Endocr Metab Disord. 2017;18:79–95.

    Article  CAS  PubMed  Google Scholar 

  7. Li K, Wang X-F, Li D-Y, Chen Y-C, Zhao L-J, Liu X-G, et al. The good, the bad, and the ugly of calcium supplementation: a review of calcium intake on human health. Clin Interv Aging. 2018;13:2443–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hunt CD, Johnson LK. Calcium requirements: new estimations for men and women by cross-sectional statistical analyses of calcium balance data from metabolic studies. Am J Clin Nutr. 2007;86:1054–63.

    Article  CAS  PubMed  Google Scholar 

  9. Tang Y-M, Wang D-G, Li J, Li X-H, Wang Q, Liu N, et al. Relationships between micronutrient losses in sweat and blood pressure among heat-exposed steelworkers. Ind Health. 2016;54:215–23.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Christakos S, Dhawan P, Porta A, Mady LJ, Seth T. Vitamin D and intestinal calcium absorption. Mol Cell Endocrinol. 2011;347:25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001;2:285–93.

    Article  CAS  PubMed  Google Scholar 

  12. Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, et al. Tight junction proteins Claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. MBoC. 2008;19:1912–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bronner F. Mechanisms of intestinal calcium absorption. J Cell Biochem. 2003;88:387–93.

    Article  CAS  PubMed  Google Scholar 

  14. Reid IR, Bristow SM, Bolland MJ. Calcium supplements: benefits and risks. J Intern Med. 2015;278:354–68.

    Article  CAS  PubMed  Google Scholar 

  15. Shankar K, M S, Raizada P, Jain RA. Randomized open-label clinical study comparing the efficacy, safety, and bioavailability of calcium Lysinate with calcium carbonate and calcium citrate malate in osteopenia patients. J Orthop Case Rep. 2018;8:15–9.

    PubMed  PubMed Central  Google Scholar 

  16. van der Velde RY, Brouwers JRBJ, Geusens PP, Lems WF, van den Bergh JPW. Calcium and vitamin D supplementation: state of the art for daily practice. Food Nutr Res. 2014;58.

  17. Quesada Gómez JM, Blanch Rubió J, Díaz Curiel M, Díez PA. Calcium citrate and vitamin D in the treatment of osteoporosis. Clin Drug Investig. 2011;31:285–98.

    Article  PubMed  Google Scholar 

  18. Wood RJ, Gerhardt A, Rosenberg IH. Effects of glucose and glucose polymers on calcium absorption in healthy subjects. Am J Clin Nutr. 1987;46:699–701.

    Article  CAS  PubMed  Google Scholar 

  19. Straub DA. Calcium supplementation in clinical practice: a review of forms, doses, and indications. Nutr Clin Pract. 2007;22:286–96.

    Article  PubMed  Google Scholar 

  20. Sakhaee K, Bhuket T, Adams-Huet B, Rao DS. Meta-analysis of calcium bioavailability: a comparison of calcium citrate with calcium carbonate. Am J Ther. 1999;6:313–21.

    Article  CAS  PubMed  Google Scholar 

  21. Hamm LL. Renal handling of citrate. Kidney Int. 1990;38:728–35.

    Article  CAS  PubMed  Google Scholar 

  22. Walser M. Ion association. VI. Interactions between calcium, magnesium, inorganic phosphate, citrate and protein in normal human plasma. J Clin Invest. 1961;40:723–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Walser M. Divalent Cations: Physiochemical State in Glomerular Filtrate and Urine and Renal Excretion. In Handbook of Physiology. American Physiology Society; 1973.

  24. Caudarella R, Vescini F, Buffa A, Stefoni S. Citrate and mineral metabolism: kidney stones and bone disease. Front Biosci. 2003;8:s1084–106.

    Article  PubMed  Google Scholar 

  25. Simpson DP. Citrate excretion: a window on renal metabolism. Am J Phys. 1983;244:F223–34.

    CAS  Google Scholar 

  26. Chaouch A, Porcelli V, Cox D, Edvardson S, Scarcia P, De Grassi A, et al. Mutations in the mitochondrial citrate carrier SLC25A1 are associated with impaired neuromuscular transmission. J Neuromuscul Dis. 2014;1:75–90.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nota B, Struys EA, Pop A, Jansen EE, Fernandez Ojeda MR, Kanhai WA, et al. Deficiency in SLC25A1, encoding the mitochondrial citrate carrier, causes combined D-2- and L-2-hydroxyglutaric aciduria. Am J Hum Genet. 2013;92:627–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Catalina-Rodriguez O, Kolukula VK, Tomita Y, Preet A, Palmieri F, Wellstein A, et al. The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget. 2012;3:1220–35.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chesney J. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Curr Opin Clin Nutr Metab Care. 2006;9:535–9.

    Article  CAS  PubMed  Google Scholar 

  30. Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002;277:30409–12.

    Article  CAS  PubMed  Google Scholar 

  31. Damiano F, Tocci R, Gnoni GV, Siculella L. Expression of citrate carrier gene is activated by ER stress effectors XBP1 and ATF6α, binding to an UPRE in its promoter. Biochim Biophys Acta. 1849;2015:23–31.

    Google Scholar 

  32. Iacobazzi V, Infantino V, Palmieri F. Epigenetic mechanisms and Sp1 regulate mitochondrial citrate carrier gene expression. Biochem Biophys Res Commun. 2008;376:15–20.

    Article  CAS  PubMed  Google Scholar 

  33. Morciano P, Carrisi C, Capobianco L, Mannini L, Burgio G, Cestra G, et al. A conserved role for the mitochondrial citrate transporter sea/SLC25A1 in the maintenance of chromosome integrity. Hum Mol Genet. 2009;18:4180–8.

    Article  CAS  PubMed  Google Scholar 

  34. Dickens F. The citric acid content of animal tissues, with reference to its occurrence in bone and tumour. Biochem J. 1941;35:1011–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barcelo P, Wuhl O, Servitge E, Rousaud A, Pak CY. Randomized double-blind study of potassium citrate in idiopathic hypocitraturic calcium nephrolithiasis. J Urol. 1993;150:1761–4.

    Article  CAS  PubMed  Google Scholar 

  36. Ettinger B, Pak CY, Citron JT, Thomas C, Adams-Huet B, Vangessel A. Potassium-magnesium citrate is an effective prophylaxis against recurrent calcium oxalate nephrolithiasis. J Urol. 1997;158:2069–73.

    Article  CAS  PubMed  Google Scholar 

  37. Hofbauer J, Höbarth K, Szabo N, Marberger M. Alkali citrate prophylaxis in idiopathic recurrent calcium oxalate urolithiasis--a prospective randomized study. Br J Urol. 1994;73:362–5.

    Article  CAS  PubMed  Google Scholar 

  38. Pak CYC, Peterson RD, Poindexter J. Prevention of spinal bone loss by potassium citrate in cases of calcium urolithiasis. J Urol. 2002;168:31–4.

    Article  PubMed  Google Scholar 

  39. Martini LA, Cuppari L, Colugnati FA, Sigulem DM, Szejnfeld VL, Schor N, et al. High sodium chloride intake is associated with low bone density in calcium stone-forming patients. Clin Nephrol. 2000;54:85–93.

    CAS  PubMed  Google Scholar 

  40. Caudarella R, Miniero R, Rizzoli E, Copertari N, Buffa A, Perna C, et al. Urinary citrate excretion in healthy women before and after menopause. Ital J Mineral Electrolyte Metab. 1995;9:31–8.

    Google Scholar 

  41. Fournier A, Ghazali A, Bataille P, Cohen Solal M, Marie A, Brazier M, et al. Bone Involvement in Idiopathic Calcium-Stone Formers in In Kidney Stones: Medical and Surgical Management. Lippincott Williams & Wilkins; 1996.

  42. Osther PJ, Bollerslev J, Hansen AB, Engel K, Kildeberg P. Pathophysiology of incomplete renal tubular acidosis in recurrent renal stone formers: evidence of disturbed calcium, bone and citrate metabolism. Urol Res. 1993;21:169–73.

    Article  CAS  PubMed  Google Scholar 

  43. Pak CY. Citrate and renal calculi: new insights and future directions. Am J Kidney Dis. 1991;17:420–5.

    Article  CAS  PubMed  Google Scholar 

  44. Caudarella R, Buffa A, Rizzoli E, Bianchini G, Vescini F. Is there a link between low urinary citrate excretion and vertebral fractures in postmenopausal females? Ital J Mineral Electrolyte Metab. 2000;14.

  45. Kenny AM, Prestwood KM, Biskup B, Robbins B, Zayas E, Kleppinger A, et al. Comparison of the effects of calcium loading with calcium citrate or calcium carbonate on bone turnover in postmenopausal women. Osteoporos Int. 2004;15:290–4.

    Article  CAS  PubMed  Google Scholar 

  46. Thomas SDC, Need AG, Tucker G, Slobodian P, O’Loughlin PD, Nordin BEC. Suppression of parathyroid hormone and bone resorption by calcium carbonate and calcium citrate in postmenopausal women. Calcif Tissue Int. 2008;83:81–4.

    Article  CAS  PubMed  Google Scholar 

  47. Dawson-Hughes B, Dallal GE, Krall EA, Sadowski L, Sahyoun N, Tannenbaum S. A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. N Engl J Med. 1990;323:878–83.

    Article  CAS  PubMed  Google Scholar 

  48. Riggs BL, O’Fallon WM, Muhs J, O’Connor MK, Kumar R, Melton LJ. Long-term effects of calcium supplementation on serum parathyroid hormone level, bone turnover, and bone loss in elderly women. J Bone Miner Res. 1998;13:168–74.

    Article  CAS  PubMed  Google Scholar 

  49. Heller HJ, Poindexter JR, Adams-Huet B. Effect of estrogen treatment and vitamin D status on differing bioavailabilities of calcium carbonate and calcium citrate. J Clin Pharmacol. 2002;42:1251–6.

    Article  CAS  PubMed  Google Scholar 

  50. Gonnelli S, Cepollaro C, Camporeale A, Nardi P, Rossi S, Gennari C. Acute biochemical variations induced by two different calcium salts in healthy perimenopausal women. Calcif Tissue Int. 1995;57:175–7.

    Article  CAS  PubMed  Google Scholar 

  51. Reginster JY. Calcitonins: newer routes of delivery. Osteoporos Int. 1993;3(Suppl 2):S3–6 discussion S6-7.

    Article  PubMed  Google Scholar 

  52. Sherf Dagan S, Goldenshluger A, Globus I, Schweiger C, Kessler Y, Kowen Sandbank G, et al. Nutritional recommendations for adult bariatric surgery patients: clinical practice. Adv Nutr. 2017;8:382–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Via MA, Mechanick JI. Nutritional and micronutrient Care of Bariatric Surgery Patients: current evidence update. Curr Obes Rep. 2017;6:286–96.

    Article  PubMed  Google Scholar 

  54. Tondapu P, Provost D, Adams-Huet B, Sims T, Chang C, Sakhaee K. Comparison of the absorption of calcium carbonate and calcium citrate after roux-en-Y gastric bypass. Obes Surg. 2009;19:1256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sakhaee K, Griffith C, Pak CYC. Biochemical control of bone loss and stone-forming propensity by potassium-calcium citrate after bariatric surgery. Surg Obes Relat Dis. 2012;8:67–72.

    Article  PubMed  Google Scholar 

  56. Shah M, Simha V, Garg A. Review: long-term impact of bariatric surgery on body weight, comorbidities, and nutritional status. J Clin Endocrinol Metab. 2006;91:4223–31.

    Article  CAS  PubMed  Google Scholar 

  57. Sugerman HJ, Wolfe LG, Sica DA, Clore JN. Diabetes and hypertension in severe obesity and effects of gastric bypass-induced weight loss. Ann Surg. 2003;237:751–8.

    PubMed  PubMed Central  Google Scholar 

  58. Wei J-H, Lee W-J, Chong K, Lee Y-C, Chen S-C, Huang P-H, et al. High incidence of secondary hyperparathyroidism in bariatric patients: comparing different procedures. Obes Surg. 2018;28:798–804.

    Article  PubMed  Google Scholar 

  59. Baretta GAP, Cambi MPC, Rodrigues AL, Mendes SA. Secondary hyperparathyroidism after bariatric surgery: treatment is with calcium carbonate or calcium citrate? Arq Bras Cir Dig. 2015;28(Suppl 1):43–5.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Asplin JR, Coe FL. Hyperoxaluria in kidney stone formers treated with modern bariatric surgery. J Urol. 2007;177:565–9.

    Article  PubMed  Google Scholar 

  61. Nelson WK, Houghton SG, Milliner DS, Lieske JC, Sarr MG. Enteric hyperoxaluria, nephrolithiasis, and oxalate nephropathy: potentially serious and unappreciated complications of roux-en-Y gastric bypass. Surg Obes Relat Dis. 2005;1:481–5.

    Article  PubMed  Google Scholar 

  62. Schafer AL, Weaver CM, Black DM, Wheeler AL, Chang H, Szefc GV, et al. Intestinal calcium absorption decreases dramatically after gastric bypass surgery despite optimization of vitamin D status. J Bone Miner Res. 2015;30:1377–85.

    Article  CAS  PubMed  Google Scholar 

  63. Schafer AL. Vitamin D and intestinal calcium transport after bariatric surgery. J Steroid Biochem Mol Biol. 2017;173:202–10.

    Article  CAS  PubMed  Google Scholar 

  64. Corbeels K, Verlinden L, Lannoo M, Simoens C, Matthys C, Verstuyf A, et al. Thin bones: vitamin D and calcium handling after bariatric surgery. Bone Rep. 2018;8:57–63.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sakhaee K, Pak C. Superior calcium bioavailability of effervescent potassium calcium citrate over tablet formulation of calcium citrate after roux-en-Y gastric bypass. Surg Obes Relat Dis. 2013;9:743–8.

    Article  PubMed  Google Scholar 

  66. Ring Madsen L, Espersen R, Rejnmark L, Richelsen B. Effect of calcium citrate vs calcium carbonate on elevated parathyroid hormone after roux-en-Y gastric bypass. A double-blinded, randomized trial. Clin Endocrinol. 2018;89:734–41.

    Article  CAS  Google Scholar 

  67. Parrott J, Frank L, Rabena R, Craggs-Dino L, Isom KA, Greiman L. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the surgical weight loss patient 2016 update: micronutrients. Surg Obes Relat Dis. 2017;13:727–41.

    Article  PubMed  Google Scholar 

  68. Recker RR. Calcium absorption and achlorhydria. N Engl J Med. 1985;313:70–3.

    Article  CAS  PubMed  Google Scholar 

  69. Cusano NE, Rubin MR, Bilezikian JP. PTH(1-84) replacement therapy for the treatment of hypoparathyroidism. Expert Rev Endocrinol Metab. 2015;10:5–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gafni RI, Langman CB, Guthrie LC, Brillante BA, James R, Yovetich NA, et al. Hypocitraturia is an untoward side effect of synthetic human parathyroid hormone (hPTH) 1-34 therapy in hypoparathyroidism that may increase renal morbidity. J Bone Miner Res. 2018;33:1741–7.

    Article  CAS  PubMed  Google Scholar 

  71. Caudarella R, Vescini F. Urinary citrate and renal stone disease: the preventive role of alkali citrate treatment. Arch Ital Urol Androl. 2009;81:182–7.

    PubMed  Google Scholar 

  72. Fink HA, Wilt TJ, Eidman KE, Garimella PS, MacDonald R, Rutks IR, et al. Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline. Ann Intern Med. 2013;158:535–43.

    Article  PubMed  Google Scholar 

  73. Aggarwal KP, Narula S, Kakkar M, Tandon C. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int. 2013;2013:292953.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kok DJ, Papapoulos SE, Bijvoet OL. Crystal agglomeration is a major element in calcium oxalate urinary stone formation. Kidney Int. 1990;37:51–6.

    Article  CAS  PubMed  Google Scholar 

  75. Phillips R, Hanchanale VS, Myatt A, Somani B, Nabi G, Biyani CS. Citrate salts for preventing and treating calcium containing kidney stones in adults. Cochrane Database Syst Rev. 2015;CD010057.

  76. Carnauba RA, Baptistella AB, Paschoal V, Hübscher GH. Diet-Induced Low-Grade Metabolic Acidosis and Clinical Outcomes: A Review. Nutrients. 2017;9.

    Article  PubMed Central  CAS  Google Scholar 

  77. Gosmanova EO, Gosmanov AR. Osteoporosis in patients with diabetes after kidney transplantation. Rev Endocr Metab Disord. 2017;18:97–106.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Palermo.

Ethics declarations

Conflict of interest

The authors Anda Mihaela Naciu, Gaia Tabacco, Silvia Manfrini and Pierpaolo Trimboli, declare that they have no conflict of interest. Andrea Palermo, Fabio Vescini and Alberto Falchetti have received research grants from Amgen and Abiogen.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palermo, A., Naciu, A.M., Tabacco, G. et al. Calcium citrate: from biochemistry and physiology to clinical applications. Rev Endocr Metab Disord 20, 353–364 (2019). https://doi.org/10.1007/s11154-019-09520-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-019-09520-0

Keywords

Navigation