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Abstract
Increased transportation and logistical costs in agricultural markets have affected the 
spatial allocation of production in the agricultural and food sectors of the economy. 
We develop a spatial model of farm product procurement by a food processor, which 
is designed to capture the effects of supply-chain disruptions on the spatial procure-
ment of farm products in the processed food sector. We use detailed data on produc-
tion and procurement from a large California tomato processor to estimate the key 
parameters of the model, which allow us to calculate the price elasticity of supply 
for California tomato paste production and describe how changes in energy prices 
and transportation costs for primary agricultural products affect the supply of pro-
cessed food.
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1 Introduction

Recent supply chain issues that involve shocks in transportation and logistical costs 
in agricultural markets have played an important role in food price inflation, as ris-
ing energy costs and increased trucking rates have affected the spatial allocation 
of production in the agricultural and food sectors of the US economy. Agricultural 
products that are used as an input in the production of manufactured or processed 
food products require matching the production of primary agricultural products that 
are grown on geographically dispersed farms with the operation of food processors, 
which rely on the primary farm products to produce wholesale food for downstream 
markets.

Because primary agricultural products provide the raw material inputs that are 
used by the food processing industry, farmers who produce agricultural products for 
the processing sector tend to co-locate with food processing plants (food process-
ing firms typically operate several plants). This raises the issue of how the alloca-
tion, pricing, and distribution of primary agricultural products across space in the 
upstream procurement market affects the supply of manufactured food products in 
downstream markets.

In this paper, we examine how the spatial delivery of primary agricultural prod-
ucts affects the elasticity of supply in the downstream processed food market. While 
the importance of spatial delivery costs for agricultural products has been recog-
nized since at least Samuelson (1952) and Takayama and Judge (1971), it is surpris-
ing that there has been little development of models to understand how changes in 
transportation costs for primary agricultural products in upstream markets affects 
the supply of processed food in downstream markets.1 This omission is notable, 
because agricultural products are generally homogeneous commodities that are 
traded at publicly-available and observable prices, which provides an important lens 
to understand the role of transportation and logistical shocks in input procurement 
on the supply of manufactured goods more broadly in the economy.

Understanding how changes in transportation costs impact consumer prices for 
manufactured food is particularly important given the increased public attention on 
energy policies such as carbon taxes that raise fuel prices, and the potential role of 
such policies on food price inflation and the consumer incidence of commodity price 
shocks in the agriculture.

Transportation costs for primary agricultural products represent a substantial 
portion of overall food processing costs. As Durham et  al. (1996) observe for the 
case of processed tomato products, changes over time in the geographic location 
of tomato production in California caused tomatoes to be hauled longer distances, 
which increased transportation costs for the industry to a 15–20% share of raw prod-
uct value. As a result, shocks in the transportation sector have the potential to affect 
the supply of manufactured food products profoundly.

1 A notable exception is Chavas et al. (1998).
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Among other things, understanding how changes in transportation costs for pri-
mary agricultural products affect food processing costs is important for understand-
ing price pass-through in vertically structured industries with an upstream input pro-
curement market and a downstream manufactured product market. In the case of 
food markets, the literature on wholesale and retail price pass-through has found 
substantial price rigidity at the wholesale level that reduces pass-through rates and 
causes delayed pass-through to occur (Nakamura, 2008; Nakamura and Zerom, 
2010; Hong and Li, 2017).

Bonnet et al. (2013) point to the potential role of nonlinear pricing contracts and 
vertical restraints in the manufacturer-retailer portion of the supply chain in explain-
ing wholesale price pass-through in response to cost shocks in primary agricultural 
product markets; however, such an outcome may be driven instead by changes in 
transportation costs in the food processing/manufacturing sector when procurement 
costs rise over distance and upstream shocks in farm prices alter the spatial distribu-
tion of deliveries. This is particularly true in cases where changes in food commod-
ity prices coincide with changes in energy prices, as in the case of grain that can be 
used to produce either manufactured food or biofuel.

We apply our model to examine the production of processing tomatoes in Califor-
nia. The processing tomato industry in California is ideal for studying these effects 
for several reasons. First, California food processors are responsible for the produc-
tion of roughly 95 percent of all processing tomatoes in the US and have approxi-
mately a 33 percent share of the global market (USDA National Agricultural Sta-
tistics Service, 2022b). Second, unlike food manufacturing for highly differentiated 
food products, the production process for tomato processing is relatively simple: It 
essentially involves the combination of heat and pressure to a primary agricultural 
input to produce processed tomato products such as tomato paste.

Third, the tomato processing industry in California relies on a uniform pric-
ing schedule, wherein all sellers of primary agricultural products receive the same 
posted farm-gate price for processing tomatoes, regardless of the firm with which 
they contract or their distance from the processing plant (Durham et  al., 1996). 
Unlike the case of free-on-board (FOB) or “mill” pricing under which a food pro-
cessor pays a constant mill price at the plant gate and sellers are responsible for 
costs of shipping product to the plant, uniform farm-gate pricing involves a commit-
ment by the food processor’s fully absorbing the shipping costs.2

In this paper, we develop a spatial model of primary agricultural product pro-
curement from the California processing tomato sector and use this framework to 
characterize the processed food supply function for tomato paste. Because farmers 
and food processors co-locate in geographic space, the model results in the pass-
through of higher energy costs that increase transportation costs for primary agri-
cultural products into higher prices for processed food. Predicting how changes in 

2 Uniform farm-gate pricing, for this reason, has been noted as a form of price discrimination in which 
nearby growers cross-subsidize more distant growers (Durham et al., 1996) This is price discrimination 
in the sense that (despite the uniform farm-gate price) the near-to-the-processing-plant growers would 
receive a premium if mill pricing instead were the norm.
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energy prices and transportation rates in the farm sector affect processed food sup-
ply is essential to understand how changes in farm product prices pass through to 
changes in wholesale prices for manufactured foods.

Our model conceives of the food processing firm as relying on capital and labor 
inputs to operate one or more plants, where the scale of the plant then determines 
its capacity to process a primary agricultural product into manufactured food prod-
ucts. Firms of this sort must solve not only the usual neoclassical problem of choos-
ing optimal combinations of inputs and scale to maximize profits, taking prices as 
given, but must also deal with the problem of sourcing the agricultural input over 
geographic space from dispersed farm operations to the processing plant.

Because producing the primary agricultural product (processing tomatoes, milk, 
corn, sugar beets, etc.) necessarily occurs on agricultural land, and because different 
land is better or worse suited to the production of particular crops, the food pro-
cessing firm solves an important co-locational problem when it decides where to 
construct and operate its plants. Specifically, as long as transporting the agricultural 
input is costly (either because of the direct costs of moving the inputs, or because 
of the perishability of the input) the firm has an incentive to locate its plants near 
productive agricultural land where the primary agricultural product is sourced. The 
operating scale of the plant, in turn, becomes a scarce factor that generates positive 
Ricardian (quasi) rents.

We depart from the existing literature by modeling a production process that 
requires sourcing the primary agricultural product from a procurement market that 
involves increasing transportation costs over distance. The processor chooses plant 
operating capacity in the long run, which requires deployment of capital and labor 
inputs. Then the processor procures a primary agricultural product (e.g., toma-
toes), and applies pressure and heat to inputs of raw farm material to produce a fin-
ished processed food product (e.g., tomato paste) for sale in the wholesale market. 
Changes in transportation costs for the primary agricultural product thereby affect 
the marginal cost of processed food production by altering the geographic extent of 
the procurement market around the processing plant, which gives rise to an upward-
sloping supply function for the manufactured good.

To estimate the long run elasticity of supply for processed tomato products, we 
combine restrictions from our simple model with proprietary data that we collected 
from California tomato processing firms to calculate the elasticity of processed 
tomato supply. Results from the model are as follows: (i) the spatial distribution of 
primary agricultural products affects the marginal cost of processed food supply; (ii) 
in terms of the supply elasticity of processed food, greater land productivity and/or 
a larger land density of farms in the geographic proximity of the processing plant 
makes food product supply more elastic; (iii) processed food supply becomes less 
elastic as plant capacity increases; and (iv) higher transportation costs for the pri-
mary agricultural product—for example from changes in logistical expenses of con-
tracting loads—make processed food supply less elastic.

We apply the model to examine the elasticity of supply for tomato paste in Cali-
fornia with the use of detailed data on the spatial procurement of processing toma-
toes. Our estimate of the price elasticity of tomato paste supply is 0.97, which is 
at the lower end of the range of residual supply elasticity estimates that face food 
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processors that have been calculated by Durham and Sexton (1992). The relative 
rigidity of tomato paste supply vis a vis processing tomato supply in the upstream 
farm product market indicates the important role of transportation costs in damp-
ening price responses to output changes in markets with uniform pricing and spa-
tial procurement. We also identify novel effects of transportation cost shocks on the 
output of processed food, and thereby contribute estimates to the literature on the 
elasticity of processed food supply with respect to various parameters of the trans-
portation cost function.

The remainder of the paper is organized as follows: In the next section we pro-
vide some background detail on the processing tomato market. Section 3 describes 
our model: We focus first on our novel description of production, and then describe 
the firm’s inverse supply function given this form of production. The critical ele-
ment for determining supply and other elasticities is the cost of sourcing the primary 
agricultural input from across different points in space. We describe how the loca-
tion of agricultural production on land around the processing plant affects transpor-
tation costs, and develop expressions that describe the input cost function in the case 
where farm products are procured from farms located at varying distances from the 
processing plant. Section 4 describes our highly granular data on processing tomato 
transport costs, which we combine with additional data on processing outputs to 
construct an estimated transport cost function that we use to calculate various supply 
elasticities. Section 5 concludes.

2  Background

California processed tomato manufacturers are responsible for producing 96 percent 
of all processed tomato products in the U.S. (11.1 million metric tons (MT) out of 
11.6 million MT in 2021) and provide nearly one-third of total world tomato supply: 
39.1 million MT in 2021. After California, Indiana, Ohio, and Michigan account for 
most of the remaining domestic production, while the dominant international pro-
ducers that compete with California are in China, Italy, and Spain. Processing toma-
toes are mostly processed into tomato paste, with a lesser share devoted to whole-
peeled and diced tomatoes and various tomato sauces. Tomato paste finds its way 
into a very wide array of products, including things that obviously involve tomatoes 
(e.g., tomato juice is generally made from paste), as well as others that may not (e.g., 
beef jerky).

During the prime processing season in late summer (July–September), tomato 
processing facilities seek to maximize capacity by running continuously: twenty-
four hours a day, seven days a week. Part of the management of this production 
schedule involves arranging harvest contracts with growers that specify logis-
tics and timing of deliveries. The raw tomatoes are harvested ripe and supplied 
from farmers’ fields to the processing facility, where they are maintained at the 
facility for a brief time within the season, and are not kept in cold storage. Pro-
cessed tomato products such as tomato paste and canned tomatoes are shelf-stable 
and generally are stored at room temperature on pallets or drums at the plant for 
sale throughout the year without the need for refrigeration. Thus, storage of both 



16 S. Hamilton et al.

1 3

processing tomatoes and processed tomato output requires minimal additional 
energy beyond that accounted for during production within the facility.

While some Californian processors produce additional specialty products, the 
dominant products are paste and diced tomatoes, which are either sold in bulk to 
downstream food manufacturers for further processing into tomato sauce, juice, 
ketchup, and other food products, or else are sold in retail-ready packaging for 
consumers (USDA Economic Research Service, 2022).

Within the State of California, the three biggest processing tomato counties 
are Fresno, Yolo, and San Joaquin, in order of importance, although significant 
production also occurs in Kings, Colusa, Merced, Stanislaus, Solano, and Sutter 
counties. While farm production of processing tomatoes is primarily centered in 
the San Joaquin and Sacramento Valleys, 19 (of 58) counties in the state reported 
significant processing tomato production in 2021 (see Appendix Table 4).

Tomato is a warm-season crop: either planted by sowing seeds directly into the 
ground during late January or early February, or grown in greenhouses until they 
are ready to be planted in the spring (Naeve, 2015). The tomato harvest season 
typically lasts nineteen weeks with the major portion of the harvest occurring 
between July and September. The harvest period typically begins in mid-July, and 
operates at full capacity throughout August and September, with the harvest sea-
son generally winding down in mid-October (Trueblood et al., 2013).

While some processing plants manufacture pulp-based products such as stewed 
and diced tomatoes, most initial processing is done by firms that manufacture 
raw paste. Almost all processing tomato production in California is forward-con-
tracted between the grower and the processing firm, rather than sold on the open 
market, with prices that are settled contractually well before the season starts.

In terms of processed food production, bulk tomato paste comprises roughly 
50–60% of processed tomato output, followed by canned tomatoes and sauces, 
with a small share sold as whole peeled tomatoes (USDA National Agricultural 
Statistics Service, 2022b). Thus, tomato paste is the most important processed 
tomato product produced in California, which is either sold in bulk form to down-
stream food manufacturers or else used as an intermediate input in production 
of catsup and sauces. After tomato paste, various sauces including puree, diced 
tomatoes, chili, and pizza comprise the next largest sales category, followed by 
whole peeled tomatoes.

Processing tomatoes are unique in that a single bargaining association—the Cali-
fornia Tomato Growers Association (CTGA)—represents the majority of grow-
ers, and negotiates prices in contracts with each of the nine tomato processors that 
operate in the state. CGTA prices for processing tomatoes are contracted prior to 
the growing season, so as to ensure the participation of growers in the market; as a 
result, a given tomato processor pays all California farmers approximately the same 
farm-gate price for tomatoes in delivery contracts each season (though this price 
varies slightly across processors), with transportation arranged and paid for by the 
processing plant.

In our analysis of the processing tomato market, we view the decision of farm-
ers and processing plants to produce in a given region as a co-location decision. 
Economic shocks that increase production costs or shift consumer demand after the 
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growing season commences thus affect regional economic activity at both stages of 
production jointly.

Specifically, food processing plants and the farmers that support them tend to exit 
the market together when the margin between the consumer price and farm price 
narrows in relation to margins that are available elsewhere. For this reason, the 
transfer of processed food production out of a particular region is closely tied to 
the land allocation decision of farmers in the region, the long-run price elasticity of 
farm supply, and the ability to trans-ship processed goods into the consumer market 
from other regions to meet consumer demand.

3  The Model

Our analysis of processing tomato supply is based on a spatial model of procurement 
in which food processors face increasing transportation costs over distance to deliver 
farm products to the nearest processing plant. We first describe a parametric produc-
tion function for a representative food processor that operates a single plant—this 
analysis generalizes to multiple plants—and then provide a specification of transpor-
tation costs that are faced by the firm given its plant’s location. Finally, we combine 
these elements to derive the cost function for a food processing firm under spatial 
procurement of the farm input and derive an expression for the inverse supply func-
tion for the case of a price-taking firm.

3.1  The Production Function

The production function of the food processor has two components: (i) labor and 
capital that are required to operate one or more plants, which depend on the operat-
ing capacity selected for each plant before the growing season; and (ii) energy and 
heat that are used for cooking the agricultural input, which depends on seasonal pro-
curement of the agricultural input. Based on prevailing output prices for the pro-
cessed food product, the procurement decision of each plant—and therefore the sup-
ply of processed food across all processing plants in the market—is thus determined 
by farm product prices and transportation costs at the individual plant level.

First consider the operating capacity of a representative food processing plant. In 
our interpretation of the problem, the firm uses capital (K) and labor (L) to operate a 
plant, where the size of the plant then provides the firm capacity to process the agri-
cultural input. For a firm that uses energy and raw material inputs to process an agri-
cultural input, the size of the plant then defines its capacity. We assume that plant 
construction involves a standard Cobb-Douglas production function, with capacity 
equal to

where � and � are the usual curvature parameters in the Cobb–Douglas production 
function, and where B is a productivity parameter.

BL�K� ,
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Next consider the cooking technology for the agricultural input. Given a plant of 
a particular capacity, food processing in many relevant agricultural industries is quite 
literally a matter of using energy to heat the agricultural input. At the individual plant 
level, we therefore model the food processing sector with fixed-proportions technology.

Let x denote the quantity of agricultural input. Processing a single unit of the agri-
cultural input is assumed to require 1∕� units of energy e, so that (given a plant of suf-
ficient capacity) output is given by

Combining the “plant operation” and “cooking” technologies that we described 
above yields an overall production function for the firm that depends on four inputs: 
energy (e), the agricultural input (x), labor (L), and capital (K). The production func-
tion is assumed to yield an output y, and takes the form

where, in addition to the parameters and variables defined above, A is a productivity 
parameter. This production function can be seen to allow for substitution between 
capital and labor in the operation of the plant, while the cooking process within 
the plant relies on Leontief technology, which we believe captures the nature of the 
actual production processes that are employed by many food processors.

3.2  The Firm’s Problem

Now consider the problem that faces a price-taking, profit-maximizing firm that oper-
ates the production function described above and that has to deal with the transporta-
tion costs of the agricultural input. Irrespective of the nature of the firm’s profit-maxi-
mization problem, all firms that maximize profits must also solve the cost minimization 
problem that is associated with production.

Given the Leontief technology for converting energy and material inputs into pro-
cessed food output, cost minimization implies that the firm will choose energy e, the 
agricultural input x, labor L and capital K such that

Because energy is related to the use of the agricultural input via

we have x = BL�K�.
We are now ready to describe the firm’s decision as to how much labor and capi-

tal to employ. Specifically, we compute the most efficient way to process a quantity of 
agricultural input x (given labor cost w and capital cost r), which solves:

The solution to this problem is to choose

min(�e, x).

y = F(e, x, L,K) = Amin{min(�e, x),BL�K�},

min(�e, x) = BL�K� .

(1)
�e = x,

min
L,K

wL + rK such that x = BL�K� .
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Given the need to process a quantity x of the input, the total ‘overhead’ costs of 
capital and labor for the cost-minimizing firm can be written

This expression provides us with the minimum overhead that is involved in operat-
ing a plant capable of processing x units of the agricultural input.

We now turn our attention to the question of the cost minimizing way to produce 
y units of processed output: If we let p denote the energy price and q(x) denote the 
cost of sourcing x units of the agricultural input, the firm’s cost function is

Noting that this problem is necessarily the same as

and since (using the last constraint) x = y∕A = �e , we have

Turning finally to the profit maximization problem, we obtain

where v is the price of the processed output. The solution is characterized by the 
first-order condition

The right-hand side of this optimality condition represents the firm’s marginal cost, 
including both short run costs associated with sourcing the input x as well as the 
longer-run costs associated with overhead. Accordingly, this expression character-
izes the solution to the firm’s inverse supply function in the competitive case that is 
the focus of our attention here.

Notice that the marginal cost of processed food production depends on the mar-
ginal cost of procurement, q�(x) , which in turn depends on whether the pricing 
arrangement with growers is freight on board (FOB) destination (at the process-
ing plant) or uniform pricing (FOB origin) at the farm gate. In the case of uniform 
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pricing at the farm-gate, the procurement cost for the processor depends on the spa-
tial distribution of farms that are in proximity to the processing plant. Moreover, 
because farmers that produce primary agricultural products for processed foods 
markets tend to co-locate with processing plants in geographic space, marginal pro-
curement cost under a uniform (farm-gate) pricing schedule depends on the distance 
between the processing plant and the extensive margin of farm production, which is 
endogenously determined by the processing plant.

3.3  Procurement Cost for the Agricultural Input

Equation (3) gives a solution to the processor’s supply conditional on the mar-
ginal cost of procurement, q�(x) . Sourcing the agricultural input involves using 
a transportation network to move the primary agricultural product from the land 
where it is produced to the processing plant that receives it. A processing plant 
that wishes to acquire greater farm product inputs must procure the agricultural 
product from greater distances, and it follows that the marginal cost depends on 
the spatial distribution of farms around the processing plant. Thus, when spatial 
procurement costs increase over distance from the processing plant, rising trans-
portation costs over distance results in upward-sloping supply for processed food 
even in the case of constant returns to scale in the operating capacity of a plant. 
This section presents a simple spatial model of procurement on an agricultural 
landscape around the processing plant that determines the procurement cost func-
tion: q(x).

We conceive of the plant as being located in an agricultural landscape, where 
the surrounding agricultural land can vary in its productivity for producing the raw 
material input. We introduce a productivity function �(m) to index land productivity 
as a function of the distance m from the plant. The productivity of agricultural land 
near the processing plant determines how much of the raw product may be trans-
ported from within a given distance to the plant, which in turn determines the rate 
at which the processing plant must expand procurement over distance to increase its 
output level.

Suppose that transportation costs for delivering the raw product to the process-
ing plant are increasing in the distance between the processing plant according to a 
quadratic transportation technology. In particular, the cost of hauling a single load of 
tomatoes m units of distance from the farm gate to the processing plant is given by

The “fixed cost” �0 can be thought of as the time that is required to load, grade, and 
unload the processing tomatoes at the plant—all of which are independent of the 
distance m. The second parameter �1 captures costs that are linear in the distance 
that is traveled: for instance, fuel costs. The third parameter �2 governs the quad-
ratic term, which we motivate by noting that travelling more miles may not mean a 
linear increase in time spent on the road. Greater distance increases the probability 

�(m) = �0 + �1m + �2m
2.
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of encountering traffic congestion,3 while at the same time creating more routing 
options (e.g., more travel on highways) which may reduce time. It may also be the 
case that the handful of tomato processors in California are sufficiently large that 
they face an upward-sloping supply curve for drivers of the specialized tomato gon-
dola trailers that are used in the industry.

A given processor faces the cost of moving tomatoes from an entire region of pro-
duction. We define this region by supposing that a given processing plant sources all 
of the tomatoes within a distance m̄ . Then the cost of transporting all of the toma-
toes in this region is given by the expression

The distance that is traveled to procure loads of the farm input is incidental to the 
problem that is faced by the food processor of sourcing x units of the primary agri-
cultural product, but since x = ∫ m̄

0
𝜇(m)dm (with �(m) ≥ 0 for all m > 0 ), we can 

think of the processor choosing the total amount of input x, constrained by the dis-
tance m̄ necessary to source that amount, which determines a function m̄(x) . Note, 
then, that by the inverse function theorem m̄�(x) = 1∕𝜇(m̄(x)) . If the uniform price 
paid to growers per load of tomatoes is q0 , then the total cost of sourcing and trans-
porting x tons of tomatoes is given by

while the corresponding marginal cost is given by

where the second line follows from the fundamental theorem of calculus and the 
inverse function theorem. We further have the second derivative of the cost function

Notice that even in the case in which processing plants are competitive and oper-
ate constant-returns-to-scale production technologies, the need to source tomatoes at 
increasing costs over distance seen in (6) implies that supply curves are not perfectly 
elastic: Ownership of the scarce land factor creates rents to land owners that mate-
rialize over distance from the processing plant, while ownership of plants with the 
capacity to process additional agricultural output is a scarce factor that generates a 
Ricardian (quasi) rent. In this case, the uniform farm-gate pricing that is employed 
within the tomato processing industry implies that rents accrue to the owners of land 
more distant from (but within a distance m̄ ) the processing plant.

𝜏(m̄) = ∫
m̄

0

𝜇(m)𝜏(m)dm = ∫
m̄

0

(

𝜏0 + 𝜏1m + 𝜏2m
2
)

𝜇(m)dm

(4)q(x) = q0x + 𝜏(m̄(x))

(5)
q�(x) = q0 + 𝜏�(m̄(x))m̄�(x)

= q0 + 𝜏0 + 𝜏1m̄(x) + 𝜏2m̄(x)
2,

(6)q��(x) = m̄�(x)[𝜏1 + 2𝜏2m̄(x)] = [𝜏1 + 2𝜏2m̄(x)]∕𝜇(m̄(x)).

3 During the busy harvest season traffic on the two-lane highways of the Central Valley is often delayed 
by the large number of tomatoes being moved about, just as traffic in Napa Valley is delayed some 
months later during the grape crush.
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4  Empirical Analysis

In this section, we illustrate how the model and spatially indexed cost function can 
be used to estimate the supply elasticity for tomato processors in California. We use 
actual production data that were provided to us for three California tomato process-
ing plants to estimate parameters of our production model and then use equation 
(8) to calculate the elasticity of supply at the plant level for processed tomatoes in 
California.

4.1  Data

We obtained proprietary data from three large tomato processing firms operating in 
California. From all three firms we obtained highly detailed firm-level data on costs 
and revenues from shipped tomato products. These data include (i) monthly records 
of revenue and quantity shipped; (ii) detailed data on inventory and costs including 
raw material procurement costs; (iii) energy costs; (iv) transportation costs; and (v) 
labor costs. From one of the three firms we also obtained data on every single load 
of tomatoes sourced by the firm, including (i) the particular plant to which the load 
was taken; (ii) the net weight of the load; (iii) the procurement cost for the load; (iv) 
the distance the load was transported; and (v) the total transportation cost for the 
load.

Table 1 shows summary statistics of the revenue and cost data that have been pro-
vided by the firms.4 Transportation costs are expressed in units of dollars per load. 
Transportation costs for raw tomatoes, on average, are $0.17 per ton mile, or $4.47 
per load-mile (each load comprises about 26.3 tons). A firm may operate several 
plants: The average plant in our data produces 261,000 tons of tomato paste from 
processing tomatoes that are sourced an average of 58.95 miles away.

We use these data to estimate parameter values and then calculate an elasticity 
of supply for processed tomatoes in California. To estimate transport costs (the �i 

Table 1  Summary statistics

Variable Parameter Mean SD

Average transport costs (per load-mile) – $4.47 $0.10
Average transport distance (per load) – 58.95 miles 32.26
Raw tomato quantity purchased (loads/year) x 43,054 8755
Annual labor expenditures ($ thousands) wL $17,665 23,274
Annual capital expenditures ($ thousands) rK $6,917 6079
Quantity of output (tons/plant/year) y 260,915 28,793
Price of output (per ton) v $660 $60

4 The data are composed of two firms that operated for four months of the year over the period 2010–
2012 and a third firm that operated three months of the year over the period 2009–2013.
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parameters) and the land productivity function ( � ), we use detailed data from three 
processing plants (in a single firm) on all loads of raw tomatoes purchased from 
farms and transported by truck to the processing plants during the period covered by 
our date (see footnote 4). Our firm data also provide the average price per ton of raw 
tomatoes ( q0 ), while we observe output of 461 pounds of paste per ton of tomatoes; 
an average of 26.3 tons per load) to calculate the parameter A ≈ 6.06 tons of paste 
per load of tomatoes.5

4.2  Returns to Scale in Plant Operation

The expression for the long-run supply elasticity is greatly simplified if the tomato 
processing plants utilize a constant returns-to-scale production technology for plant 
operation so that � + � = 1 . Interpreting the plant’s operation through the lens of 
our model makes this interpretation plausible. Recall that our model decomposes 
the process of “cooking” the agricultural input from the employment of capital and 
labor inputs for operating a plant at a given nameplate capacity, so that the produc-
tion function with which we are immediately concerned is just the operation (and 
amortized cost of construction) of a facility that can apply heat and pressure to raw 
material (up to this capacity) to make tomato paste.

We corroborate this intuition by estimating the Cobb-Douglas production func-
tion with no restriction on � and � using the cost and production data that were pro-
vided by the three firms. Our sample size is small (39 observations), because our 
monthly production data are limited to having observations from only three to four 
months each year at each firm (see footnote 4). Based on that regression, our esti-
mate of � + � is 0.928 (std. error = 0.106), which yields a 95% confidence inter-
val of [0.71,  1.14].6 Thus, we fail to reject the hypothesis that � + � = 1 , and we 
accordingly proceed under the assumption of a constant returns-to-scale production 
function.

4.3  Estimating the Transportation Cost Function

The input cost function, q(x), consists of two parts: (i) the price per unit paid by the 
processor to procure the raw tomatoes ( q0 ); and (ii) the transport costs of raw toma-
toes to the processing plant. We take q0 to be simply the average price per ton paid to 
growers in 2012: $58.01.

To estimate the parameters �i in the function that describes the transport cost per 
ton of raw tomatoes as a function of distance, we utilize the data provided for every 
truckload of tomatoes that was transported by three tomato processing plants (oper-
ated by a single firm) during our sample period. For each load these data include the 

5 We have plant and load-level data only for one firm, which operates three plants. Figures in the table 
which are expressed in per plant or per load terms thus use data only from those three plants, observed 
over three years.
6 Full results are available in Table 3 in the “Appendix”.



24 S. Hamilton et al.

1 3

total farm-gate payment, the total transport cost, the weight, and the distance that the 
load was transported.

Table 2 shows the results of a quadratic model that regresses transport cost on 
distance so as to estimate the coefficients (�0, �1, �2) in our expression for the (per 
ton) transport costs �(m) = �0 + �1m + �2m

2.
We estimate two different specifications of the transport cost function: One is 

the general quadratic specification that we assumed above; and one that restricts the 
transport costs to be linear. The quadratic term that is estimated in column (2) of 
Table 2 is significant and negative, but the implied value of �2 = −0.000189 is so 
small in magnitude that it explains little additional variation in transport costs rela-
tive to the linear specification (note that the R2 statistics for the two specifications 
are equal to three digits).

Either specification suggests that transportation costs for raw tomato loads 
include a fixed cost component ( �0 ) of about $58 per load (or about $2.30 per ton), 
and a linear term ( �1 ) of about $2.68 per mile. The quadratic term indicates that 
transportation costs increase at a slightly less than linear rate.7

Total acquisition cost for the processing plant depends on the fixed price that is 
paid at the farm gate to acquire raw processing tomatoes ( q0 ), the transportation cost 
per mile (the �i ), and the land productivity function ( � ) which accounts for the spa-
tial distribution of loads in proximity to the plant.

We have yet to put any structure on the function �(m) , which determines how 
many tomatoes can be obtained from farms m miles away from the plant. However, 
there are certain key features it should satisfy. First, by construction �(m) should be 
non-negative. Second, the integral x(m̄) = ∫ m̄

0
𝜇(m)dm should equal total loads of 

Table 2  Regression results on 
raw tomato transport costs per 
ton

Standard errors in parentheses
*p < 0.05 , **p < 0.01 , ***p < 0.001

Variable (1) (2)

Intercept ( �0) 58.52∗∗∗ 57.99∗∗∗

(0.003) (0.005)
(Miles To Plant) ( �1) 2.67∗∗∗ 2.69∗∗∗

(0.000) (0.001)
(Miles ∕100)2 ( 10000�2) — −1.89∗∗∗

(0.060)
N 387,468 387,468
R
2 0.926 0.926

7 Because �
1
 depends on things such as fuel costs, one might be concerned that �

1
 is time-varying. As 

we are estimating a static model, our �
i
 estimates are some weighted average of fuel costs and other fac-

tors that vary over the time period analyzed. To consider the importance of variation in fuel costs over 
the time period analyzed, we also estimated the regression in Table 2 with the use of interactions of year 
dummy variables with �

1
 so that we get separate estimates for each year 2010–2012. Estimates of the 

annual parameters varied by less than 3% across years.
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tomatoes sourced per plant that we observe in the data for values of m̄ around the 
maximum distances we observe in the data. Third, it seems natural to expect that 
plants and farms would be co-located so that �(m) is a decreasing function.

A specification that is both convenient and which has these features is to take

This parameterization integrates to T̄  , which can be interpreted as the total loads of 
tomatoes available as m̄ → ∞ . We also have 𝜇(m) = T̄f (m) , where f(m) is the pdf 
of the half-normal distribution. It may seem odd to be treating �(m) as though it is 
proportional to a probability density, so instead think of f(m) as the density of toma-
toes grown across space. Or to preserve the probability interpretation: if we draw a 
random load from the set of all tomato loads grown, the probability that it is located 
within m̂ miles from the plant is given by ∫ m̂

0
f (m)dm.

An important virtue of this specification of �(m) is that estimation of the 
unknown parameters (𝜎, T̄) is extremely simple. Let i = 1,… ,N index an observed 
load in our data, and let mi be the distance that load was transported. The maximum 
likelihood estimator of � is simply �̂� =

�

1

N

∑N

i=1
m2

i
 , the standard deviation of dis-

tances, which in this case is equal to 67.2 miles. We next estimate m̄ by simply com-
puting the average of the largest observed values of mi across plants and years; this 
gives us m̄ = 163.5 . Then finally we have T̄ = x̂∕F(m̄) , where x̂ is the observed aver-
age number of loads per plant-year, and where F(m̄) = ∫ m̄

0
f (m)dm is just the half-

normal cumulative distribution function. This gives an estimated value of 
T̄ = 43, 708 available loads of tomatoes.

Finally, we calculate the parameter A (tons of output per load of tomatoes) by 
using the conversion ratio from fresh (farm) weight with the use of a factor of 5.432 
for tons of tomatoes to make one ton of tomato paste, the ratio observed in our data. 
This implies a value of A that is equal to 4.84 tons of tomato paste per load of pro-
cessing tomatoes.

Putting together our estimates of q0 , � , and the �i parameters of the transportation 
cost function allows us to specify the input cost function as (with the use of (4))

4.4  Estimated Supply Elasticities

A central goal of this paper is to express the elasticity of the supply curve for 
processed tomato products in a form that allows us to consider the impact of 
changes in the costs of transportation—the parameters of the transportation cost 
function—on the supply of tomato paste. Because the processor’s technology is 

𝜇(m) =
T̄

𝜎

√

2

𝜋
exp

(

−
m2

2𝜎2

)

with m > 0.

q(x) = $1608x + $2.69∫
m̄(x)

0

t𝜇(t)dt − $0.000189∫
m̄(x)

0

t2𝜇(t)dt
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consistent with constant returns to scale (see Fig.  1), the first-order conditions 
from the processor’s problem (3) that equates marginal cost to price defines a 
simpler inverse supply curve for the firm:

Differentiating this expression with respect to y and exploiting the inverse function 
theorem allows us to assert that �y∕�v = A2∕q��(y∕A) , so that the price elasticity of 
the supply function takes the form

Now we can make use of q′′ that we calculated above for the case of spatial farm 
product procurement.

Notice that the fixed costs of transport that involve �0 do not play any direct role in 
determining the elasticity (with respect to price) of the processed food supply func-
tion. Variable costs related to total travel depend on �1 and �2 , and each of these play 
a role.

v =
p

�A
+ q�(y∕A)∕A.

(7)�v =
vA2

q��(y∕A)y
.

(8)𝜀v(y) =
vA2𝜇(m̄(y∕A))

y(𝜏1 + 2𝜏2m̄(y∕A))

Fig. 1  Input cost function. A shaded area (too small to be visible) indicates pointwise 95% CIs
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4.4.1  Elasticity Estimates

Collecting values of the estimated parameters in Table 2 above and incorporating 
them in equation (8) provides our estimate of the long-run supply elasticity for pro-
cessed tomato paste (see Fig. 2).

Our results have several implications for the effect of agricultural commodity 
price shocks on consumer prices for manufactured foods. First, empirical models of 
price pass-through in food markets that fail to account for changes in the transporta-
tion sector that occur concurrently with changes in agricultural commodity prices 
may be misspecified. Second, because our estimated supply elasticity of tomato 
paste is considerably less elastic than previous estimates of the residual supply elas-
ticity of processing tomatoes in the farm sector, our results suggest that food proces-
sors play an important role in dampening food price inflation, as the incidence of 
food price shocks in the farm sector on consumer food prices decreases with ine-
lastic supply. Third, because changes in transportation costs that affect the variable 
components of transportation costs tend to decrease the elasticity of processed food 
supply, the tax incidence of energy policy such as carbon taxes that raise fuel prices 
will have consequences for processed food supply. Finally, disruptions in the food 
supply chain that are caused by pandemics and natural disasters have the potential 
to alter linear and quadratic transportation cost components of raw product procure-
ment for food processors. This results in essential implications for the consumer 

Fig. 2  Supply elasticity. The dotted line indicates average output. At this level of output elasticity is 
equal to 0.97. The shaded area provides a pointwise 95% CI (perhaps too small to see)
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incidence of commodity price shocks in agricultural markets that have the potential 
to exacerbate food price inflation.

At the level of a competitive firm, inverse supply can be interpreted instead as 
the marginal cost function for the processing firm, which generates implications 
for backwards pass-through as well. Backwards pass-through, which can occur 
when processing plants have bargaining power in setting the annual contract price 
to growers, depends on the curvature of the marginal cost function. Our estimated 
marginal cost function is concave, which suggests that the potential for greater than 
one-to-one pass-through of tomato paste prices into processing tomato prices in the 
upstream farm product market.

Moreover, while farm-gate prices do not affect the supply elasticity in the case 
that we consider here, one could relax the assumption of perfectly elastic supply of 
the raw farm output (tomatoes), which would allow the farm price to vary with the 
procurement level so as to reflect varying opportunity costs of land. We suppress 
this consideration here to focus the model on the effect of changes in transportation 
cost on processed tomato supply.

On their own, these transportation costs suffice to make competitive firms’ supply 
curves upward sloping: This is a result that stands in sharp contrast to the textbook 
case in which a competitive firm with a constant returns to scale production technol-
ogy has perfectly elastic supply. Here, because the marginal cost of sourcing toma-
toes across space is increasing over distance, “nearby tomatoes” that are available 
for procurement will always be a scarce factor.

4.5  Transportation Cost Elasticities

So far, we have constructed estimates of the supply elasticity with respect to the 
price of output v, and we can see how this elasticity depends on parameters of the 
transport cost function. This relationship is interesting because it sheds some light 
on the ways in which we might expect the supply of tomato paste (and related prod-
ucts) to be affected by disruptions to transport or logistical issues that affect raw 
material procurement. However, a more direct question involves the elasticity of 
supply with respect to the transportation cost parameters. We explore this in this 
section: We construct expressions for elasticities with respect to each of the three 
transport-cost parameters, and graph those elasticities at different levels of output in 
Fig. 3.

We obtain these elasticities by recalling that the first-order condition for the 
firm implies that v = p

�A
+ q�(y∕A)∕A . Differentiating both sides of this first 

order condition with respect to �i (for i = 1, 2, 3 ) allows us to solve for the par-
tial derivatives �y∕��i via implicit differentiation. Further, note that the elasticity 
(�y∕��i)(�i∕y) = (�x∕��i)(�i∕x) . Then calculation of the relevant elasticities simply 
involves substituting the expression for q′ into the first order conditions, and differ-
entiating with respect to the parameter of interest.

These elasticities are given by: 

�0  𝜀𝜏0 =
−A𝜏0𝜇(m̄(y∕A))

y[𝜏1+2𝜏2m̄(y∕A)]
;
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�1  𝜀𝜏1 =
−A𝜏1m̄(y∕A)𝜇(m̄(y∕A))

y[𝜏1+2𝜏2m̄(y∕A)]
;

�2  𝜀𝜏2 =
−A𝜏2m̄(y∕A)

2𝜇(m̄(y∕A))

y[𝜏1+2𝜏2m̄(y∕A)]
.

Figure 3 shows the value of these elasticities for variation in output. The shaded 
areas are pointwise 95% confidence intervals (all three elasticity curves have these, 
but the intervals are too small to be easily visible). Elasticities for all three param-
eters go to zero as output approaches its maximum T̄  (at which point all available 
tomatoes are being used).

Focusing on the different transportation parameters, changes in fixed costs cap-
tured by �0 have a modest effect on supply at all output levels. As one would expect, 
these fixed costs have a larger effect when processing plants operate at relatively low 
output levels.

The parameter �1 is associated with per-mile costs such as fuel or driver’s 
time, and this has the largest effect on supply, with an elasticity of −0.106 at the 
observed level of paste output. Aside from fuel costs, this is the main channel via 
which changes in things like wages or gasoline taxes would affect processed food 
supply. Thus, policies such as carbon taxes that raise fuel prices can result in con-
siderable reductions in the supply of processed food, particularly in cases where 

Fig. 3  Supply elasticities with respect to parameters of transport cost function. At the average level of 
output (about 261 thousand tons) these elasticities are respectively −0.014 , −0.106 , and 0.001. Shaded 
areas indicate 95% CIs (possibly too small to see)
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processing plants operate at low capacity. In cases of relatively inelastic demand 
for manufactured food products in the consumer market, an elastic response of 
food supply to changes in fuel prices can result in sharp increases in processed 
food prices in ways that are not accounted for in models of tax incidence that 
focus exclusively on fuel markets.

In contrast the parameter �2 governs quadratic cost elements; this is an effect 
that can be driven by road congestion costs. We estimate a small but negative 
effect on costs, which can be interpreted as evidence that longer trips encoun-
ter less congestion overall (perhaps there is more travel on major highways). But 
while this ratio is significantly less than zero, it is still small: It reduces trans-
portation costs for a load of tomatoes by about thirty-three cents at the average 
distance of about fifty-nine miles, and at the maximum distance of 163.5 miles 
reduces costs by about two and a half dollars.

5  Conclusion

In this paper we have constructed a model to estimate changes in food process-
ing supply that accounts for spatial procurement costs. Processing plants are con-
ceived to be located in an agricultural landscape in which the surrounding agri-
cultural land produces a primary agricultural product for the processing sector by 
farmers who are spatially located around each processing plant. Higher process-
ing costs result in lower farm prices for the input, which shrinks the distances for 
deliveries to the processing plant; and we characterize how the change in spatial 
procurement alters the marginal cost of food processing.

Using detailed production and procurement data from three processing tomato 
firms in California, we estimate the long-run price elasticity of tomato paste sup-
ply to be 0.97. We also derive elasticities with respect to the various transporta-
tion cost parameters that represent changes in fixed (loading) cost, linear cost, 
and quadratic cost components.

We find that the spatial distribution of primary agricultural products affects 
the price elasticity of processed food supply—with greater nearby density of the 
input and greater plant capacity making processed food product supply more elas-
tic. Higher transportation costs for the primary agricultural product also alter 
the supply elasticity of processed foods, with the portion of transportation costs 
which is linear in distance reducing the elasticity of processed food supply. In 
particular, changes in unit transportation costs over distance, for instance due to 
changes in diesel fuel prices, have the largest impact on the supply elasticity of 
processed foods.

Our results demonstrate the important role of the transportation sector in deter-
mining the output and price effects of a food processing sector that relies on the 
spatial procurement of farm products as a material input for production. Further 
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research is needed to identify how shocks in the transportation sector affect the price 
of manufactured food products in vertical food markets that have the potential for 
imperfectly competitive price adjustment.

Appendix

Estimation of Production Function

In this appendix, we provide results from estimating a production function that is 
based on monthly production data (production occurs seasonally from July to Octo-
ber) from three processing firms over several years. The monthly plant-level data 
include output, labor expenditures, and capital expenditures.

Production from two of the three firms runs from July to October, and our data 
include the years 2010–2012 for each of these two firms. The third firm operates 
from July to September and provided data from 2009–2013. We therefore have 
thirty-nine monthly observations across the three processing firms. Because capital 
expenditures occur in advance of production, we aggregate all capital expenditures 
from the end of the previous season to the beginning of the new season to create the 
baseline level of capital for the year. Then we adjust this baseline each month during 
the production season based on additional expenditures.

We assume that the parameters of the Cobb-Douglas production function are the 
same across all tomato processing firms and that w and r are constant across the 
time period in the sample. Therefore, we use labor expenditures and capital expendi-
tures in a regression to find the best fit production function:

This regression yields values for � , � , and B̂ =
B

w� r�
.

The estimate of � + � is 0.928 (std. error = 0.106), which yields a 95% confi-
dence interval of [0.71, 1.14]. Thus, we fail to reject the hypothesis that � + � = 1 , a 
constant returns-to-scale production function. These outcomes are shown in Table 3.

log(y) = log
(

B

w�r�

)

+ � log(wL) + � log(rK) + �.

Table 3  Production function 
estimation

*p < 0.05 , **p < 0.01 , ***p < 0.001

Variable Coefficient (SE)

log
(

B

w� r�

)

11.13∗∗∗

(0.875)
� 0.680∗∗∗

(0.139)
� 0.248∗

(0.109)
N 39
R
2 0.681
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County‑Level Production Statistics for 2021

The following Table 4 reproduces production statistics from USDA National Agri-
cultural Statistics Service (2022a), adding information on the area (in square miles) 
of the corresponding counties. “Other counties” in the table are San Benito and 
Santa Clara counties.
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Table 4  Processing tomato production by county in 2021

County Planted acres Harvested 
acres

Yield (tons/
acre)

Production 
(tons)

Area (sq. 
miles)

%Area

Imperial 300 300 26.2 7870 4175 0.01
Tulare 700 700 71.3 49,900 4824 0.02
Other Coun-

ties
700 700 49.7 34,811 2680 0.04

Butte 700 700 26.0 18,200 1640 0.07
Glenn 1100 1100 46.4 51,000 1315 0.13
Kern 8000 8000 56.4 451,000 8142 0.15
Madera 3700 3700 47.2 174,600 2138 0.27
Contra Costa 2600 2600 64.7 168,200 720 0.56
Sacramento 4500 4500 36.4 163,900 966 0.73
Stanislaus 7200 7000 48.2 337,700 1495 0.73
San Joaquin 16,100 14,900 43.7 650,700 1399 1.66
Colusa 13,400 13,200 49.5 652,900 1151 1.79
Solano 9500 9500 54.1 513,700 828 1.79
Merced 24,900 24,900 46.5 1,157,000 1929 2.02
Sutter 12,000 12,000 45.0 539,400 603 3.11
Kings 29,900 29,800 46.9 1,396,000 1390 3.35
Yolo 31,800 31,700 49.7 1,576,000 1012 4.89
Fresno 62,900 62,700 45.2 2,832,000 1008 9.72
Total 230,000 228,000 47.3 10,774,881 37,415 0.95
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