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Abstract
We assess the impact of regional differences related to energy transition on aver-
age costs and allowed revenues for a panel of Dutch electricity distribution system
operators (DSOs) subject to yardstick competition. Yardstick competition entails that
the allowed revenues of DSOs are based on the average costs of the entire industry,
which requires that these DSOs are comparable. This comparability requirement is
challenged by the penetration of distributed generation and other distributed energy
resources, whichmay cause regional differences amongDSOs. Estimating an average-
cost function for the entire population of Dutch DSOs for the period 2012–2020, we
find that the installed capacity of solar PV, installed capacity of on-shore wind and
number of public electric-vehicle charging points have a significant effect on unit costs
of DSOs. If yardstick competition does not take these effects into account, the allowed
revenues for some DSOs (having above-average shares of energy-transition variables)
are too low, whereas allowed revenues for other DSOs (having below-average shares
of energy-transition variables) are too high.We find that taking the impact into account
can change the price caps of individual DSOs with a percentage up to around 20%.
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1 Introduction

Electricity DSOs are generally considered to be natural monopolists and, therefore,
their revenues are regulated by regulators. The aim of this revenue regulation is to
provide DSOs with incentives to produce at an efficient cost level, to set the tariffs
are reasonable levels and to improve or maintain their quality of service, while also
providing DSOs with a sufficient reimbursement for their incurred costs. In this prob-
lem, there exists a fundamental issue of asymmetric information between the regulator
and regulated DSOs. First, the regulator does not know the true efficient cost levels of
the regulated firms. Second, the regulator cannot observe the managerial effort made
to reduce costs or improve quality of service (Joskow, 2014; Laffont & Tirole, 1993;
Vogelsang, 2002).

Regulators have introduced price-cap regulation in order to incentivize managerial
effort. In price-cap regulation, the regulator sets ex ante (fixed) price caps, and allows
firms to retain the rents created by producing at a cost level below these caps. Hence,
the managers of regulated firms have an incentive to choose the optimal effort level
to reduce costs to an efficient cost level (Joskow, 2014; Shleifer, 1985). However,
although optimal managerial effort is ensured, regulators still need information to
determine the level of the price caps. For each DSO, its price caps should just allow
for the recovery of efficient costs. If price caps are set too high compared to the efficient
cost levels, firms are able to capture substantial rents at the expense of customers. If
price caps are too low, firms may fail to recover their costs.

Yardstick competition is a specific type of price cap regulation that provides a
straightforward way to compare costs of individual firms and to determine the level
of efficient costs (Shleifer, 1985). In yardstick competition, price caps of individual
regulated firms are set equal to the average costs of a group of comparable regulated
firms (Shleifer, 1985). The fixed price caps ensure that firms choose optimal effort to
reduce their costs. In doing so, firms signal to the regulator what their efficient cost
level is. The regulator can use this information to set price caps (and readjust them
over time) to reflect efficient cost levels.

Although yardstick competition (in theory) results in both optimalmanagerial effort
and cost recovery, it requires thatDSOs,which generally operate in different geograph-
ical areas, are comparable (Shleifer, 1985;Weyman-Jones, 1995). Thismeans that they
should be similar in terms of output composition and operating environment. However,
previous research found that there are several output characteristics and environmen-
tal factors can cause heterogeneity among DSOs and affect their distribution network
costs (Filippini &Wild, 2001; Hattori et al., 2005; Neuberg, 1977; Hirschhausen et al.,
2006; Yang & Pollitt, 2009). When the costs of DSOs depend on the specific envi-
ronment in which they operate, the yardstick cost level used to inform price caps
may no longer reflect efficient costs of individual DSOs. To solve this issue, yardstick
price caps can be adjusted to take into account the impact of output characterises and
environmental factors on average costs (Filippini & Wild, 2001; Shleifer, 1985).

In the current energy transition, the large-scale integration of distributed generation
(DG) and distributed energy resources (DERs) in distribution networks could be a new
factor driving distribution network costs. Several engineering studies find that integra-
tion of DG and DERs in distribution networks can result in large costs, depending on
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the penetration level and local network conditions such as network topology and char-
acteristics of load (De Joode et al., 2009; Gupta et al., 2021). However, the empirical
evidence using real cost data to validate the effect of DG andDERs on distribution net-
work costs is still limited. Höfer andMadlener (2021) use a spatial regression analysis
to study the effect of installed capacities of renewable energy sources (RES) on cur-
tailment costs and find a significant and positive effect. Wangness et al. (2021) study
the effect of EV adoption on total distribution network costs, using data on Norwegian
DSOs, and find that EV adoption causes higher costs.

In this paper, we study the effect of various energy-transition variables on average
costs of the entire population of Dutch DSOs subject to yardstick competition. Our
contribution lies in the fact that we include multiple energy-transition variables, such
as the installed capacity of solar PV, installed capacity of on-shore wind, and the
number of EV charging points. Furthermore, we relate our findings to the application
of yardstick competition and use coefficient estimates to adjust individual DSO price
caps to take into account the impact of significant energy-transition variables.

Our results show that all included energy-transition variables have a significant
impact on average distribution-network costs. This indicates that these variables are
important cost drivers, which should be taken into account in a yardstick competi-
tion framework. When we adjust individual DSO price cap to take these factors into
account, substantial distributional effects arise. Some DSOs see an down- or upward
adjustment in their price caps of about 0–10%. There is one DSO, with above-average
installed capacity of on-shore wind, for which the price cap is raised by around 20%.
Overall, this suggests that increased penetration for energy-transition variables chal-
lenges the application of uniform yardstick competition, which provides some DSOs
with too little revenues, whereas other DSOs receive too much revenues.

The outline of this paper is as follows. In Sect. 2 we discuss the relevant literature, in
Sect. 3 we lay out method of research and describe the specification of the average-cost
function, in Sect. 4we describe our data, in Sect. 5we report and discuss the results and
calculate individual price-caps, and in Sect. 6, finally, we conclude. In the Appendix
1, we report returns to scale and returns to customer density. More information on
data collection and a correlation matrix of variables included are available as Online
Resource 1.

2 Literature review

2.1 Yardstick competition

Yardstick competition is a form of average benchmarking, in which the performance
of a regulated firm is compared to the average performance of a group of comparable
regulated firms within the same industry (Jamasb & Pollitt, 2001). In the uniform
design of yardstick competition, the tariff a regulated firm is allowed to charge is
equal to the average cost level of a group of comparable firms, including the firm itself
(Mulder, 2023). Instead of the uniform design, a discriminatory design can be chosen,
in which case the tariff that an individual firm can charge depends on the average unit
costs of all other firms (Shleifer, 1985). In the case of multiple products, the average
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cost level can be calculated as the total costs divided by the weighted sum of the
produced quantities for each product (Joskow, 2014; Joskow & Schmalesee, 1986).

The merit of yardstick competition is that it induces competition among regulated
firms resulting in a tariff level (i.e. the yardstick) which compensates for the aver-
age costs of each firm, in the case where these firms are comparable. Because the
allowed tariff levels are (at least in part) decoupled from a firm’s reported own costs,
each firm has an incentive to reduce costs, although this incentive power depends on
how the yardstick is determined. In general, a discriminatory yardstick regime has a
higher incentive power than a uniform regime, since each DSOs’ tariff is fully decou-
pled from its own costs (Mulder, 2023). In relation to this, cost reductions are more
or less translated into tariff reductions, such that customers benefit (Mizutani et al.,
2009; Shleifer, 1985). Therefore, it is said that yardstick competition mimics market
competition among regulated firms (Joskow, 2014).

The implementation of yardstick competition also has limitations. First, there
may be a risk of collusion between regulated firms (Dijkstra et al., 2017; Weyman-
Jones, 1995). Second, implementation of yardstick competition requires a set of
regulated firms with comparable production technologies and demand functions, in
order to determine the average cost level (Burns & Weyman-Jones, 1996; Joskow &
Schmalesee, 1986). With regard to the second issue, the implementation of yardstick
competition has been challenged by incomparability of regulated firms in various
industries, such as electricity distribution, water service and telecommunications
(Façanha & Resende, 2004; Filippini & Wild, 2001; Kridel et al., 1996; Resende,
2002; Sawkis, 1995; Tupper & Resende, 2004; Weyman-Jones, 1995).

In this paper, we focus on the requirement of comparability of DSOs subject to
yardstick competition. This requirement can be violated when the exogenous out-
put characteristics and environmental factors cause heterogeneity among firms and
affect the costs of electricity distribution (Growitsch et al., 2012; Neuberg, 1977). If
such factors are not (sufficiently) taken into account, the yardstick cost level (i.e., the
average cost level of the comparator group) used to determine price or revenue caps
does not necessarily reflect the efficient cost level of individual DSOs. As a conse-
quence, application of yardstick competition can result in arbitrary profits and losses,
depending on exogenous factors that are not taken into account. Filippini and Wild
(2001) studied this issue for a sample of Swiss DSOs subject to yardstick competition.
The authors found that factors such as customer density and service area significantly
affected electricity distribution costs and they proposed that coefficients from their
analysis could be employed to account for the impact of these factors (Filippini &
Wild, 2001).

In this study, we focus on the question whether environmental factors related
to energy transition have a significant effect on average distribution-network costs.
The integration of integration of distributed generation (DG) and distributed energy
resources (DERs) in the distribution network could be a new cost driver, which may be
unevenly distributed among DSOs (Jenkins & Perez-Arriaga, 2017). If this cost driver
is not sufficiently taken into account, an uniform yardstick competition regime that
directly compares regulated firms would lead to inappropriate price caps and revenue
caps.
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2.2 Energy transition

In the transition towards a zero-carbon energy system, distribution networks play
a crucial role. Traditionally, centralized generation was connected to transmission
networks and distribution networks were designed to connect predictable amounts of
load to the electricity system. Today, large amounts of generation based on RES are
connected to medium- and low-voltage distribution networks, resulting in a surge of
so-called DG (Ruester et al., 2014). On top of that, adoption of DERs such as electric
vehicles, heat pumps and other electric technologies is associated with a substantial
increase in electricity demand, resulting in increases in both total and peak load in
distribution networks (Ruester et al., 2014).

The integration of DG and DERs can result in several technical challenges for
distribution networks (Huda & Živanović, 2017). Large-scale integration of DG can
result in overloading of various network components and reverse power flows, poten-
tially causing issues voltage control, power quality and network safety and reliability
(Huda & Živanović, 2017). These issues may particularly occur when DG penetration
is high and current grid capacity is low and dispersed, which is the case in rural areas
(Gupta et al., 2021). With regard to DERs, the peak load associated with adoption of
EVs and heat pumps is expected to result in potential voltage rises and overloading of
network components in low- and medium-voltage distribution networks (Veldman &
Verzijlbergh, 2014; Verzijlbergh et al., 2012).

Consequently, large-scale integration of DG and DERs is likely to cause substan-
tial integration costs. These costs can comprise of capital costs related to network
expansions, such as upgrading of circuits, substations, switchboard and distribution
transformers and replacement of communications and control equipment (Cossent
et al., 2011; Horowitz et al., 2018). Also, integration of DG and DERs may require
additional operational costs related to active network management and congestion
alleviation (Höfer & Madlener, 2021; Ruester et al., 2014).

Several studies have aimed to quantify the costs related to DG andDER integration.
Horowitz et al. (2018) have reviewed the literature on solar PV integration costs and
have argued that distribution network costs may rise substantially when penetration
levels surpass a certain threshold. Below this threshold, distribution network costs
may remain relatively stable. The integration costs of solar PV above the threshold are
mainly related to network expansions (Horowitz et al., 2018). Cossent et al. (2011)
have used a reference networkmodel (RNM) to study the impact of DG on distribution
network costs for three real grid areas in theNetherlands, Spain andGermany. For each
case, the authors used 2008 levels of demand and DG as input data for the reference
network, and then simulated various scenarios for load growth and DG adoption until
2020, considering solar PV, on-shore wind and combined heat and power. In all cases,
higher levels of installed DG capacity are associated with higher integration costs.
Gupta et al. (2021) have used a network model of two large-scale distribution grid
areas in Switzerland, covering both urban, suburban and rural grid areas. The authors
have studied the adoption of solar PV, heat pumps and electric vehicles and have found
that all three increased reinforcement costs.
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Some papers have focused on the distribution-network integration costs related to
EV charging. Verzijlbergh et al. (2012) have studied this for a large LV- and MV-
voltage distribution network area in the Netherlands. Verzijlbergh et al. (2012) have
found that net present value of total distribution network costs increases with 24–29%,
for a scenario of 75% EV adoption by 2040. Using a similar case study, Veldman and
Verzijlbergh (2014) have found that total grid costs increase by 25% by 2030. These
results are based on uncontrolled charging strategies, meaning that households charge
their EV immediately upon arrival at home and atmaximumcharging power.Currently,
this is indeed the dominant charging strategy. However, when smart charging is applied
to reduce peak demand, the increase in grid costs can be reduced by 10–20% points
(Veldman & Verzijlbergh, 2014; Verzijlbergh et al., 2012). On the contrary, charging
based solely on wholesale electricity prices can aggravate impact on the grid, resulting
in total distribution network costs increases of 40%, since individual load profiles
become more correlated when they are more responsive to electricity market prices
(Veldman & Verzijlbergh, 2014).

Although the above-described engineering network models have indicated that DG
and DERs can have a substantial effect on distribution network costs for various
scenarios, there are only a few studies that have used econometricmethods and real cost
data to quantify and explain these effects. Höfer andMadlener (2021) have studied the
impact of RESs onGermanDSOs’ curtailment costs. They have found that curtailment
costs increase by 0.7% per GW of installed capacity of on-shore wind.Wangness et al.
(2021) have used data of Norwegian DSOs to study the effect of EV adoption rates on
distribution grid costs. They have found that increased EV adoption caused an increase
in grid costs: a 1% increase in EV stock resulted in a 0.02% increase in grid costs. In
this paper, we proceed on these types of studies by exploring the impact of various
energy-transition related variables on the costs of distribution-grid operators.

3 Method of research

3.1 Model of electricity distribution costs

To investigate the cost structure of electricity distribution, previous studies have used
parametric cost functions (Jamasb & Pollitt, 2001). The costs are described as a func-
tion of output levels, input prices and output characteristics. The output characteristics
(or attributes) are added because the output produced by DSOs can be heterogeneous
(Filippini &Wild, 2001). Also, service area characteristics can be included as control
variables.

In this study, we estimate an average-cost function that includes several energy-
transition related variables. These variables are included as characteristics of output.
We assume that the regulated firm minimizes total costs, given its output level, exoge-
nous output characteristics and input prices. For electricity distribution, this seems a
suitablemodel becauseDSOs are obliged tomeet demand and are not able to determine
their own output (Jamasb & Pollitt, 2001).

In our cost function, we include a single output measure (i.e. number of customers)
and one input price (i.e. wage). We include three energy-transition related variables:

123



The impact of energy transition on distribution network costs… 91

installed capacity of solar PV per 1000 customers, installed capacity of on-shore wind
per 1000 customers, number of public EV charging points per 1000 customers.We also
include two other output characteristics, the energy delivered in MWh per connection
and the maximum demand at the MV/HV voltage level in MW per connection.

We also include other control variables: customer density to describe the service
area, the SystemAverage Interruption Index (SAIFI) to take into account interruptions
in supply, and a linear time trend to control for neutral technological developments.

The resulting average-cost function can now be described as:

AC � C

Y
� f (Y , ED, MD, PV , W I ND, EV , PL , CD, SAI F I , T )

(1)

where AC is an average-cost measure,1 which is equal to: C total costs divided by
Y number of connections; PL is the input price of labour; ED and MD are energy
delivered per 1000 customers andmaximumdemand atMV/HVvoltage level per 1000
customers, respectively; PV is the installed capacity of solar PV per 1000 customers;
WIND is the installed capacity of wind per 1000 customers; EV is the number of
public charging points per 1000 customers; CD and SAIFI are the customer density
and the System Average Interruption Index, respectively, and T is a linear time trend.2

This function represents a long-run cost function, where both inputs can be adjusted
to minimize costs. This is justified because we cover a moderately long time period. It
is also in line with the Dutch incentive regulation, which covers both operational and
capital expenditures since 2002.

With regard to the functional form, we employ a quadratic cost function to represent
average-cost function (1). The quadratic function is a flexible form that imposes no a
priori restrictions on returns to scale and elasticities of substitution (Martinez-Budria
et al., 2003). It allows for straightforward estimation of panel data methods, taking
into account unobserved heterogeneity between DSOs (Farsi et al., 2008). Another
advantage of the quadratic form also allows for direct estimation with zero values,
whereas alternative flexible forms such as the standard translog form can only be
estimated with strictly positive values. This issue could be addressed using a ‘hybrid’
translog using a Box-Cox transformation, but this complicates the application of panel
data methods (Fetz & Filippini, 2010). Therefore, we opt for the quadratic functional
form over the translog form in our analysis. The quadratic form has the drawback
that linear homogeneity cannot be imposed by parameter restrictions. To address this,
the function can be normalized by dividing costs and input prices by one factor price
(Martinez-Budria et al., 2003). However, we decided to apply the non-normalized

1 In the literature, there are several examples of average or unit cost functions, where costs are expressed
as total costs divided by total output (e.g., Filippini & Wild, 2001; Pollitt, 1995; Yatchew, 2000). In his
seminal paper on yardstick competition, Shleifer (1985) proposed that the regulator can use a multivariate
average-cost function to correct the yardstick cap for observed heterogeneity of output and service area
characteristics.
2 In previous specifications of the model, we considered a variable that captures the maximum feed-in
on the medium and high-voltage network levels. However, we excluded this variable because of near-
multicollinearity with energy delivered per connection and maximum demand per connection at MV/HV
levels.
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function, since we only have one input and are primarily interested in the ad hoc
empirical relation between energy-transition cost drivers and DSOs’ average costs.
The specification of the quadratic cost function can be described as follows:

ACit � Cit

Yit
� α0 + α1Yit + α11Yit

2 + γ PLit + β1EDit + β2MDit + β3PVit+

β4W I NDit + β5EVit + β6SAI DIit + πCDit + ρCD2
i t + ϕT +Uit

,

(2)

where the subscript i and t denote respectively the regulated firm and year. The depen-
dent variable is average costs AC , the interceptα0 measures average costs of producing
at the sample mean. The number of connections Y and the customer density CD are
included in both a linear and a quadratic way. All output characteristics (including
energy-transition variables), the labour price PL, and time trend T are included in a
linear way. Given the purpose of this paper, which is to identify the impact of output
characteristics related to the energy transition, we want to use a somewhat straightfor-
ward specification and restrict the number of parameters required for a fully flexible
specification.

In Eq. (2), the error term is denoted as Uit and can be decomposed into two terms:

Uit � ui + εi t , (3)

where we have a constant individual-firm effect ui that captures unobserved hetero-
geneity and a random error term εi t . We estimate Eq. (2) using both pooled OLS and
a fixed-effect estimation. The fixed-effect estimator utilizes the panel structure of our
data and controls for unobserved time-invariant firm effects ui . It takes into account
heterogeneity that is not captured by control variables, such as unobserved differences
in service area and constant inefficiency over time.

Apotential disadvantage of the fixed-effectmodel is that the coefficients of indepen-
dent variables can become imprecise, if there is little variation over time, i.e., variation
is primarily between regulated firms (Cameron & Trivedi, 2005). In our case, we are
see that there is considerable variation for our energy-transition variables both across
regulated firms and within firms over time. For other variables, including number of
customers and customer density, the lack of variation over time within DSOs can
potentially lead to imprecise fixed-effect point estimates.3

3.2 Taking output characteristics factors into account in yardstick price caps

Following Shleifer (1985), we can use our regression results to take into account the
impact of output heterogeneity among DSOs on unit costs. For this purpose, we use
the following formula:

pi , t � αt +̂b(qi , t − qt ) (4)

3 See Data Sect. 4.3, for an investigation of variation for our energy-transition variables.
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where pi , t is the individual price cap of DSO i in year t . The variable αt is the
mean average cost level in year t , which can be seen as the uniform yardstick cost
level for that year. The vector ̂b is the estimated coefficient for a significant output
characteristics, which is assumed to be exogenous (i.e., outside the influence ofDSOs).
The qi , t indicates the observed individual level of the output characteristic for DSO i
in year t , whereas qt is the mean level for this variable in year t .

The inclusion of (statistically significant) output characteristics leads to an adjust-
ment of individual DSOs’ price caps, causing a reallocation of revenues among DSOs.
This reflects the effect of output heterogeneity on average costs, which should be taken
into account in yardstick competition. Compared to the (unadjusted) uniform yard-
stick, DSOs with above-average levels in qi , t will see an upward adjustment of their
price cap, andDSOswith below-average levels in qi , t will see a downward adjustment.
If there is zero variation among DSOs, the term (qi , t − qt ) is zero for all DSOs and
all individual yardstick price caps are equal to the average cost level.

4 Data

4.1 Dutch uniform yardstick competition

The tariff regulation of Dutch DSOs was introduced in the year 2000, based on the
Electricity Act 1998, article 41. Tariff regulation is executed by the national regulatory
authority, the Authority for Consumers & Markets (ACM). In 2004, for the second
regulatory period, the ACM implemented uniform yardstick competition to determine
allowed revenues of Dutch DSOs. In this yardstick regime, the allowed revenues
of DSOs are determined by the average costs level of the entire Dutch electricity-
distribution sector. In this subsection, we describe the Dutch regulatory regime.4

The Dutch electricity distribution industry can be described as follows. Each DSO i
supplies a portfolio of j products in yeart . These products are supplied with quantities
qi , 1, t , …,qi , j , t , and, charged with tariffs pi , 1, t , …,pi , j , t . The aggregated output Yi , t
of each DSO i in year t is equal to the product of quantities and tariffs, summed over
all products j included in the aggregate output:

Yi , t �
∑

j

(qi , j , t ∗ pi , j .t ) (5)

In the Dutch regulatory yardstick regime, the aggregate output consists of three
output categories: (a) the connection service, (b) the transportation service, and (c)
feed-in. The categories (a) and (b) consist of more than 40 individual products, for
which the regulator collects data on produced volumes and regulated tariff levels. The

4 The ACM describes the regulatory regime that is used to determine allowed revenues before each reg-
ulatory period. This is done in the so-called method decisions, which are published on the regulator’s
webpage. The two most recent method decisions, for regulatory periods 2017–2021 and 2022–2026 respec-
tively, can be found at the following links:https://www.acm.nl/nl/publicaties/gewijzigd-methodebesluit-
rnbs-elektriciteit-2017-2021 and https://www.acm.nl/nl/publicaties/methodebesluit-regionaal-netbeheer-el
ektriciteit-2022-2026.

123

https://www.acm.nl/nl/publicaties/gewijzigd-methodebesluit-rnbs-elektriciteit-2017-2021
https://www.acm.nl/nl/publicaties/methodebesluit-regionaal-netbeheer-elektriciteit-2022-2026


94 F. van Montfoort et al.

last output category (c), capturing feed-in by distribution-network users, was added
to aggregated output from 2014 onwards. The feed-in output category was added to
compensate DSOs for the increasing costs related to this output.

In the Dutch yardstick regime, this aggregate output is used to calculate the average
costs of the entire Dutch electricity-distribution sector, which is defined as the total
costs of all DSOs divided by the total aggregate output of all DSOs. This is the uniform
yardstick cost level against which the performance of individual DSOs is compared.
The calculations are performed in a backward-looking manner, using cost and output
data from a specified number of previous years. The exact number of years used in this
calculation may vary between regulatory periods. The Eq. (6) calculates the yardstick
cost level based on three previous years:

P0 �
−1
∑

t�−3

∑

i Ci , t
∑

i Y i , t
(6)

Using the uniformyardstick cost level P0, the revenue cap in the base year of the next
regulatory period is calculated for each DSO. This revenue cap RCit is calculated by
multiplying the uniform yardstick P0 with each DSO’s average output in the specified
previous years Yi , 0 (which serves as a proxy for future output):

RCi , 0 � P0 ∗ Yi , 0 (7)

This revenue cap RCi , 0 provides a remuneration to DSOs according to their
expected output level and the average cost level of all DSOs. It is important that
the aggregated output, which is used to calculate average costs in Eq. (6), is a properly
weighted sum of all produced outputs and associated network costs. In the ideal case,
the aggregated output measure includes (in principle) all relevant cost drivers for elec-
tricity distribution in the Netherlands and properly weighs and sums them together. In
that case, any increase in distribution-network costs is associated with a proportional
increase in aggregated output, such that the total costs per unit of output remain the
same.

To determine allowed revenues in the subsequent years of the regulatory period,
the ACM adjusts revenue caps for DSO i according to the following RPI-x formula:

RCi , t+1 �
(

1 +
cpi − xi + qi

100

)

RCi , t (8)

where cpi stands for Consumer Price Index and is used to give compensation for
inflation, x stands for the so-called x-factor which is calculated to adjust the allowed
revenues for sectoral efficiency improvements and also make DSO-specific adjust-
ments during the regulatory period, and q stands for the DSO-specific q-factor which
provides a financial bonus ormalus for the relative quality performance of DSOs. Each
year, Dutch DSOs can propose their own tariff levels pi , 1, t , …,pi , j , t . The national
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regulator approves the proposed tariffs if the expected revenues do not exceed the
allowed revenues RCi , t for that year.

4.2 Descriptive statistics

The data used in this study covers the entire population of Dutch DSOs over the
period 2012–2020. In the period 2012–2015, the data covers eight active DSOs. Due
to a merger during the sample period, the period 2016–2020 covers seven DSOs. This
results in an unbalanced panel of 67 observations.

Standardised data on total costs, output, service area and quality of service was
collected from the webpage of the Dutch regulator (ACM). All cost data is deflated to
2020 price levels, using the Dutch Consumer Price Index (CPI) published the the
Netherlands Statistical Office (CBS). For the output characteristics related to the
energy-transition, we have collected municipality-level data from various sources and
merged this data with the legal service areas of Dutch DSOs. The descriptive statistics
of the variables are presented in Table 1. More information on data collection and a
correlation matrix are available as Online Resource 1.

We note that we have one DSO in our sample with very distinct features: Westland
Infra Netbeheer. This is a relatively small DSO with around 64.000 connections,
covering a service area of just two municipalities. This DSO has a disproportionate
share of commercial customers, which aremainly active in greenhouse horticulture (an
important economic sector in the Netherlands). Looking at our data, we note that the
energy delivered per connection and the maximum demand per connection at MV/HV
are generally 3–4 times larger than the sample mean for this DSO. The total costs per
connection are generally 2 times larger than the sample mean.

Table 1 Descriptive statistics

Variable Unit Mean Std. Dev Min Max

Average costs e/connection 295 123 177 657

Connections Number 1136 1306 32 3298

Energy delivered MWh/1000 connections 14 11 8.5 48

Max. Demand MV/HV MW/1000 connections 2.9 2.3 1.3 9.4

Solar PV MW/1000 connections 0.32 0.36 0.014 1.5

On-shore wind MW/1000 connections 0.38 0.62 0 2.4

Public charging points Number/1000 connections 2.1 1.6 0.22 7.3

Wage e/year 76,663 10,986 62,962 121,084

Customer density Customers/km2 338.73 296.81 71.66 1254.25

SAIFI Duration in minutes 0.18 0.077 0.026 0.31

Descriptive statistics of the full sample for the study period 2012–2020. The number of observations is
equal to 67
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4.3 Variation in energy-transition variables

Before we turn to the regression results, we investigate the variation between DSOs
for our energy-transition variables. For all Dutch DSOs, we show the data for the first
and last year of our sample, 2012 and 2020.

Between 2012 and 2020, there was a substantial increase in the installed capacity of
solar PV per 1000 customers for all DSOs (see Fig. 1). In 2012, the installed capacity
of solar PV per 1000 customers was below 0.2 MW for all DSOs. In 2020, most DSOs
have between 1 and 1.5MWof solar PV capacity per 1000 customers. Stedin, the DSO
with the lowest level of solar PV, had installed about 0.5 MW per 1000 customers in
2020. Hence, there is also some variation between DSOs.

For the installed capacity of on-shore wind per 1000 customers (see Fig. 2), we see
a more moderate increase in installed capacities overall. There is one DSO who had
a substantially larger installed capacity of on-shore wind per 1000 customers in both
2012 and 2020. Enduris had more than 1 MW installed capacity of on-shore wind
per 1000 customers in 2012, and in 2020, this number increased to about 2.5 MW.
Other DSOs installed between 0.15 and 0.75 MW of on-shore wind capacity per 1000
customers in 2012 and 2020. Some other DSOs installed zero (e.g. Coteq, Endinet,
RENDO) or negligible (e.g. Westland) amounts of on-shore wind in both years.

For the number of public EV charging points (see Fig. 3), we see an increase in
the number of charging points between 2012 and 2020 for all DSOs. There is also
some variation between DSOs in 2020. The DSO with the largest (relative) amount
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Fig. 1 Installed capacity of solar PV in MW per 1000 customers per DSO in the years 2012 and 2020. For
Endinet, no data exists for the year 2020, due to a merger with Enexis in 2015. Data source is Statistics
Netherlands

123



The impact of energy transition on distribution network costs… 97

0

1

2

3

Coteq Endinet Enduris Enexis Liander RENDO Stedin Westland

Distribution system operator

In
st

al
le

d
 c

ap
ac

it
y 

in
 M

W
 p

er
 1

00
0 

cu
st

o
m

er
s

2012

2020

Fig. 2 Installed capacity of on-shore wind in MW per 1000 customers per DSO in the years 2012 and 2020.
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of charging points, Westland, has connected 6 public charging points per 1000 cus-
tomers, whereas several DSOs connected less than 4 public charging points per 1000
customers.

5 Results

5.1 Regression results

In Table 2, the pooled OLS and the fixed-effect (FE) estimates of the average-cost
Eq. (2) are presented. We have estimated this equation for our unbalanced panel of 67
observations over the period 2012–2020. The output characteristics ‘energy delivered
per connection’ and ‘maximum demand per connection at MV/HV level’ showed very
high correlation, so we dropped the latter to avoid multicollinearity issues. The results
are not affected by the choice for this specific variable.5

We find that the estimates generally carry the expected sign and are often signif-
icant. We note that there are differences in the size of the coefficients between our
models, which may be caused by the influence of unobserved individual effects. The
intercept captures the unit costs at the sample mean and is equal to almost e295,- per
connection. For all output characteristics related to the energy-transition, we find a
positive relationship with unit costs. Most notably, the installed capacity of on-shore
wind per connection has a large and strongly statistically significant effect in both the
OLS and FE estimation. For solar PV and public charging points, the size of the effect
and significance of coefficients differs between models.

For our output measure, the number of customers, we find a negative linear rela-
tionship with unit costs in both models. For the quadratic term, the coefficient carries a
positive sign. For customer density, we have a different sign between our two models.
The FE estimate may be imprecise for this variable, since there is little variation within
DSOs. We have calculated returns to scale and returns to customer density for both,
the results are presented in Table 5 (see Appendix 1). For our OLS model, we find that
returns to scale is equal to 0.99 at the sample median and returns to customer density
is equal to 0.94 at the sample median.

For the remaining variables, the coefficients contain the expected sign. Thewage has
a positive relationship with unit costs. The SAIFI has a negative relationship with unit
costs. DSOs with higher service reliability (i.e., lower outrage duration) have higher
unit costs. The linear time trend has a negative and strongly significant coefficient.

As discussed in the Data section, there is one DSO in our sample with very distinct
features.We suspect that the inclusion of this DSOmight affect the performance of our
model estimates. Therefore, we also have also estimated Eq. (2) after excluding the
DSOWestland Infra from the sample. The estimation results are presented in Table 3.

5 We have estimated all models using Newey-West robust standard errors. Wooldridge’s test indicates no
presence of unobserved individual DSO and/or year effects. The Breusch-Pagan test indicates that our
models do not suffer from heteroskedasticity. We find evidence for serial correlation using the Durbin-
Watson test. There are not explanatory variables for which we suspect endogeneity issues, and we did not
pursue this matter further.
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Table 2 Regression results for
the quadratic average-cost
function

OLS FE

(1) (2)

Connections −0.006 −0.031

(0.009) (0.249)

Solar PV 9.752 31.003**

(13.490) (14.512)

On-shore wind 48.944*** 40.927***

(2.985) (13.383)

Public charging points 18.190*** 2.941

(4.141) (3.031)

Energy delivered 11.132*** 1.925

(0.192) (1.230)

Max. Demand MV/HV

Wage 0.0002 0.0003*

(0.0002) (0.0002)

Customer density 0.078*** −0.351

(0.022) (0.842)

SAIFI −65.726** −53.122*

(33.503) (30.207)

Connections sq 0.002 0.018

(0.002) (0.033)

Customer density sq −0.065*** 0.262

(0.016) (0.419)

Time trend −10.611*** −9.291***

(1.297) (1.909)

Constant 294.708***

(1.347)

Observations 67 67

R2 0.982 0.531

The dependent variable is total costs per connection. The FE model
includes individual fixed-effects. The variable thatmeasuresmaximum
demand at the medium- and high-voltage level is dropped because of
near-multicollinearity
*p < 0.1; **p < 0.05; ***p < 0.01

In this sample, we are able to include all variables, since there is no longer a multi-
collinearity issue. Looking at the results, we find that excluding Westland improves
the performance of our model estimates. The coefficients still have the expected sign,
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Table 3 Regression results for
the quadratic average-cost
function, after dropping
Westland from the sample

Pooled OLS FE

(1) (2)

Connections 0.017*** −0.142

(0.004) (0.430)

Solar PV 17.516** 19.573**

(8.272) (8.723)

On-shore wind 32.527*** 36.393*

(8.132) (18.585)

Public charging points 7.537*** 6.119***

(1.563) (2.087)

Energy delivered −1.034 −2.390

(2.004) (7.028)

Max. Demand MV/HV 26.649 24.876

(19.449) (28.903)

Wage 0.0002 0.0002

(0.0001) (0.0002)

Customer density 0.035** 0.224

(0.014) (0.939)

SAIFI −43.503 −41.642

(28.788) (34.639)

Connections sq - 0.003*** 0.025

(0.001) (0.060)

Customer density sq −0.034*** −0.056

(0.013) (0.357)

Time trend −8.933*** −9.354***

(0.959) (1.711)

Constant 266.439***

(11.958)

Observations 58 58

R2 0.920 0.594

Regression estimates for the study period 2012–2012, for the popula-
tion of Dutch DSOs excludingWestland Infra. The dependent variable
is total costs per connection. The FE model includes individual fixed-
effects
*p < 0.1; **p < 0.05; ***p < 0.01

but are more often significant. Furthermore, we find that almost all coefficients have
roughly the same size in our two models.6

6 As a robustness check, we have also run our model after excluding the observation for DSO RENDO in
the year 2020, because there is a potential measurement issue with the depreciation costs for this observation
(see Online Resource 1). The results are robust to the exclusion of this observation.

123



The impact of energy transition on distribution network costs… 101

Table 4 The estimated unit costs
for different observed levels of
energy-transition variables,
evaluated at the sample mean

Percentile average costs OLS Fixed-effect

20th 251.03 258.61

40th 259.23 265.89

60th 266.93 274.32

80th 276.81 286.49

We have predicted the average costs using the regression estimates
from Table 3. The unit costs are predicted for observed levels of solar
PV, on-shore wind and public charging points. All other variables are
kept constant at their sample mean

5.2 Using results to adapt the yardstick on individual-DSO level

In this section, we use regression estimates to take into account the heterogeneity
in output characteristics due to energy-transition factors. We predict the unit costs
for observed levels of solar PV, on-shore wind and public charging points. All other
variables are kept constant at their sample mean. Table 4 shows the percentiles of the
predicted unit cost levels. We find that the predicted cost levels at the 20th and 80th
percentiles are about 5% below/above themean unit cost level ofe266 per connection.

We have also used our results to calculate the impact of energy-transition variables
on the unit costs of each DSO for the year 2020, using Eq. (4) from Sect. 3.2. We
evaluate the changes in unit costs compared to the mean cost level in the year 2020,
which can be seen as the uniformyardstick cost level.Wefind that the energy-transition
variables cause cause a change in unit costs of around 0–10% formost DSOs compared
to the uniform yardstick (see Fig. 4). We note that there is one DSO, Enduris, which
faces a substantially larger increase of unit costs of about 20%. When we decompose
the change into individual energy-transition variable effects, we see that this large
change is caused by above-average installed capacity of on-shore wind (see Fig. 5). In
yardstick competition, the results can be used to inform a bonus/malus scheme, where
DSOs with above-average levels of energy-transition are allowed to charge higher
price caps, and DSOs with below-average levels are obliged to charge a lower price
cap.

5.3 Discussion

Our analysis indicates that energy-transition variables can have a significant and sub-
stantial impact on the unit costs of DSOs. As the penetration level of distributed
generation (e.g., solar PV and on-shore wind) and EVs increases, this suggests that
DSOs have to make considerable integration costs. This finding is line with engineer-
ing studies that have shown that factors related to the energy transition raise the costs
of electricity distribution. Investigating actual standardized cost data from a popula-
tion of Dutch DSOs, we can confirm this hypothesis. Previously, Hinz et al. (2018)
and Höfer and Madlener (2021) have also provided empirical evidence that on-shore

123



102 F. van Montfoort et al.

−30%

−20%

−10%

0%

10%

20%

30%

Coteq
Enduris

Enexis
Liander

RENDO
Stedin

Westland

Distribution system operator

C
h

an
g

e 
co

m
p

ar
ed

 t
o

 u
n

if
o

rm
 y

ar
d

st
ic

k

Fig. 4 Total percentage change in average cost compared to the uniform yardstick cost level for the year
2020, taking into account the impact of energy-transition variables. Own calculations using the fixed-effect
coefficient estimates from Table 4
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the year 2020, taking into account the impact of energy-transition variables. Own calculations using the
fixed-effect coefficient estimates from Table 4. Decomposed into the individual effects of installed capacity
of solar PV, installed capacity of on-shore wind and number of public charging points

123



The impact of energy transition on distribution network costs… 103

wind energy increased costs of electricity distribution. Wangsness and Halse (2021)
show that EV penetration causes higher regional grid costs in Norway.

Our findings carry implications for yardstick competition and incentive regulation
in general. It has long been recognised that the composition of output must be taken
into account to ensure comparability of DSOs subject to yardstick competition. Our
study reveals that integration of energy-transition factors adds a novel dimension to
this issue, which can challenge the application of conventional output measures. A
similar point is made by Filippini and Sánchez (2014), who argue that increased levels
of distributed generation cause additional costs for electricity distribution, while the
grid-delivered energy stays constant (or even decreases). Our analysis underscores
the importance of integrating new changes in output composition within regulatory
frameworks.

This study also has some limitations. Although we have collected data for the entire
population of Dutch DSOs over the period 2012–2020, our sample size is relatively
small. This limited the number of parameters that could be included in our analysis.
For example, we did not consider any non-linearity within the energy transition factors
or interaction effects with other variables. Future research could test alternative spec-
ifications when more years of data become available. Alternatively, an international
comparison of DSOs could increase the sample size, although this also would create
potential issues with data availability and comparability (Estache et al., 2004).

6 Conclusion

We have estimated an average-cost function over the period 2012–2020, using data
covering the entire population of Dutch DSOs subject to yardstick competition. The
main purpose was to investigate whether energy-transition factors have a significant
impact on average costs of distribution grid operators, andwhether this could challenge
the comparability requirement of Dutch DSOs subject to yardstick competition.

Our main finding is that installed capacity of solar PV, installed capacity on-shore
wind and number of public charging points can have a significant impact the aver-
age costs of DSOs. The resulting cost differences between DSOs can be substantial.
When we use regression estimates to take energy-transition factors into account in a
regulatory framework based on yardstick competition, we observe 0–10% changes in
individual price caps for most DSOs (compared to the uniform cost level). For one
DSO, the price cap increases with 20%.

Our analysis underscores the challenges posed to incentive regulation of distribu-
tion operators by increased penetration levels of energy-transition variables. Incentive
regulation plays an important role in achieving regulatory objectives regarding cost
recovery and maintaining reasonable tariffs, while providing incentives for cost effec-
tiveness. As energy-transition penetration levels increase, the output composition as
well as the use and management of distribution networks undergo a transformation.
Consequently, the emerging cost drivers should be incorporated into regulatory frame-
works that are used to set allowed revenues and tariffs.When performance comparison
of DSOs is used to set tariffs, whether through direct yardstick comparison or through
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the use of statistical benchmarking models, the individual-firm heterogeneity arising
from energy-transition variables should therefore carefully be taken into account.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11149-024-09471-8.

Acknowledgements The authors thank the participants of CEnBER seminars at the University of Gronin-
gen and participants of a concurrent session at IAEE 2022 European Conference in Athens for valuable
comments. The authors also thank regulatory experts from the Netherlands Authority of Consumers &Mar-
kets (ACM) and other stakeholders in the sounding board of this projectfor comments on draft versions of
this paper. This research was financially supported by the ACM. The contents of this paper do not constitute
any obligation on the ACM. Of course, the authors are responsible for any remaining shortcomings.

Author contributions Conceptualization: FvM, PD, MM; Methodology: FvM, PD, MM; Data collection
and analysis: FvM; Writing—original draft preparation: FvM; Writing—review and editing: PD, MM;
Funding acquisition: PD, MM; Supervision: PD, MM.

Data availability The datasets analysed during the current study are available from the corresponding author
on reasonable request.

Declarations

Competing interests The authors declare no competing interests.

Conflict of interest We declare no competing financial and non-financial interests. Partial financial support
was received from the Netherlands Authority for Consumers andMarkets (ACM), which is a.o. the national
regulator of energy markets.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Appendix 1 Returns to scale and customer density

Following Baumol et al. (1982) we can calculate the returns to scale (RS) and returns
to customer density (RCD) as follows:

RS � 1

1 + ∂AC
∂Y

Y
AC

(9)

RCD � 1

1 + ∂AC
∂Y

Y
AC + ∂AC

∂CD
CD
AC

(10)

Table 5 presents the results from calculation of RS and RCD using our regressions
results. We find decreasing returns to scale in both the OLS and the fixed-effect model.
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Table 5 Returns to scale and
density at the median of the
sample

OLS (standard error) Fixed-effect
(standard error)

Returns to scale (RS) 0.999 (0.000) 1.001 (0.000)

Returns to customer
density (RCD)

0.919 (0.031) 1.41 (0.039)

Returns to scale (RS) and returns to customer density are evaluated at
the full period sample mean

For the returns to customer density, we see different results for the OLS and the fixed-
effect model. We believe that the OLS model gives the best estimate. The coefficient
for the customer density variable is likely to be imprecise in our fixed-effect model,
caused by a lack variation for this variable within DSOs (Cameron & Trivedi, 2005).
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