Skip to main content
Log in

Error Costs, Ratio Tests, and Patent Antitrust Law

  • Published:
Review of Industrial Organization Aims and scope Submit manuscript

Abstract

This paper examines the welfare tradeoff between patent and antitrust law. Since patent and antitrust law have contradictory goals, the question that naturally arises is how one should choose between the two in instances where there is a conflict. One sensible approach to choosing between two legal standards—or between proof standards with respect to evidence—is to consider the relative costs of errors. The approach in this paper is to consider the ratio of false positives to false negatives in patent antitrust. We find that the relevant error-cost ratio for patent antitrust is the proportion of the sum of the monopoly profit and the residual consumer surplus to the deadweight loss. This error-cost ratio—for a wide range of deterministic demand functions—ranges from infinity to a low of roughly three. This suggests that patent antitrust law should err on the side of protecting innovation incentives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. An alternative version of innovation—which is more consistent with process inventions—assumes that innovation consists of reducing the cost of producing some good in an existing market. The version here, where innovation creates a new market, and the process innovation alternative are the same when the process innovation reduces cost to such a degree that the innovator has the entire market to himself—that is, completely drives out of business the inefficient firms even when charging the monopoly price.

  2. See Becker (1968), Landes (1983), Hylton and Lin (2014).

  3. Because the investment cost is sunk the social welfare doesn’t have to incorporate the investment cost. \( RS + \pi \) represents the smallest measure of social cost assuming the highest break-even price which equals to the monopoly price.

  4. All of this assumes, of course, that the patent award is based on an innovation rather than a fraud on the patent office, or corruption in the patent system. In the latter case, no new surplus is created, and the social loss from setting the price cap below the break-even price would be zero. Consider, for example, a patent for playing cards, as in Darcy v. Allein, 74 Eng. Rep. 1131 (K.B. 1603). As a general matter one could introduce a measure of the probability of "real" innovation (in contrast to fraudulent) and multiply the sum of profit and residual surplus by such a "validity probability" to arrive at a measure of the social loss. The analysis here assumes implicitly that the validity probability is one.

  5. We deliberately express this as the difference of two areas \( \left( {RS + \pi + D} \right) - \left( {RS + \pi } \right) \) to facilitate comparison of the areas under the demand curve.

  6. Since the dependent variable of interest is the error-cost ratio, which assumes optimization by the monopolist, we could just as well examine the point elasticity at the optimal output level. If we substitute the monopoly price, \( {\epsilon}\left( {p^{*} } \right) = - \frac{c}{{{{\upbeta }}\left( {c + {{\upsigma }}} \right)}} + \frac{{{\upsigma }}}{{c + {{\upsigma }}}} \), so that the parameter \( {\epsilon} = - \frac{1}{{{\upbeta }}} \) closely tracks the relevant point elasticity measure. If σ is small relative to C, then the parameter is a nearly precise measure of point elasticity at the privately optimal quantity.

  7. In Fig. 2, the error-cost ratio is equal to 3 when elasticity is equal to 2, equal to 4 when elasticity is roughly 1.3, and equal to 6 when elasticity is roughly 1.1.

  8. Because R&D investment is a fixed amount, the optimality decision for the patentee is straightforward, unlike the Nordhaus (1967) model where the innovator chooses the amount to invest in innovation and therefore equates the marginal cost of investment with its marginal private benefit. Treating R&D investment as a lump sum seems defensible, since the end goal of the innovator is some definite new product in this model. The inventor cannot invest half of the required amount in R&D and get half of the result. The variation in \( K \) reflects the assumption that the cost of the required investment is greater for some innovators than for others.

  9. One example is the Android operating system versus iOS. After a consumer purchases the first Apple product and gets used to the iOS system, the iOS shapes the consumer's habit of using smartphones. If she changes to the Android system, it takes her time to adjust.

  10. One could, for example, express elasticity as a function of price in the linear case as \( {\epsilon}\left( p \right) \equiv \left( {\frac{1}{A}} \right)\left( {\frac{p}{{1 - \left( {\frac{p}{A}} \right)}}} \right) \), with the elasticity tracking parameter defined as \( {\epsilon} = \frac{1}{A} \).

  11. One could, for example, express elasticity as a function of price in the linear case as \( {\epsilon}\left( p \right) \doteq \left( {\frac{1}{A}} \right)\left( {\frac{p}{{1 - \left( {\frac{p}{A}} \right)}}} \right) \), with the elasticity tracking parameter defined as \( {\epsilon} = \frac{1}{A} \).

  12. The term \( \left( {\frac{{\bar{K}}}{{\left( {1 - v} \right)\pi^{*} }} - 1} \right) \) is positive, if the adjusted ratio is positive. The term \( - {{\uprho }}\left( {1 + {{\uprho }}} \right)\left[ {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}} \right] \) is the derivative of the error cost ratio with respect to \( {\epsilon} \). We have shown in Sect. 3 that the error cost ratio \( {{\uprho }} \) decreases with \( {\epsilon} \) and also from Appendix “The Effect of Elasticity on the Error-Cost Ratio under Isoelastic Demand”, we have \( \ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}} > 0 \). Combining these, we have \( - {\tilde{{\uprho }}}\left( {1 + {{\uprho }}} \right)\left[ {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}} \right] < 0 . \) This illustrates our argument that the static effect is negative.

  13. As the expected profit, investment cost, and error-cost ratio are all positive, we have \( \frac{{\bar{K}}}{{\left( {1 - v} \right)\pi^{*} }}\rho > 0 \). From the negative relationship between elasticity and monopoly profit under isoelastic demand (Appendix “The Negative Relationship between Elasticity and Profit”), we have that \( \ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - { \ln }\frac{\alpha }{c} > 0 \). Combing these results, we have that \( \frac{{\bar{K}}}{{\left( {1 - v} \right)\pi^{*} }}\rho \left[ {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - { \ln }\frac{\alpha }{c}} \right] > 0. \) This implies a positive dynamic effect of demand elasticity on the error-cost ratio.

  14. Other parameter assumptions are K\( \bar{K} = 2,c = 8,\alpha = 2 \). The same parameter values are assumed in Appendix 2, which shows adjusted ratios under other enforcement probabilities.

  15. For high enforcement probabilities, the adjusted error-cost ratio curve will always be above the error-cost ratio curve for all elasticity parameter values. However, for low enforcement probabilities it is possible to obtain a range of low elasticity values where the adjusted error-cost curve is below the error-cost curve under certain parameter values—but this requires an assumption that the upper bound on investment cost in the uniform probability model is modest relative to expected profit. Such an assumption would appear to go against intuition.

  16. On error costs and legal tests in antirust, see Katsoulacos and Ulph (2009).

  17. 570 U.S. 136 (2013).

  18. Another example of the choice as to how to implement the legal standard is observed in the area of predatory innovation claims under Sect. 2 of the Sherman Act, which prohibits monopolization. The choice here is between the rule of reason test that was described in United States v. Microsoft, 253 F.3d 34 (D.C. Cir. 2001), or the innovator-favoring version of the test that was articulated—specifically for predatory innovation claims—in Allied Orthopedic v. Tyco Healthcare, 592 F.3d 991 (9th Cir. 2010).

References

  • Becker, G. S. (1968). Crime and punishment: An economic approach. Journal of Political Economy,76, 169–217.

    Article  Google Scholar 

  • Burtis, M. M., Gelbach, J. B., Kobayashi, B. H., & Costs, E. (2018). Legal standards of proof, and statistical significance. Supreme Court Economic Review,25, 1–57.

    Article  Google Scholar 

  • Gilbert, R., & Shapiro, C. (1990). Optimal patent length and breadth. RAND Journal of Economics,21, 106.

    Article  Google Scholar 

  • Hylton, K. N., & Lin, H. (2014). Innovation and optimal punishment, with antitrust applications. Journal of Competition Law Economics,10, 1–25.

    Article  Google Scholar 

  • Johnson, A. C., & Helmberger, P. (1967). Price elasticity of demand as an element of market structure. The American Economic Review,57(5), 1218–1221.

    Google Scholar 

  • Kamien, M. I., & Schwartz, N. L. (1970). Market structure, elasticity of demand and incentive to invent. The Journal of Law and Economics,13(1), 241–252.

    Article  Google Scholar 

  • Kaplan, J. (1968). Decision theory and the factfinding process. Stanford Law Review,20, 1065–1092.

    Article  Google Scholar 

  • Kaplow, L. (1984). The patent-antitrust intersection: A reappraisal. Harvard Law Review,97, 1815–1892.

    Article  Google Scholar 

  • Katsoulacos, Y., & Ulph, D. (2009). On optimal legal standards for competition policy: A general welfare-based analysis. Journal of Industrial Economics,57(3), 410–437.

    Article  Google Scholar 

  • Klemperer, P. (1987). The competitiveness of markets with switching costs. RAND Journal of Economics,19, 138–159.

    Article  Google Scholar 

  • Klemperer, P. (1990). How broad should the scope of patent protection be? The Rand Journal of Economics,21, 113–130.

    Article  Google Scholar 

  • Landes, W. M. (1983). Optimal sanctions for antitrust violations. University of Chicago Law Review,50, 652–678.

    Article  Google Scholar 

  • Nordhaus, W. D. (1967). The optimal life of a patent. Cowles foundation discussion paper #241.

Download references

Acknowledgements

We thank conference participants for helpful comments, especially Erik Hovenkamp, David Sappington, Joel Waldfogel, and Jorge Lemus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith N. Hylton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Model Result

1.1 The Error-Cost Ratio under Common Demand Function Assumptions

Proposition 1

The demand curve is linear\( p = A {-} bq \), and the marginal cost is a constant\( c \). Optimal output is\( q^{{ \star }} = \frac{A - c}{2b} \)and the monopoly price\( p^{{ \star }} = \frac{A + c}{2} \). The competitive price is\( p^{c} = c \), and the competitive output is\( q^{c} = \frac{A - c}{b} \). The minimum social loss under antitrust law that deters entry is\( RS + {{\uppi }} = \frac{{3\left( {A - c} \right)^{2} }}{8b} \); the maximum social loss if the firm is allowed to enter the market is\( D = \frac{{\left( {A - c} \right)^{2} }}{8b} \). The error-cost ratio is therefore\( {{\uprho }} \equiv \frac{{RS + {{\uppi }}}}{D} = 3 \).

Proposition 2

The demand curve is algebraic \( p = {{\alpha }}q^{{{\upbeta }}} - \) , and the marginal cost is a constant \( c, \) so the firm’s profit maximization problem is \( \mathop {\hbox{max} }\limits_{q} :\left( {{{\alpha }}q^{{{\upbeta }}} - {{\upsigma }}} \right)q - cq \) . Optimal output satisfies \( \alpha \left( {\beta + 1} \right)q^{\beta } = c + \sigma \) , which implies \( q^{{ \star }} = \left( {\frac{{{{\upsigma }} + c}}{{{{\alpha }}\left( {{{\upbeta }} + 1} \right)}}} \right)^{{1/{{\upbeta }}}} \) and monopoly price \( p^{{ \star }} = \frac{{{{\upsigma }} + c}}{{{{\upbeta }} + 1}} - {{\upsigma }} \) . The competitive output is \( q^{c} = \left( {\frac{{{{\upsigma }} + c}}{{{\alpha }}}} \right)^{{1/{{\upbeta }}}} \) . The minimum social loss when antitrust law deters entry is given by

$$ \begin{aligned} RS + {{\uppi }} & = \mathop \smallint \limits_{0}^{{q^{{ \star }} }} \left[ {{{\alpha }}q^{{{\upbeta }}} - {{\upsigma }} - c} \right]dq \\ & = \frac{{{\alpha }}}{{{{\upbeta }} + 1}}q^{{{ \star }{{\upbeta }} + 1}} - \left( {{{\upsigma }} + c} \right)q^{{ \star }} \\ & = \left( {{{\upsigma }} + c} \right)\left[ {\frac{{ - {{\upbeta }}\left( {{{\upbeta }} + 2} \right)}}{{\left( {{{\upbeta }} + 1} \right)^{2} }}} \right]\left( {\frac{{{{\upsigma }} + c}}{{{{\alpha }}\left( {{{\upbeta }} + 1} \right)}}} \right)^{{1/{{\upbeta }}}} , \\ \end{aligned} $$

and the maximum social loss if the firm enters is

$$ \begin{aligned} D & = \mathop \smallint \limits_{{q^{{ \star }} }}^{{q^{c} }} \left[ {{{\alpha }}q^{{{\upbeta }}} - {{\upsigma }} - c} \right]dq \\ & = \left( {{{\upsigma }} + c} \right)\left[ {\frac{{ - {{\upbeta }}}}{{{{\upbeta }} + 1}}} \right]\left( {\frac{{{{\upsigma }} + c}}{{{\alpha }}}} \right)^{{1/{{\upbeta }}}} - \left( {{{\upsigma }} + c} \right)\left[ {\frac{{ - {{\upbeta }}\left( {{{\upbeta }} + 2} \right)}}{{\left( {{{\upbeta }} + 1} \right)^{2} }}} \right]\left( {\frac{{{{\upsigma }} + c}}{{{{\alpha }}\left( {{{\upbeta }} + 1} \right)}}} \right)^{{1/{{\upbeta }}}} . \\ \end{aligned} $$

Therefore, the error-cost ratio is

$$ \begin{aligned} \frac{{RS + {{\uppi }}}}{D} & = \frac{{\left( {{{\upsigma }} + c} \right)\left[ {\frac{{ - {{\upbeta }}\left( {{{\upbeta }} + 2} \right)}}{{\left( {{{\upbeta }} + 1} \right)^{2} }}} \right]\left( {\frac{{{{\upsigma }} + c}}{{{{\alpha }}\left( {{{\upbeta }} + 1} \right)}}} \right)^{{1/{{\upbeta }}}} }}{{\left( {{{\upsigma }} + c} \right)\left[ {\frac{{ - {{\upbeta }}}}{{{{\upbeta }} + 1}}} \right]\left( {\frac{{{{\upsigma }} + c}}{{{\alpha }}}} \right)^{{1/{{\upbeta }}}} - \left( {{{\upsigma }} + c} \right)\left[ {\frac{{ - {{\upbeta }}\left( {{{\upbeta }} + 2} \right)}}{{\left( {{{\upbeta }} + 1} \right)^{2} }}} \right]\left( {\frac{{{{\upsigma }} + c}}{{{{\alpha }}\left( {{{\upbeta }} + 1} \right)}}} \right)^{{1/{{\upbeta }}}} }} \\ & = \frac{1}{{\frac{{\left( {{{\upbeta }} + 1} \right)^{{1 + 1/{{\upbeta }}}} }}{{\left( {{{\upbeta }} + 2} \right)}} - 1}}, \\ \end{aligned} $$

with\( {{\upbeta }} \in \left( { - 1,0} \right) \). Because\( e = \mathop {\lim }\limits_{n \to \infty } \left( {1 + \frac{1}{n}} \right)^{n} \), it follows that\( \mathop {\lim }\limits_{{{{\upbeta }} \to 0}} \left( {1 + {{\upbeta }}} \right)^{{1/{{\upbeta }}}} = e \).

Therefore,

$$ \mathop {\lim }\limits_{{{{\upbeta }} \to 0}} \frac{1}{{\frac{{\left( {{{\upbeta }} + 1} \right)}}{{\left( {{{\upbeta }} + 2} \right)}} \cdot \left( {1 + {{\upbeta }}} \right)^{{\frac{1}{{{\upbeta }}}}} - 1}} = \frac{1}{{\frac{1}{2} \cdot e - 1}} \approx 2.8. $$

Proposition 4

The demand curve is exponential \( q = {{\upgamma }}e^{{ - {{\upbeta }}p}} \) , and the marginal cost is a constant \( c \) . The inverse demand curve is \( p = {{\upbeta }}^{ - 1} \ln {{\upgamma }} - {{\upbeta }}^{ - 1} \ln q \) . Optimal output satisfies β −1 ln γ − β −1 ln q − β −1  = c, so that \( q^{{ \star }} = {{\upgamma }}e^{{ - \left( {{{\upbeta }}c + 1} \right)}} \) and \( p^{{ \star }} = \frac{{{{\upbeta }}c + 1}}{{{\upbeta }}} \) . The competitive price is \( p^{c} = c \) , and the competitive output is \( q^{c} = {{\upgamma }}e^{{ - {{\upbeta }}c}} \) . The social loss under an antitrust law that deters the firm’s entry is

$$ \begin{aligned} RS + {{\uppi }} & = \mathop \smallint \limits_{0}^{{q^{{ \star }} }} \left[ { - \frac{1}{{{\upbeta }}}\ln \left( {\frac{q}{{{\upgamma }}}} \right) - c} \right]dq \\ & = - \frac{1}{{{\upbeta }}}\left[ {q^{{ \star }} \ln \left( {\frac{{q^{{ \star }} }}{{{\upgamma }}}} \right) - q^{{ \star }} } \right] - cq^{{ \star }} \\ & = {{\upgamma }}e^{{ - \left( {{{\upbeta }}c + 1} \right)}} \frac{2}{{{\upbeta }}}, \\ \end{aligned} $$

The error cost ratio is

$$ \frac{{RS + {{\uppi }}}}{D} = \frac{{{{\upgamma }}e^{{ - \left( {{{\upbeta }}c + 1} \right)}} \frac{2}{{{\upbeta }}}}}{{{{\upgamma }}e^{{ - {{\upbeta }}c}} \left[ {\frac{1}{{{\upbeta }}}\left( {1 - \frac{2}{e}} \right)} \right]}} = \frac{{\frac{2}{e}}}{{1 - \frac{2}{e}}} \approx 2.8. $$

1.2 The Effect of Elasticity on the Error-Cost Ratio under Isoelastic Demand

From Propositions 1 and 4, we have that the error-cost ratio is a constant number when the demand function is linear or exponential. However, when the demand function is algebraic \( p = {{\alpha }}q^{{{\upbeta }}} - {{\upsigma }}, \) or is isoelastic \( p = {{\alpha }}q^{{{\upbeta }}} \), where \( \beta \in \left( { - 1,0} \right) \), the error-cost ratio is a function of demand elasticity. We claim that the ratio \( \rho \) decreases with regard to demand elasticity \( {\epsilon} \doteq - \frac{1}{{{\upbeta }}} \).

According to Propositions 2 and 3, the error-cost ratio is given by

$$ {{\uprho }} = \frac{1}{{\frac{{\left( {{{\upbeta }} + 1} \right)^{{1 + 1/{{\upbeta }}}} }}{{\left( {{{\upbeta }} + 2} \right)}} - 1}} $$

Since demand elasticity is given by \( {\epsilon} \doteq - \frac{1}{{{\upbeta }}} \), we have

$$ {{\uprho }} = \frac{1}{{\frac{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }}{{2 - \frac{1}{{\epsilon}}}} - 1}}. $$

To study the relationship between \( {{\uprho }} \) and \( {\epsilon} \), we can first analyze the relationship between \( \frac{1}{{{\uprho }}} \) and \( {\epsilon} \) by taking derivative of \( \frac{1}{{{\uprho }}} \) to \( {\epsilon} \).

From \( \frac{1}{{{\uprho }}} = \frac{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }}{{2 - \frac{1}{{\epsilon}}}} - 1 \), we have

$$ \begin{aligned} \frac{{d\left( {\frac{1}{\rho }} \right)}}{d{\epsilon}} & = \frac{{d\left( {\frac{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }}{{2 - \frac{1}{{\epsilon}}}} - 1} \right)}}{d{\epsilon}} \\ & = \frac{{d\left( {\frac{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }}{{2 - \frac{1}{{\epsilon}}}}} \right)}}{d{\epsilon}} \\ \begin{array}{l} { = \frac{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }}{{2 - \frac{1}{{\epsilon}}}}\frac{{d\left( {\ln \frac{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }}{{2 - \frac{1}{{\epsilon}}}}} \right)}}{d{\epsilon}}.} \\ \end{array} \\ \end{aligned} $$
(7)

To derive \( \frac{{d\left( {\ln \frac{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }}{{2 - \frac{1}{{\epsilon}}}}} \right)}}{d{\epsilon}} \), we first compute \( \ln \frac{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }}{{2 - \frac{1}{{\epsilon}}}} \) and have

$$ \ln \frac{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }}{{2 - \frac{1}{{\epsilon}}}} = \left( {1 - {\epsilon}} \right)\ln \left( {1 - \frac{1}{{\epsilon}}} \right) - \ln \left( {2 - \frac{1}{{\epsilon}}} \right). $$

Then we have the derivative \( \frac{{d\left( {\ln \frac{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }}{{2 - \frac{1}{{\epsilon}}}}} \right)}}{d{\epsilon}} \) derived as follows

$$ \begin{array}{*{20}c} {\frac{{d\left( {\ln \frac{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }}{{2 - \frac{1}{{\epsilon}}}}} \right)}}{d{\epsilon}} = \ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}.} \\ \end{array} $$
(8)

Then we have

Claim 1

$$ \forall {\epsilon} \in \left( {1, + \infty } \right), $$
$$ \ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}} > 0. $$

Proof

Since \( {{\upbeta }} \in \left( { - 1,0} \right) \), we have \( {\epsilon} \in \left( {1, + \infty } \right) \). Then we show that \( \ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}} \) is monotonically decreasing with \( {\epsilon} \) in \( \left( {1, + \infty } \right) \).

We first derive the derivative of \( \ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}} \) with regard to \( {\epsilon} \), as follows

$$ \frac{{d\left( {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}} \right)}}{d{\epsilon}} = \frac{{ - \frac{1}{4}}}{{{\epsilon}\left( {{\epsilon} - 1} \right)\left( {{\epsilon} - \frac{1}{2}} \right)^{2} }} < 0. $$

The last equality is from \( {\epsilon} \in \left( {1, + \infty } \right). \) This proves that \( \ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}} \) is monotonically decreasing with \( {\epsilon} \) in \( \left( {1, + \infty } \right) \), i.e.,\( \forall {\epsilon} \in \left( {1, + \infty } \right) \), \( \ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}} > \mathop {\lim }\limits_{{\epsilon} \to + \infty } \left( {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}} \right) \).

Then we have

$$ \mathop {\lim }\limits_{{\epsilon} \to + \infty } \left( {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}} \right) = 0. $$

Thus, we have \( \forall {\epsilon} \in \left( {1, + \infty } \right),\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}} > 0 \).

Plugging the Eq. (8) back in Eq. (7), we have

$$ \frac{{d\left( {\frac{1}{{{\uprho }}}} \right)}}{d{\epsilon}} = \frac{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }}{{2 - \frac{1}{{\epsilon}}}}\left[ {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}} \right]. $$

From Claim 1, we have \( \ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}} > 0 \).

Also from \( {\epsilon} > 1, \) we have

$$ \frac{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }}{{2 - \frac{1}{{\epsilon}}}} > 0 $$

Thus, we have

$$ \frac{{d\left( {\frac{1}{{{\uprho }}}} \right)}}{d{\epsilon}} > 0. $$

Then we have

$$ \frac{{d{{\uprho }}}}{d{\epsilon}} = - {{\uprho }}^{2} \frac{{d\left( {\frac{1}{{{\uprho }}}} \right)}}{d{\epsilon}} < 0. $$

1.3 The Negative Relationship between Elasticity and Profit

Lemma 1

(Negative relationship between elasticity and profit) The price elasticity functions for these demand representations are given by: (i) The isoelastic demand function takes a constant elasticity:

$$ {\epsilon}_{iso} = - \frac{1}{{{\upbeta }}}, $$

(ii)The price elasticity of algebraic demand function is given by

$$ {\epsilon}_{alg} \left( p \right) = - \frac{p}{{\beta \left( {p + \sigma } \right)}}, $$

(iii) The price elasticity of exponential demand function is given by

$$ {\epsilon}_{exp} \left( p \right) = \beta p. $$

Then the profit is a decreasing function in price elasticity:

$$ \frac{{\partial \pi^{*} }}{\partial {\epsilon}} < 0 $$

for the above three cases.

Proof:

1.4 Case I: Isolastic Demand Function

From the proceeding result in the Proposition 3, we have that, under isoelastic demand, the monopoly price and quantity are given by

$$ \begin{aligned} p^{*} = \frac{c}{{1 + {{\upbeta }}}}, \hfill \\ q^{{ \star }} = \left( {\frac{c}{{{{\alpha }}\left( {1 + {{\upbeta }}} \right)}}} \right)^{{1/{{\upbeta }}}} . \hfill \\ \end{aligned} $$

Then we have the monopoly profit is given by

$$ \begin{array}{*{20}c} {{{\uppi }}^{*} \doteq \left( {p^{*} - c} \right)q^{{ \star }} = \left( {\frac{c}{{1 + {{\upbeta }}}}} \right)^{{1 + \frac{1}{{{\upbeta }}}}} \left( {\frac{1}{{{\alpha }}}} \right)^{{\frac{1}{{{\upbeta }}}}} \left( { - {{\upbeta }}} \right).} \\ \end{array} $$
(9)

Plugging \( {\epsilon} \doteq - \frac{1}{{{\upbeta }}} \) into Eq. (9), we have

$$ \begin{aligned} {{\uppi }}^{*} & = \left( {\frac{c}{{\epsilon} - 1}} \right)^{1 - {\epsilon}} \left( {\frac{{\epsilon}}{{{\alpha }}}} \right)^{ - {\epsilon}} \\ & = c^{1 - {\epsilon}} \left( {{\epsilon} - 1} \right)^{{\epsilon} - 1} {\epsilon}^{ - {\epsilon}} {{\alpha }}^{{\epsilon}} . \\ \end{aligned} $$

Then we have

$$ \begin{array}{*{20}c} {\ln \pi^{*} = \left( {1 - {\epsilon}} \right)\ln c + \left( {{\epsilon} - 1} \right)\ln \left( {{\epsilon} - 1} \right) - {\epsilon}\left( {\ln {\epsilon} - \ln \alpha } \right)} \\ \end{array} $$
(10)

We can back out the sign of derivative \( \frac{{\partial {{\uppi }}^{*} }}{\partial {\epsilon}} \) from the sign of \( \frac{{\partial \left( {{{\ln\uppi }}^{*} } \right)}}{\partial {\epsilon}} \). Formally, from \( \frac{{\partial \left( {{{\ln\uppi }}^{*} } \right)}}{\partial {\epsilon}} = \frac{1}{{{{\uppi }}^{*} }}\frac{{\partial {{\uppi }}^{*} }}{\partial {\epsilon}} \) and \( \pi^{*} > 0, \) we have that the two derivatives \( \frac{{\partial {{\uppi }}^{*} }}{\partial {\epsilon}} \) and \( \frac{{\partial \left( {{{\ln\uppi }}^{*} } \right)}}{\partial {\epsilon}} \) have the same sign.

From Eq. (10),

$$ \begin{aligned} \frac{{\partial \left( {{{\ln\uppi }}^{*} } \right)}}{\partial {\epsilon}} & = - { \ln }c + { \ln }\left( {{\epsilon} - 1} \right) - \left( {{ \ln }{\epsilon} - {{\ln\upalpha }}} \right) \\ & = { \ln }\frac{{{\alpha }}}{c} + { \ln }\left( {\frac{{\epsilon} - 1}{{\epsilon}}} \right) \\ \end{aligned} $$

Then from the model primitive \( {{\upbeta }} \in \left( {0,1} \right) \), we have

$$ \begin{aligned} {{\upbeta }} & \in \left( { - 1,0} \right) \Rightarrow {\epsilon} > 1 \\ & \Rightarrow 0 < \frac{{\epsilon} - 1}{{\epsilon}} < 1 \\ & \Rightarrow { \ln }\left( {\frac{{\epsilon} - 1}{{\epsilon}}} \right) < 0. \\ \end{aligned} $$

Assume that \( 0 < {{\alpha }} < c \), then \( \ln \frac{\alpha }{c} < 0 \) then we have, \( \forall {\epsilon} \)

$$ \frac{{\partial \left( {{{\ln\uppi }}^{*} } \right)}}{\partial {\epsilon}} < 0 \Rightarrow \frac{{\partial {{\uppi }}^{*} }}{\partial {\epsilon}} < 0. $$

1.5 Case II: Algebraic Demand Function

From the proceeding result in the Proposition 2, we have that, \( q^{{ \star }} = \left( {\frac{{{{\upsigma }} + c}}{{{{\alpha }}\left( {{{\upbeta }} + 1} \right)}}} \right)^{{1/{{\upbeta }}}} \), and monopolistic price is \( p^{*} = \frac{\sigma + c}{\beta + 1} - \sigma \).

Then we have that the monopoly profit is given by

$$ \begin{aligned} {{\uppi }}^{*} & \doteq \left( {p^{*} - c} \right)q^{{ \star }} \\ & = \left( {\frac{{ - {{\upbeta \upalpha }}}}{{1 + {{\upbeta }}}}} \right)\left( {\frac{{{{\upsigma }} + c}}{{{{\alpha }}\left( {1 + {{\upbeta }}} \right)}}} \right)^{{1 + \frac{1}{{{\upbeta }}}}} \\ & = \frac{{ - {{\upbeta \upalpha }}^{{ - \frac{1}{{{\upbeta }}}}} \left( {{{\upsigma }} + c} \right)^{{1 + \frac{1}{{{\upbeta }}}}} }}{{\left( {1 + {{\upbeta }}} \right)^{{1 + \frac{1}{{{\upbeta }}}}} }}, \\ \end{aligned} $$

Plugging \( {\epsilon} \doteq - \frac{1}{{{\upbeta }}} \) into the equation, we have

$$ \begin{aligned} \pi^{*} & = \frac{{\alpha^{{\epsilon}} }}{{\epsilon}}\frac{{\left( {\sigma + c} \right)^{1 - {\epsilon}} }}{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }} \\ & = \alpha^{{\epsilon}} {\epsilon}^{ - {\epsilon}} \left( {c + \sigma } \right)^{1 - {\epsilon}} \left( {{\epsilon} - 1} \right)^{{\epsilon} - 1} . \\ \end{aligned} $$

Then we have

$$ \begin{array}{*{20}c} {\ln \pi^{*} = \left( {{\epsilon} - 1} \right)\ln \left( {{\epsilon} - 1} \right) + \left( {1 - {\epsilon}} \right)\ln \left( {\sigma + c} \right) + {\epsilon}\ln \alpha - {\epsilon}\ln {\epsilon}.} \\ \end{array} $$
(11)

We can back out the sign of derivative \( \frac{{\partial \pi^{*} }}{\partial {\epsilon}} \) from the sign of \( \frac{{\partial \left( {{ \ln }\pi^{*} } \right)}}{\partial {\epsilon}} \). Formally, from \( \frac{{\partial \left( {{ \ln }\pi^{*} } \right)}}{\partial {\epsilon}} = \frac{1}{{\pi^{*} }}\frac{{\partial \pi^{*} }}{\partial {\epsilon}} \), and \( \pi^{*} > 0, \) we have that the two derivatives \( \frac{{\partial \pi^{*} }}{\partial {\epsilon}} \) and \( \frac{{\partial \left( {{ \ln }\pi^{*} } \right)}}{\partial {\epsilon}} \) have the same sign.

From Eq. (11)

$$ \frac{{\partial \left( {{ \ln }\pi^{*} } \right)}}{\partial {\epsilon}} = \ln \left( {{\epsilon} - 1} \right) - \ln {\epsilon} - { \ln }\left( {\sigma + c} \right) + { \ln }\alpha , $$

Then from the model primitive \( \beta \in \left( { - 1,0} \right) \), we have

$$ \begin{aligned} \beta \in \left( { - 1,0} \right) \Rightarrow {\epsilon} > 1 \hfill \\ \Rightarrow { \ln }\left( {{\epsilon} - 1} \right) - { \ln }{\epsilon} < 0. \hfill \\ \end{aligned} $$

Similar to the analysis of the isoelastic demand function, if \( c + \sigma > \alpha \),we have that

$$ \frac{{\partial \left( {{{\ln\uppi }}^{*} } \right)}}{\partial {\epsilon}} < 0 \Rightarrow \frac{{\partial {{\uppi }}^{*} }}{\partial {\epsilon}} < 0. $$

1.6 Case III: The Exponential Demand Function

From the previous result in the Proposition 4, the monopoly quantity, under the exponential demand function, is \( q^{{ \star }} = {{\upgamma }}e^{{ - \left( {{{\upbeta }}c + 1} \right)}} \) and the monopolistic price is \( p^{{ \star }} = \frac{{{{\upbeta }}c + 1}}{{{\upbeta }}} \). The monopoly profit is given by

$$ {{\uppi }}^{*} = \left( {p^{*} - c} \right)q^{{ \star }} = \frac{{{\upgamma }}}{{{\upbeta }}}e^{{\left( { - 1 - {{\upbeta }}c} \right)}} . $$

From the proceeding result, we have that the elasticity parameter \( {\epsilon}_{exp}^{A} = \beta \). Thus, to analyze the effect of the market elasticity parameter on the monopoly profit, we take the partial derivative of profit with regard to \( {{\upbeta }} \), i.e.,

$$ \frac{{\partial {{\uppi }}^{*} }}{{\partial {{\upbeta }}}} = - {{\upgamma }}e^{{\left( { - 1 - {{\upbeta }}c} \right)}} - \frac{{{{\upgamma }}e^{{\left( { - 1 - {{\upbeta }}c} \right)}} }}{{{{\upbeta }}^{2} }} = {{\upgamma }}e^{{\left( { - 1 - {{\upbeta }}c} \right)}} \left[ { - 1 - \frac{1}{{{{\upbeta }}^{2} }}} \right]. $$

From the demand function’s primitive setup, we have that \( {{\upgamma }} > 0 \), and \( \beta > 0 \). Thus,

$$ \frac{{\partial {{\uppi }}^{*} }}{{\partial {{\upbeta }}}} < 0. $$

1.7 Isoelastic Demand and the Uniform Distribution of Investment Cost

Assume that the R&D investment cost follows a uniform distribution on \( \left( {0,\bar{K}} \right] \). To compute the adjusted error cost ratio, we first compute the probability of a firm with the firm’s entry decision in period 1. Then we have the entry probability—denoted as \( {{\uptheta }} \)—is given by

$$ \begin{array}{*{20}c} {\theta = \frac{{\left( {1 - v} \right){{\uppi }}^{*} }}{{\bar{K}}}.} \\ \end{array} $$
(12)

Then we have that the adjusted ratio is given by

$$ \begin{aligned} {\tilde{{\uprho }}} & = \frac{{1 - {{\uptheta }}}}{{{\uptheta }}}{{\uprho }} \\ & = \left( {\frac{{\bar{K}}}{{\left( {1 - v} \right){{\uppi }}^{ *} }} - 1} \right), \\ \end{aligned} $$

where the firm enters regardless of enforcement, if \( \left( {1 - v} \right){{\uppi }}^{*} > \bar{K} \), thus,

$$ {\tilde{{\uprho }}} = \left\{ {\begin{array}{*{20}l} {\left( {\frac{{\bar{K}}}{{\left( {1 - v} \right)\pi^{*} }} - 1} \right)\rho ,} \hfill & {{\text{if}}\; \left( {1 - v} \right)\pi^{*} \le \bar{K}} \hfill \\ {0,} \hfill & {{\text{if}}\; \left( {1 - v} \right)\pi^{*} > \bar{K}} \hfill \\ \end{array} } \right. $$

When the elasticity is not small, such that \( \left( {1 - v} \right){{\uppi }}^{*} \le \bar{K} \), the adjusted error cost ratio that takes into account the dynamic effect of enforcement can now be expressed as a function of the demand elasticity

$$ \begin{aligned} {\tilde{{\uprho }}} & = \frac{{1 - {{\uptheta }}}}{{{\uptheta }}}{{\uprho }} \\ & = \left( {\frac{{\bar{K}}}{{\left( {1 - v} \right){{\uppi }}^{*} }} - 1} \right)\left[ {\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} \left( {2 - \frac{1}{{\epsilon}}} \right)^{ - 1} - 1} \right]^{ - 1} . \\ \end{aligned} $$

1.8 Static and Dynamic Effects under Isoelastic Demand and the Uniform Distribution of Investment Cost

The static effect is defined by \( \frac{{1 - {{\uptheta }}}}{{{\uptheta }}}\frac{{\partial {{\uprho }}}}{\partial {\epsilon}} \), and hence it is given by

$$ \frac{{1 - {{\uptheta }}}}{{{\uptheta }}}\frac{{\partial {{\uprho }}}}{\partial {\epsilon}} = \left( {\frac{{\bar{K}}}{{\left( {1 - v} \right){{\uppi }}^{*} }} - 1} \right)\frac{{\partial {{\uprho }}}}{\partial {\epsilon}} $$

From Eqs. (10) and (11), we have

$$ \begin{aligned} \frac{{d{{\uprho }}}}{d{\epsilon}} & = - {{\uprho }}^{2} \frac{{d\left( {\frac{1}{{{\uprho }}}} \right)}}{d{\epsilon}} \\ & = - {{\uprho }}^{2} \frac{{\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} }}{{2 - \frac{1}{{\epsilon}}}}\left[ {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}} \right] \\ & = - {{\uprho }}^{2} \left( {\frac{1}{{{\uprho }}} + 1} \right)\left[ {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}} \right] \\ & = - {{\uprho }}\left( {1 + {{\uprho }}} \right)\left[ {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}} \right]. \\ \end{aligned} $$

where \( {{\uprho }} = \left[ {\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} \left( {2 - \frac{1}{{\epsilon}}} \right)^{ - 1} - 1} \right]^{ - 1} \).

Thus, the static effect is given by

$$ \begin{array}{*{20}c} {\frac{{1 - {{\uptheta }}}}{{{\uptheta }}}\frac{{\partial {{\uprho }}}}{\partial {\epsilon}} = \left( {\frac{{\bar{K}}}{{\left( {1 - v} \right){{\uppi }}^{*} }} - 1} \right)\left[ { - {{\uprho }}\left( {1 + {{\uprho }}} \right)} \right]\left[ {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}} \right]} \\ \end{array} $$
(13)

The dynamic effect is defined by \( - \frac{{{\uprho }}}{{{{\uptheta }}^{2} }}\frac{{\partial {{\uptheta }}}}{\partial {\epsilon}} \). Plugging Eq. (12) in the expression of dynamic effect, we have

$$ \begin{aligned} - \frac{{{\uprho }}}{{{{\uptheta }}^{2} }}\frac{{\partial {{\uptheta }}}}{\partial {\epsilon}} & = - {{\uprho }}\left( {\frac{{\left( {1 - v} \right){{\uppi }}^{*} }}{{\bar{K}}}} \right)^{ - 2} \frac{{\partial {{\uptheta }}}}{{\partial {{\uppi }}^{*} }}\frac{{\partial {{\uppi }}^{*} }}{\partial {\epsilon}} \\ & = - {{\uprho }}\frac{{\frac{{\left( {1 - v} \right)}}{{\bar{K}}}}}{{\left( {\frac{{\left( {1 - v} \right){{\uppi }}^{*} }}{{\bar{K}}}} \right)^{2} }}\frac{{\partial {{\uppi }}^{*} }}{\partial {\epsilon}} \\ \begin{array}{l} { = \frac{{ - {{\uprho }}}}{{\left( {{{\uppi }}^{*} } \right)^{2} }}\frac{{\bar{K}}}{{\left( {1 - v} \right)}}\frac{{\partial {{\uppi }}^{*} }}{\partial {\epsilon}}.} \\ \end{array} \\ \end{aligned} $$
(14)

From the previous result, we have

$$ \begin{array}{*{20}c} {\frac{{\partial {{\uppi }}^{*} }}{\partial {\epsilon}} = {{\uppi }}^{*} \frac{{\partial \ln {{\uppi }}^{*} }}{\partial {\epsilon}}} \\ \end{array} $$
(15)

Combining Eqs. (15), (10), and the foregoing equation, we have

$$ \begin{array}{*{20}c} {\frac{{\partial {{\uppi }}^{*} }}{\partial {\epsilon}} = {{\uppi }}^{*} \left[ {{ \ln }\frac{{{\alpha }}}{c} + { \ln }\left( {\frac{{\epsilon} - 1}{{\epsilon}}} \right)} \right].} \\ \end{array} $$
(16)

Combining Eqs. (16) and (14), we have the dynamic effect is given by

$$ \begin{aligned} - \frac{{{\uprho }}}{{{{\uptheta }}^{2} }}\frac{{\partial {{\uptheta }}}}{\partial {\epsilon}} & = \frac{{ - {{\uprho }}}}{{\left( {{{\uppi }}^{*} } \right)^{2} }}\frac{{\bar{K}}}{{\left( {1 - v} \right)}}{{\uppi }}^{*} \left[ {{ \ln }\frac{{{\alpha }}}{c} + { \ln }\left( {\frac{{\epsilon} - 1}{{\epsilon}}} \right)} \right] \\ & \begin{array}{*{20}c} { = \frac{{ - {{\uprho }}}}{{{{\uppi }}^{*} }}\frac{{\bar{K}}}{{\left( {1 - v} \right)}}\left[ {{ \ln }\frac{{{\alpha }}}{c} + { \ln }\left( {\frac{{\epsilon} - 1}{{\epsilon}}} \right)} \right].} \\ \end{array} \\ \end{aligned} $$
(17)

We can compare the magnitude of the static and dynamic effects by the absolute value of Eqs. (13) and (17). We have that the static effect dominates dynamic effect if and only if

$$ \begin{array}{*{20}c} {\left( {\frac{{\bar{K}}}{{\left( {1 - v} \right){{\uppi }}^{*} }} - 1} \right)\left[ {{{\uprho }}\left( {1 + {{\uprho }}} \right)} \right]\left[ {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}} \right] > \frac{{ - {{\uprho }}}}{{{{\uppi }}^{*} }}\frac{{\bar{K}}}{{\left( {1 - v} \right)}}\left[ {{ \ln }\frac{{{\alpha }}}{c} + { \ln }\left( {\frac{{\epsilon} - 1}{{\epsilon}}} \right)} \right]} \\ \end{array} $$
(18)
$$ \Leftrightarrow \begin{array}{*{20}c} {{\tilde{{\uprho }}}\left( {1 + {{\uprho }}} \right)\left[ {{ \ln }\left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}} \right] > \frac{{\bar{K}}}{{\left( {1 - v} \right){{\uppi }}^{*} }}\rho \left[ {{ \ln }\left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - { \ln }\frac{{{\alpha }}}{c}} \right] } \\ \end{array} $$
(19)
$$ \begin{array}{*{20}c} { \Leftrightarrow \left( {\bar{K} - \left( {1 - v} \right){{\uppi }}^{*} } \right)\left( {1 + {{\uprho }}} \right)\left[ {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}} \right] > \bar{K}\left[ {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - { \ln }\frac{{{\alpha }}}{c}} \right].} \\ \end{array} $$
(20)

From equation \( {{\uprho }} = \left[ {\left( {1 - \frac{1}{{\epsilon}}} \right)^{1 - {\epsilon}} \left( {2 - \frac{1}{{\epsilon}}} \right)^{ - 1} - 1} \right]^{ - 1} \), we have \( 1 + {{\uprho }} = \frac{{{\epsilon}^{{\epsilon}} }}{{{\epsilon}^{{\epsilon}} - \left( {2{\epsilon} - 1} \right)\left( {{\epsilon} - 1} \right)^{{\epsilon} - 1} }}. \)

Plugging this back into the comparison inequality (18), we have that the static effect dominates, if

$$ \frac{{\left( {\bar{K} - \left( {1 - v} \right){{\uppi }}^{*} } \right){\epsilon}^{{\epsilon}} }}{{{\epsilon}^{{\epsilon}} - \left( {2{\epsilon} - 1} \right)\left( {{\epsilon} - 1} \right)^{{\epsilon} - 1} }}\left[ {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - \frac{1}{{{\epsilon} - \frac{1}{2}}}} \right] > \bar{K}\left[ {\ln \left( {\frac{{\epsilon}}{{\epsilon} - 1}} \right) - { \ln }\frac{{{\alpha }}}{c}} \right]. $$

Appendix B. Simulations with Varying Enforcement Probability

In this appendix, we show how the adjusted error-cost ratio changes according to the antitrust enforcement probability. In the main text, we show the adjusted error-cost ratio and the corresponding static and dynamic effects under a modest enforcement probability: \( v = 0.2. \) If the enforcement probability increases, the adjusted error-cost ratio curve shifts upward. The dynamic effect curves shift upward as well, while the change in the static effect is smaller than the change in the dynamic effect.

2.1 Medium Enforcement Probability

In Fig. 4, we assume that the enforcement probability is at the intermediate level: \( v = 0.5 \). The adjusted error-cost ratio is higher than that under \( v = 0.2 \) (see Fig. 3 in main text). The lower bound of the adjusted error-cost ratio now is about \( 13 \), which occurs when the demand elasticity is about \( 1.09 \)

Fig. 4
figure 4

Medium Enforcement Probability v = 0.5

2.2 High Enforcement Probability

In Fig. 5, we assume that the enforcement probability is high, \( v = 0.8 \). The adjusted error-cost ratio curve shifts up further in Fig. 5 than in Fig. 4. The lower bound of the adjusted error-cost ratio now is about \( 42 \), which occurs when the demand elasticity is about \( 1.11 \).

Fig. 5
figure 5

High Enforcement Probability v = 0.8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hylton, K.N., Xu, W. Error Costs, Ratio Tests, and Patent Antitrust Law. Rev Ind Organ 56, 563–591 (2020). https://doi.org/10.1007/s11151-020-09761-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11151-020-09761-3

Keywords

JEL Classification

Navigation