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Abstract
Current plans to decarbonize the electric supply system imply that the generation
from wind and solar sources will grow substantially. This growth will increase the
uncertainty of system operations due to the inherent variability of these renewable
sources, and as a result, more reserve capacity will be required to provide the ramping
(flexibility) needed for reliable operations. This paper assumes that all of the increased
uncertainty comes from wind farms on the grid, and it shows how distributed storage
managed locally by aggregators can provide the ramping needed without introducing
a separate market for flexibility. This can be accomplished when the aggregators
minimize the expected daily cost of the energy purchased from the grid for their
customers by submitting optimal bids into the wholesale market with high and low
price thresholds for discharging and charging the storage. This model is illustrated
using a stochastic multi-period security constrained optimal power flow together with
realistic data for a reduction of the network in the Northeast Power Coordinating
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Council region of the United States. The results show that the bidding strategy for
distributed storage provides ramping to the grid just as effectively as storage managed
by a system operator.

Keywords Market design and Intermittent variable renewable energy sources ·
Markov decision process · Energy storage systems

JEL Classification D40 · L94 · Q48

1 Introduction

The increasing importance of generation from variable renewable energy sources
(VRES) on the bulk power system (the grid) and the uncertainty and variability asso-
ciated with these sources make it more difficult for SystemOperators (SO) to maintain
established standards of operating reliability. More reserve generating capacity is
needed to offset the variability of VRES. In addition, VRES in the United States
(U.S.) is modifying the typical daily load profile in some regions (EIA, 2022), and
wind energy is now the largest source of renewable generation on the grid. The adop-
tion of VRES in the energy sector is part of the transition to a low carbon economy
and it is a ubiquitous trend in the U.S. and in many other countries.

An alternative to having more conventional generating capacity committed for
reserves is to use Energy Storage Systems (ESS) to respond to the realized levels
of VRES. The basic contribution of our paper is to demonstrate that distributed ESS
managed locally by aggregators1 can provide the ramping services needed to maintain
operating reliability on the grid without having a separate market for “flexibility."
Our empirical application uses thermal storage, that displaces air conditioners on a
typical summer day, as the type of distributed ESS analyzed. Government statistics for
electricity demand include a component for the provision of thermal services (EIA,
2019a), denoted as deferrable demand (Jeon et al., 2015). The main advantage of
thermal storage is that it has amuch lower cost than other distributed ESS technologies,
such as batteries (Koohi-Fayegh and Rosen, 2020).

Deferrable demand, by its nature, is located close to load centers, but it can still
supply ramping services to the grid. For practical reasons, ESS capacity in the future is
likely to include a portfolio of technologies and sizes, including battery storage from
electric vehicles as well as thermal storage for winter and summer space conditioning.

This article determines the optimal scheduling of distributed ESS using a stochastic
receding (or rolling) horizon (Wu et al., 2012) for two differentmanagement situations.
The first assumes the ESS is managed centrally by a coordinating SO to minimize the
expected operating costs for the grid. The second assumes the ESS is managed locally
by aggregators who submit bids into the wholesale market to minimize the expected

1 We use the term “aggregators" to represent Distributed Energy Resources Aggregators (DERA) who
have the responsibility of meeting the energy needs of their customers. In practice, each DERA would
participate in the wholesale market like a typical wholesale customer, and manage other local issues such
as maintaining a stable power factor. However, we do not discuss the formal structure of the DERA, or how
the DERA controls the ESS, in this paper.
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cost of the energy purchased from the grid to meet the energy needs of their customers.
An essential feature of our analysis is that it uses a stochastic forecast of price for the
next 24h to develop a simple optimal bidding strategy for ESS that determines a
balance between shifting load away from the peak and providing ramping to offset
the variability of VRES.2 The strategy discharges ESS when the nodal price is above
a high-price threshold, and charges ESS when the nodal price is below a low-price
threshold. The difference between the two thresholds is determined by the round-trip
efficiency of the ESS (86% in our empirical application).

An important difference between ESS managed centrally by the SO and ESS man-
aged independently is that the State-of-Charge (SOC) of the ESS is not observed by
the SO when the ESS is managed independently. Nevertheless, the Federal Energy
Regulatory Commission (FERC) has issued Order 841 that requires electricity mar-
kets to recognize the physical characteristics of ESS, and to develop procedures for
the owners of independent ESS to submit bids that account for these characteristics.
This is the major focus in the ongoing development of a new model called the Energy
Storage Resource (ESR) by the California Independent System Operator (CAISO)
(CAISO, 2022). The ESR allows independently managed ESS to submit bids that are
dependent on the SOC into a day-ahead market, and this is an alternative model to
the existing Non-Generator Resource (NGR) model that allows bids and offers for
charging and discharging energy. The basic rationale for developing the ESR model
is that the true marginal costs of charging and discharging ESS are dependent on the
SOC (CAISO, 2021). Although an optimum bidding strategy using the ESR model
can be derived for a given forecast of prices, the realized bids are dependent on the
realized levels of SOC using this strategy. Moreover, offers that are dependent on SOC
information add complexities to the market architecture, with increased informational
needs in the bidding process and hence in the implementation into real markets. This
leads to major analytical and computational complications when evaluating the per-
formance of the ESR bidding strategy (Zheng et al., 2023). However, this is not the
place to provide a detailed description or critique of the ESR model. Our objective is
to demonstrate that a simple bidding strategy for independently managed ESS, and in
our example, distributed ESS managed by aggregators, can provide ramping services
to the grid as well as shift load from peak to off-peak periods. It is not necessary to
submit information about the SOC into the auction. There are three salient features of
our analysis that distinguish it from the ESR model proposed by the CAISO. These
are (1) the optimization is conducted each hour to allow for updates in the forecasts of
the potential wind generation and the price, and updates in the price/quantity bids sub-
mitted by aggregators; (2) the stochastic characteristics of wind generation and price
are incorporated explicitly into the optimization; and (3) the optimization is based
on the hourly operations for the next 24h. Even though the optimization solves for
a 24-h horizon, updating the forecast of wind every hour means that the forecast for
the next hour is always based on the most accurate forecast.3 Furthermore, allowing

2 If only a deterministic forecast of price is available, the optimum bidding strategy is to submit a deter-
ministic charging/discharging schedule for ESS that will not provide ramping in response to the realized
levels of VRES.
3 For our estimated time-series model of wind speed, the variance of the forecast for the next hour is roughly
one tenth of the variance more than 8h ahead.
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aggregators to modify their bids participating in the real-time balancing makes it fea-
sible for them to monitor the SOC and ensure that the bids for the next hour do not
violate the capacity of the ESS, considering the deviation from the day-ahead contract
settlements. For example, the quantity discharged in the next hour when the price is
above the high-price threshold must be less than both the maximum rate of discharge
and the observed SOC in the current hour.

Using a 24-h horizon makes it feasible to determine the optimum balance between
the two competing capabilities of ESS, namely, shifting load from peak to off-peak
periods versus providing ramping services. The uncertainty of operations in our anal-
ysis is represented by different system states (e.g., different levels of potential wind
generation) with specified probabilities of occurring. Reserve generating capacity is
committed for each hour to ensure that there is sufficient ramping capacity to move
from each state in a given hour to all possible states in the next hour. Hence, the largest
ramping requirements are for a move from the state with the highest/lowest wind to
the next hour’s state with the lowest/highest wind. Since spilling wind is allowed, it
is often optimum to spill some of the wind in the high-wind states to reduce the cost
of ramping.

The rest of this article is organized as follows. In Sect. 2, the related literature on the
market design for an SO managing uncertain resources is summarized. Sections3.1
and 3.2 describe the formal models for ESS managed by an SO, and for ESS managed
by aggregators. These two sections are technical and present the theoretical results
for each one of the proposed ESS strategies, including a proof for the optimal bidding
strategy used by aggregators. Readers who wish to skip these two sections need only
know that both ESS strategies use a stochastic multi-period optimization to minimize
expected operating costs for the grid. When the SO manages the ESS, the SO can
monitor and control the physical capabilities of the ESS to lower costs. When aggre-
gators manage the ESS, the SO faces demand bids that vary with the nodal price and
knows nothing about the operating characteristics of the ESS. Section4 summarizes
the numerical results, and shows that the aggregators’ bidding strategy for ESS pro-
vides ramping services just as well as ESS managed by the SO. In Sect. 5, we offer
some concluding recommendations, and in particular, we emphasize how important
it is to expose customers to real-time prices in order to get distributed resources to
mitigate the uncertainty of VRES effectively.

2 Background and related literature

The value of ESS depends on a complex set of conditions including network location,
price spreads, technical characteristics and service applications. In fact, regulation
in different jurisdictions affects the integration of these resources. For example, the
United States Federal Energy Regulatory Commission (FERC) order 841 and 2222
require Independent System Operators (ISOs) to “establish a participation model for
ESS and Distributed Energy Resources (DER) (see e.g., FERC, 2020). Such partici-
pation includes the provision of energy and ancillary services alongside conventional
resources, clearing rules, tariffs for regional grid operators, and attributes that include,
in the case of ESS, a minimum size of 100kW, about twenty times the size of a typical
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Tesla Powerwall. For the discussion that follows we consider the terms “distributed
storage", “deferrable demand" and “thermal storage" are synonymous in the applica-
tion.

Themajority of system operators in theU.S. use a security constrained unit commit-
ment (SCUC) for operational purposes to jointly determine the dispatches per unit and
the aforementioned inflexibilities (see e.g., Zheng et al., 2015, Lamadrid et al., 2019).
The recent literature related to the system operator modeling with uncertain VRES
can be broadly categorized into three approaches: stochastic programming, probabilis-
tic optimization and robust optimization. Stochastic programming has dimensionality
issues (see e.g., Birge andLouveaux, 1997)which are handled using samplingmethods
to select a subset of possible scenarios by, for example, focusing on the most influ-
ential ones (e.g., Morales et al., 2009). Probabilistic optimization allows violation
of some specified network constraints within a threshold (e.g., Birge and Louveaux,
1997; Filomena and Lejeune, 2014; Moarefdoost et al., 2016). Robust optimization
considers a lower bound on the total social benefits by looking at the worst case real-
izations before the actual system state is realized (e.g., Bertsimas et al., 2013; Lorca
et al., 2016).

The literature studying energy storage from the point of view of individual par-
ticipants has analyzed threshold policies (see e.g., Secomandi, 2010), with prices for
energy generally being positive, agents participating in spot markets, and no trans-
mission constraints. Some works (see e.g., Zhou et al., 2016) solve a discrete-state
Bellman dynamic optimization model to determine optimal policies and account for
the possibility of negative prices. These models do not consider the participation in
scheduling in some existing two-settlements markets (e.g., California Independent
System Operator CAISO, the electric reliability council of Texas ERCOT, the New
York Independent System Operator NYISO, PJM).

In related models in the literature, (see e.g., Rahimiyan et al., 2014), managers of
clusters of demands handle their demand and may have take-or-pay contract with e.g.,
VRES. Other joint resources setups (see e.g., Zhou et al., 2019), model VRES (e.g.,
wind farms) with storage systems, proving the optimality of threshold policies and
developing heuristics for the participation in the market as a single resource. Here we
only assume the aggregator manages the storage capacity. Capacity from VRES is
managed via the wholesale market.

The role of storage in supporting the integration of solar power is studied in
Schmalensee (2022). Themodel is a stylized two-period representation of diurnal peak
and off-peak (daytime and nighttime) periods, extending work from Boiteux (1952)
andSteiner (1957) to account for temporal shifting capabilities fromenergy storage and
abstracting from engineering considerations such as a network and non-convexities
from e.g., generators startup. This model assumes inelastic demand, marginal con-
ventional units with non-zero cost in some periods and constant returns to scale
among other simplifications. The market structure assumes that scarcity prices are
allowed, and therefore the price of electricity may reach the value of lost load (e.g.,
$9000/MWh), giving signals and pecuniary incentives to participants able to supply
in those periods. This type of ‘energy only’ market could provide revenue streams for
suppliers, including storage managers to invest capabilities to supply in the real time
process. The aforementioned assumptions allow to have closed form expressions that
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may support a merchant model for storage owners. However, there is no proof that
the Hessian is positive definite in all cases conditional on the continuous probability
density functions for demand shortages and stochastic generation.

To the best of our knowledge, our method is the first to combine an (i) optimal
control model to quantify the differences between centrally and locally managed ESS;
(ii) considering principal-agent misalignment of incentives when the aggregator man-
ages temperature sensitive demand and; (iii) interacting with a detailed optimization
model of electric operations with realistic data calibration of the grid. Our stochas-
tic optimization model corresponds to scheduling resources, considering uncertainty
explicitly, by a risk-neutral social planner. Our framework makes it feasible to deter-
mine an optimum strategy for managing ESS to shift load from peak to off-peak hours
as well as to provide ramping services, as is discussed in the following section.

3 Modeling strategy

Here we briefly describe the models for the system operator and the aggregator, with
a focus on the salient characteristics and how do they differ from other models.

3.1 The system operator model

3.1.1 Optimal scheduling for the electricity market

This work draws on the stochastic optimization literature, (Arroyo and Galiana, 2005;
Powell, 2007; Morales et al., 2009; Pritchard et al., 2010; Bertsimas et al., 2010), with
an emphasis on the determination and appraisal of the costs incurred by participants
in the system.

Our approach uses a hybrid method, between a stochastic and a robust optimiza-
tion (RO) program (Delage and Ye, 2010). We model two distinct types of uncertainty
faced by the system operator. First, there are a number of events with relatively low
impact compared to high impact-low probability (HILP) resiliency events such as hur-
ricanes or earthquakes. These contingencies may affect operations, and if the system
is not secure lead to low reliability of the system.4 Second, there are limitations for
the system operator in assessing the characteristics of the stochastic variables, includ-
ing the probability distribution and support that determine their uncertainty, and the
period-to-period variability. This ramping capability is particularly needed to manage
the diurnal variation in net demand (total demand-VRES generation).5 We discretize

4 We denote this as aleatoric uncertainty System operators are mandated to procure enough capacity to
maintain a secure operation and the reliability of the bulk power network against these events. We refer
to the capacity required for these intra-temporal events as contingency reserve. These reserves need to be
delivered to provide re-dispatch capabilities and they could be synchronized, or spinning, or resources that
can be brought online rapidly.
5 We denote this as epistemic uncertainty Planning over a finite time horizon requires capacity for the
ramping between periods, plus deviations to cover possible realizations in future periods. We refer to
this inter-temporal capacity as load-following reserve. These lower quality reserves are delivered between
periods, e.g., ramping reserves, and may be provided by resources not synchronized.
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both of these types of uncertainty, and in the case of the inter-temporal events, we
operate robustly within the worst possible events. This approach is consistent with a
secure operation of the system, using an operating envelope instead of a collection of
trajectories as is done in a traditional stochastic program.

The main differences between our approach and previous work can be summarized
in four main points. (i) We co-optimize energy and two kinds of ancillary services
(contingency and load following). Our model solves optimal amounts of endogenous
reserves as part of the variables in the solution set (Lamadrid and Mount, 2012).
We use a novel ambiguity robust model (see e.g., Delage and Ye, 2010), instead of
a stochastic program or a robust optimization. (ii) We internalize the uncertainty of
renewable energy, by assigning specific costs to the changes of dispatch beyond the
elastic range of the generators (ER) (Wang and Shahidehpour, 1995). (iii) We treat
demand and supply symmetrically, with a valuation of load not served (LNS) at the
value of lost load (VOLL). (iv) We determine the management of Energy Storage
Systems (ESS) with a multi-period optimization that values the end-of-horizon states.
This formulation includes deviations in a range of states to allow both energy shifting
and provision of ancillary services for overall system support. With this framework
we can model various types of distributed storage and deferrable demand.

For the sake of generality, we describe this model as a Markov Decision Process
(MDP), discretizing and indexing periods by t = 0, 1, . . . , nT . Each generating unit
has a vector of unit commitment state and control inputs with linear costs related
to the binary decisions y ∈ [0, 1]nY

. That is, the set of feasible commitments has a
corresponding set of linear binary constraints Y ⊂ R

nY with the associated linear
function commitment costs CY (y). Hence, the problem is a mixed integer program
(MIP).

The states of natureS t are assumed to be finite, containing all the currently available
information (e.g., availability of transmission lines, weather events affecting theVRES
production). Let st ∈ S t denote the state of nature for each time t = 0, 1, . . . , nT ,
with S0 as a singleton. These states of nature evolve following an exogenous, time
varying Markov chain. We assume the corresponding transition probability matrices
are independent of all potential control actions.

The state of system resources are given by xt ∈ R
nX for each time t = 0, 1, . . . , nT .

In the absence of energy storage, the state reflects the output levels for the previous
period considering transition constraints (e.g., ramping limits).

The evolution of system states is described by a non-recursive linear equation.

xt+1 = But , t = 1, . . . , nT , (1)

where B ∈ R
nX ×nU corresponds to the incidence matrix from all control inputs to the

state outputs (including ramping constraints).
The system dispatches are given by ut ∈ R

nU for each time t = 0, 1, . . . , nT .
These include power injections (and withdrawals) at each node in the system, as well
as nodal reserves (contingency and load following).

The dispatch constraints are a set of linear constraints U(xt , y, st ) for each time
period t = 1, . . . , nT that limit the system dispatches ut , i.e., power and reserves.
These dispatch constraints reflect limitations for the different resources, and typi-
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cally depend on e.g., the system state, the power and energy capacities available, the
commitment schedule, the network congestion and the state of nature.

We cast the scheduling problem as anMDPwith (nT +1)-stages and a prior feasible
commitment stage y ∈ Y . The global system state for this MDP includes the state of
resources, xt , and the state of nature, st .

Definition 1 A feasible (control) action is given by any feasible dispatch ut ∈
U(xt , y, st ) for each time period t = 1, . . . , nT .

The evolution of the state of nature is independent and the time transitions are given
by a St × St+1 transition probability matrix � t for each time period t = 1, . . . , nT .
Let St denote the cardinality of S t . Each column of the transition probability matrix
� t sums to 1.

There is an operation cost incurred at each stage, according to the power injection
and reserve vector ut .

Definition 2 The cost function Ct (xt , ut ) for a power injection and reserve vector ut

given a system state xt and commitment yt for each time period t = 1, . . . , nT is
assumed to be convex in ut (Mas-Colell et al., 1995).

Our implementation includes linear, piecewise linear and quadratic cost functions. For
simplicity, we assume no costs are incurred at the initial stage t = 0, or at the terminal
stage nT + 1.

Definition 3 A policy π = (μ1, . . . , μnT
) is a sequence of decision rules such that

μt (xt , st ) ∈ U(xt , y, st ) for all xt , st and t

The cost-to-go function for a policy π and a state(xt , st ) is given by:

V t
π (xt , y, st ) = Ct (xt , μt (xt , st )) + E

⎛
⎝

nT∑
τ=t+1

Cτ (xτ , μτ (xτ , sτ ))

∣∣∣∣∣∣
s

⎞
⎠ , (2)

where we take the expectation with respect to the sequence of states of nature
{sτ }nT

τ=t=1, conditioned on the current state st .

Definition 4 A unit commitment schedule y∗ ∈ Y and a policy π∗ are optimal if

CY (y∗) + V 0
π∗(x0, y∗, s0) = inf

π,y∈Y

{
CY (y) + V 0

π (x0, y, s0)
}

, (3)

for all possible initial states (x0, s0).
The aforementioned characteristics are important as the amount of stochastic

sources of generation increases (Lamadrid and Mount, 2012). Our model integrates
demand-sidemechanisms for the estimation of consumer surplus usingVOLL (Feng et
al., 1998), and reflects the economic costs of different rate structures that consumers
may face, e.g., real-time pricing, time of use, while maintaining reliability. This in
turn would allow the implementation of effective demand response mechanisms as
envisioned by Gellings and Smith (1989) and Schweppe.
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3.1.2 Uncertainty, energy storage, and ramping

The amount of conventional capacity needed is typically set at the peak system load
plus reserve margins, with adjustments for the expected renewable generation. As
storage becomes more widely available, in a perfect foresight situation, the optimal
management strategy is to buy and store energy during cheap, off-peak periods, and
discharge during expensive, peak periods. When uncertainty is considered, deviations
from the expected dispatches above (or below) the expected value can be stored (or
covered by discharging) in any given period. In this manner, storage capacity can
substitute for conventional generation to provide ramping. The economic tradeoff in
this case is between the opportunity cost of the energy stored including the inefficiency
and losses of storage versus the cost of deploying additional capacity fromconventional
resources. Additionally, when storage capacity is available, the peak amount of energy
purchased from the grid can be reduced, alleviating congestion according to location.
If the overall storage capacity is large enough, it endogenizes the peak of the system.
In addition, inter-temporal binding constraints affect both conventional capacity and
new market participants such as aggregators managing storage capabilities.

The formulation we use has a hierarchical structure, where states with epistemic
uncertainty (“intact system states") have higher precedence than states with aleatoric
uncertainty (“contingency states") at each period of time t . Let J t denote the discrete
set of states of nature for the epistemic uncertainty in period t .

Consider any two consecutive periods t and t + 1. Each one of these time periods
has a discrete set of epistemic states j1 ∈ J t , j2 ∈ J t+1. Our model guarantees
feasibility inside an endogenously determined operating envelope from the states j1 ∈
J t , evolving according ψ t , to the states j2 ∈ J t+1. Our design follows the need to
establish contracts for inter-temporal claims and determine solutions that are robust in
a range of potential realizations. Hence, we can obtain locational data over the network
space and appropriate claims that manage the period to period variability (i.e., load
following reserves).

Let K t j denote the discrete set of states of nature for the aleatoric uncertainty at
a given state j and time period t . The occurrence of any aleatoric state k ∈ K t j is
therefore conditional on a given epistemic state j ∈ J t . This taxonomyof uncertainties
provides a compromise between assuring the security of the system and providing a
tractable way to manage the variability formVRES. Let λti jk∗ denote the dual variable
associated to the balance between supply and demand (i.e., a power balance condition)
at period t in location (i.e., bus) i , in epistemic state j and aleatoric state k. Consider
the realization of a particular event jk ∈ J t ×K t j . Supplying an infinitesimal injection
at location i in period t would have an unitary cost

λti jk∗ := λti jk

P{ jk} , (4)

where this expression can only be defined for states of nature jk with strictly positive
probabilities, and P{ jk} denotes the probability for these states of nature. The system
is guaranteed feasibility over the set of specified contingencies. Therefore, the oper-
ating conditions in the sets of epistemic and aleatoric states affect the expected prices
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that aggregators use. The coordination mechanism is via prices. At the moment of
establishing contracts in day ahead markets, it can be proved (Lamadrid et al., 2015)
using the first order conditions (FOCs) of the problem and (4) that

λti∗ =
∑
j∈J t

∑

k∈K t j

λti jk (5)

= E[λti jk∗]. (6)

In the empirical application, we assume that the aggregators managing the dis-
tributed storage have access to the same stochastic forecasts of VRES and price as
the SO for the next 24h. This is in essence how the Australian electricity market has
been operating for the past 25 years. The SO uses the forecast to commit reserve
capacity for up and down ramping as well as for dispatch, and the aggregators use
the forecast to determine an optimal bidding strategy. Using the same forecast is not,
however, a requirement, and there is no logical reason why an aggregator could not
use an alternative forecast of the price.

Currently, electricity markets in the US still depend on deterministic forecasts for
dispatch in day-ahead markets,6 and various mechanisms are used by the SOs to
procure the reserves needed to deal with the uncertainty of VRES. In our evaluation,
we incorporate this uncertainty explicitly into the optimization.We show in sections 3.2
and 4 that an aggregator’s optimum bidding strategy can provide both load shifting
and ramping capabilities to the grid.

3.1.3 Receding horizon optimization

In this section we briefly present our receding horizon control implementation. Please
refer to e.g., Mayne (2014); Rossiter (2017) for background information on Model
Predictive Control (MPC) and receding horizon optimization. The generality of the
MDP formulation makes the characterization of optimal policies for this decision
problem difficult. We restrict our attention to the set of all policies such that the
decision rules are independent of the system state. That is, we only consider policies
that satisfy.

μt (xt , st ) = ut (st ) ∈ R
nU , (7)

for each time period t = 1, . . . , nT , each state of nature st ∈ S t , and all possible
system states xt . Here, ut (st ) represents the system dispatch given a realization of a
state of nature st ∈ S t regardless of its current state xt , i.e., regardless of the dispatch
in the previous time period. This restriction of the policy space is again a choice
for numerical tractability. It renders finite the dimension of the policy search space,

R
nU ×S1 × . . . × R

nU ×SnT

.
We use the Matpower Optimal Scheduling Tool MOST framework (Murillo-

Sanchez et al., 2013). We apply the model in Jeon et al. (2019) and refer readers to
this description and the stylized setup in “Appendix A”. This model is a Mixed Integer

6 This is mainly due to the limitations of the computing capacity needed for stochastic optimization of the
dispatch on large networks.
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Quadratic Program (MIQP), due to the quadratic function used for the inter-temporal
ramping costs. An MIQP problem is difficult to solve and there is no guarantee about
the quality of the solutions. Therefore, we implement aMixed Integer Linear Problem,
limiting the costs to piecewise linear, and the ramping costs using an asymmetric
absolute value set of constraints. We use a DC OPF approximation. A central issue
for using storage efficiently is to determine the optimum balance between shifting
load from high-price periods to low-price periods and providing ramping services
to mitigate the period-to-period (e.g., hour) variability of generation from renewable
sources. With stochastic inputs, this issue has important implications for how energy
constraints in the model are imposed on storage capacity. For each hour, the amounts
of energy charged/discharged from storage is typically different in the intact system
states representing different levels of the stochastic inputs (e.g., the amount of potential
wind generation). The intact states are a discretization of the distribution for epistemic
uncertainty.

We organize the information for a receding horizon run using finite time discretized
profiles. These time profiles describe the potential realization of a given stochastic
variable as a percentage of the maximum potential level of that variable. Consider
the case of a system planner doing a receding horizon run for N periods. For each
settlement of the market (n = 1, . . . N ), the planner requires a look-ahead forecast of
nt periods. Algorithm 1 outlines the overall receding horizon setup.

Algorithm 1 Receding Horizon
1: t ← t0

2: The social planner chooses a time horizon (T = nt ) and a number of receding horizon clearing settlements for the
optimal scheduling (N )

3: repeat
4: A discrete set of possible realizations for stochastic resources (e.g., forecast ranges for wind and demand/load) are

provided for the settlement
5: The system operator solves the problem for the period starting in period t and finishing at time t + nt

6: t ← t + 1; Go to Step 4
7: until t = N , Number of user-specified information updates reached

We assume that only the first period of the horizon is considered binding and
dispatched, and all successive hours can be re-dispatched. This provides the features
of a look-ahead optimization, allowing for updated forecast inputs. The theoretical
properties and establishment of contracts using this mechanism will be the subject of
future research.

3.2 The aggregator model

Our aggregator formulation differs from other models in the literature (see e.g., Sec-
omandi, 2010; Zhou et al., 2016; Zhou et al., 2019) in one main aspect. In our model,
the aggregator submits bids before the price is revealed. Therefore, it is a dispatch-
able resource (or scheduled loads in the Australian market, AEMO, terms). It is a
dispatchable demand when charging, and a dispatchable injection resource when dis-
charging. The system operator determines the equilibrium price at each node using
the received bids and offers from all market participants, including the bids from
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the aggregators. Other models in the literature decide the participation of aggregators
(charge/discharge) after observing the spot price. Suchmodels require using a forecast
of price from the ISO. Therefore, storage managed in this manner is not dispatchable
to the system operator. In comparison, the ability of the system operator to dispatch
the resource as we model it can enhance market efficiency, by improving e.g., reserve
procurement compared to ex-post models in the literature. We assume the aggregator
agent is in the money and not a marginal resource.

Consider an aggregator of customers acting as a fiduciary agent. When distributed
storage and/or deferrable demand (DD) are managed by aggregators, we posit that
their objective is, first, to devise a strategy to submit bids in a way that minimizes the
expected cost of purchasing electricity from the grid using a forecast of real-time prices
for a given operational horizon, e.g., the next 24h; and second, to subject strategies
to the constraint that all of the energy services demanded by their customers are met.
This implies that the storage technology is non-disruptive in the sense that the comfort
levels of individual customers are not affected. The basic business plan is that an
aggregator promises to lower customers’ bills in return for being allowed to manage
their DD capacity. Note that the bids and offers that aggregators submit to the system
operator are indistinguishable from those of traditional participants (e.g., conventional
generators, load serving entities). That is, the system operator does not need to modify
its current structure to accommodate the management of energy storage resources
with inter-temporal constraints. The thermal storage case has additional constraints to
a general storage problem. Therefore, the optimal strategies devised for the thermal
storage problem are part of the feasible set of solutions to the general storage problem,
potentially more conservative solutions.

Our formulation has implementation benefits compared to direct participation of
thermal storage, as there are minimum size constraints that would preclude smaller
individual agents from accessing these markets. To simplify the exposition, in the
discussion that follows we assume that there is only one type of DD, thermal storage
for space conditioning, but the bidding strategy would be the same if an aggregator
managed a portfolio of different storage technologies.

In our model we assume the aggregator does not exercise monopsony power, and
therefore cannot alter the prices observed (see e.g., Borenstein et al., 2008). The
extension to account for this behavior and mitigate its consequences is a direction of
future research. The following two subsections derive the optimumbidding strategy for
an aggregator facing (1) deterministic price forecasts, and (2) stochastic price forecasts.
Specifying the method to relieve financial constraints, i.e., whether the aggregator or
customers should pay for the installation cost of DD is beyond the scope of this article
but it is a possible topic for future research.

3.2.1 The deterministic behavior of an aggregator

Consider an aggregator with deterministic forecasts of prices, whose objective is to
minimize the cost of procuring electricity from the grid and submit bids and offers
to participate in the scheduling mechanism. This aggregator has agreements with
individual participants to manage their thermal load. For simplification, this can be
modeled as a storage facility with capacity Smax ∈ R

+ and roundtrip efficiency η ∈
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(0, 1], representing potential DD the aggregator manages. The aggregator also has
constraints for the maximum charging and discharging capacities that correspond
to the thermal demand of the individual participants. The decision variables are the
charging ct ∈ R

+ and discharging dt ∈ R
+ to be done in the period of analysis

t ∈ T = {1, . . . T }, (e.g., hours), where T is the number of periods in the horizon
(e.g., 24h). For any t ∈ T , denote by Pt the random variable for locational price at
hour t , E[Pt ] the expected value of the price at hour t and Dt the deferrable demand
available at hour t that the aggregator needs to satisfy either directly from the grid or
from previously stored energy. The problem is given by (8).

min
ct ,dt

{ ∑
t∈T

E[Pt ](Dt + ct − dt ) |

gτ1(ct , dt ) =
∑
t≤τ1

(ct .η − dt ) − (Smax − S0) ≤ 0, ∀τ1 ∈ T \{T };

hτ2(ct , dt ) =
∑
t≤τ2

(dt − ct .η) − S0 ≤ 0, ∀τ2 ∈ T \{T }; k(ct , dt )

=
∑
t∈T

(dt − ct .η) = 0;

0 ≤ ct ≤ c; 0 ≤ dt ≤ min(d, Dt ),∀t
}
.

(8)

The first two constraints, gτ1(·), hτ2(·), include the energy storage capacity, where
S0 is the initial level of storage, accounting for the storage inefficiency, η ∈ (0, 1].
Without loss of generality, we assume that the minimum energy storage level is zero.
The third constraint is an energy conservation condition over the optimization horizon.
This constraint is an expected balance between total charging and discharging over
the optimization horizon T (e.g., 24 hours). The last two constraints establish the
non-negativity of charging and discharging for all time periods, taking into account
the maximum charging (c) and discharging (d) power capacities. We assume that the
aggregator cannot sell the stored energy back to the grid, but can reduce the demand for
electricity related to thermal services. Thus the discharging is also limited by the level
of deferrable demand Dt . This is a linear problem that can be solved to optimality. The
solution is to charge during the periods with the lowest expected prices, and discharge
in the highest expected price periods, allowing the aggregator to benefit from energy
shifting possibilities over the day. This strategy however precludes the possibility of
opportunistically charging when prices unexpectedly drop, or avoid unexpected high
prices, situations more likely to occur as the penetrations of renewable energy sources
increase. Once the aggregator determines the optimal solution of (8), {ct∗, dt∗}, it
submits a demand schedule for t ∈ {1, . . . T } to the system operator as illustrated in
Appendix B, Fig. 5.

3.2.2 The stochastic behavior of an aggregator

Here we start with a motivating two-period model to build the reader’s intuition. We
then present a generalizedmodel for a horizonT = {1, . . . , T }. Relevant proofs for the
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aggregator’s stochastic behavior are presented in the appendices, including “Appendix
E”.

Theorem 3.1 Consider a simple two-period model for an aggregator whose objective
is to minimize the cost of procuring electricity. Assume that the aggregator’s expected
amount of energy is S f ∈ R

+ by the end of period two. Suppose that either.

1. E[P1] ≥ E[P2]
2. Prob(P2 ≥ P1) > 0,

or
1. E[P2] ≥ E[P1]
2. Prob(P1 ≥ P2) > 0.

If all the aggregator knows is the expected price for the two periods, the best possible
strategy is to purchase with certatinty all the energy required in the period with the
lowest expected price. That is, the optimal solution has a deterministic change in state
of charge. The minimized expected cost assuming S0 = 0 is z1 = min(E[P1],E[P2])×
S f . The uncertainty in prices for an aggregator, who follows a policy rule obtained
assuming deterministic prices, can lead to situations in which the aggregator incurs a
cost higher than the expected cost, or higher than min(P1, P2).S f (i.e., the realized
minimum cost over the two periods).

Theorem 3.2 Assume the conditions in Theorem 3.1. Let supp denote the support of a
function, and let fXi denote the probability density function of prices Xi in period i .
We assume the aggregators know fXi .

An aggregator in a two-period problem whose objective is to minimize the expected
energy procurement cost splits the energy purchases between the two periods. Let Li

denote the low price threshold used for charging in period i . The optimal strategy of
the problem is

1. Li = L∗, i ∈ {1, 2} when Prob(Xi ≤ Li ) > 0, i ∈ {1, 2}
2. Li∗ ≥ sup supp( fXi ) = inf{Li : Prob(Pi ≤ Li ) = 1} when fX−i (L−i∗) = 0, i ∈

{1, 2},
where L∗ denotes the optimal low price threshold, sup and inf denote the supremum
and infimum operators. The objective function value is z2 = αE[P1|P1 ≤ L∗].S f +
(1 − α)E[P2|P2 ≤ L∗].S f for α ∈ [0, 1].

Note that, contrarily to Theorem 3.1, the change in state of charge is not determin-
istic. The aggregator has a non-zero probability of purchasing energy that misses the
S f target.

Corollary 3.1 If E[P1] = E[P2] = μ, then the optimal solution of the problem is
Li = L∗, i ∈ {1, 2}, such that Prob(P1 ≤ L∗) + Prob(P2 ≤ L∗) = 1.

The same logic used to determine the optimal maximum price for charging the
storage, L∗, can be used to determine the optimal minimum price for discharging the
storage, H∗.

Theorem 3.3 Consider a generalization of the aggregator model in Theorems 3.1–3.2
and Corollary 3.1, with an optimization horizon T = {1, . . . , T }. In each period the
aggregator (1) defers an amount c of the demand it manages (charges an amount c)
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Fig. 1 Bids for stochastic price
forecasts

if the price is below or equal to a low threshold Lt ; (2) delivers an amount d of the
deferrable demand (discharges an amount d) if the price is above a high threshold
Ht ; (3) neither charges nor discharges if Lt < Pt ≤ Ht .

Lemma 3.1 If the storage capacity bounds are never binding from period t to the end of
the horizon T , the optimal low threshold prices are the same for those periods. In par-
ticular, if the storage capacity bounds are never binding throughout the optimization
horizon, the optimal low threshold prices are the same for all periods.

Corollary 3.2 If the storage capacity bounds are never binding throughout the opti-
mization horizon, for any hour t, the price arbitrage between the low thresholds and
the high threshold must be large enough to compensate for the round-trip inefficiency
of storage, Lt = ηHt .

Once an aggregator determines the optimal threshold prices {Lt∗, Ht∗}, a set of
hourly bids are submitted to the wholesale auction. These bids are price responsive
and correspond to (Dt + c) if the energy prices are below the low threshold prices
Lt∗, (Dt − d) when the energy prices are above the high threshold prices Ht∗, and
Dt when the energy prices are between the threshold prices.

The implied form of the demand curve for managing storage is illustrated in Fig. 1.
The figure shows an hour where the deferrable demand of that hour is greater than
the maximum rate of discharging, (Dt − d) > 0. Let St be the amount of energy
stored at the end of period t . Using the optimal strategy characterized in the theorems
above, the actual purchase of energy from the grid is (Dt + c −d) > 0. For each hour,
min{d, Dt , St−1} is the upper limit on the amount discharged, and min{c, (Smax −
St−1)} is the upper limit on the amount charged. We assume implicitly that the energy
capacity of DD storage Smax is, by design, greater than the maximum value of Dt . The
values c and d are fixed for computational ease. However note that these parameters
are related to technical characteristics of the overall aggregated thermal demand.

“Appendix F” characterizes the calibration process for the probability density func-
tion of an aggregator used in the simulations. The charging/discharging strategy in
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Theorem 3.3, Lemma 3.1 and Corollary 3.2 decreases the cost for an aggregator, and
additionally provides implicit flexibility in the form of ramping services for the sys-
tem operator. For power systems with high penetration of VRES, this flexibility is
particularly valuable. In general, the realized prices for energy will typically be high
when the generation from renewables is lower than forecasted and low when the gen-
eration from renewables is higher than forecasted. Thus an aggregator submitting a
high threshold price for discharging storage and a low threshold price for charging
storage will reduce purchases from the grid if the price is high enough, and increase
purchases if the price is low enough. In this way, a self-interested aggregator will
provide ramping services to the system operator even though no instructions to do this
are given.

4 Numerical illustration

We explain our model using four cases that compare the costs of serving a given
demand profile for a 24-h peak period under different regimes. (i) Case 1: Base case.
(ii) Case 2: Case 1 + 16 GWof NewWind Capacity at 16 locations; (iii) Case 3: Case 2
+ 17 GWh of DD Storage at 5 load centers managed by the system operator. (iv) Case
4: Case 3 with DD Storage managed by Aggregators (deterministic and stochastic
price forecasts). The wind capacity in Cases 2–4 represents approximately 14% of the
peak system load. Case 1 is treated as a benchmark for a system with no uncertainty
from Potential Wind Generation (PWG) other than the uncertainty of the standard
contingencies, i.e., n − 1 reliability.

For the two cases with storage, the results in Case 3 using the centralized manage-
ment of storage by a system operator, as in U.S. FERC order 841, are compared with
the results in Case 4 using distributed management by aggregators, as in U.S. FERC
order 2222, who submit bids into the wholesale market. Most demand is covered by
purchasing electric energy from the grid, but the deferrable demand for space cooling
can be met by either purchasing electric energy and/or discharging thermal storage.
In other words, the delivery of some cooling services can be decoupled from the pur-
chase of the electric energy needed. Thermal energy can be stored by, e.g., producing
ice at night when wind generation is high and electricity is inexpensive, and cooling
services can be delivered when needed by e.g., melting the ice in the afternoon when
electricity is more expensive. This non-disruptive delivery of cooling services substi-
tutes discharging thermal storage for air conditioning, and it reduces the peak load
and the amount of conventional generating capacity needed for system adequacy. An
analogous logic applies to heating services. The details of the underlying network and
data used are available in “Appendix G”.

4.1 Optimizing for a fixed horizon

The first analysis considers a fixed 24-h horizon that is consistent with the day-ahead
markets currently implemented in several systems (e.g., NYISO). Using MOST, we
simulate a system with more stringent requirements for optimality. We perform an
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Fig. 2 Mitigating the variability of wind generation with and without storage

analysis of the dispatches in the different states of the system for the fixed horizon
optimization to illustrate the tradeoffs incurred under alternativemanagement regimes.
We model both epistemic and aleatoric uncertainty. For each hour of the day there are
15 possible system states. The probabilities of each state occurring are known and
remain the same for each hour, by construction. Five are epistemic intact system states
representing a discretization of systemic uncertainty, and determining the period to
period variability (see section 3.1). Each one of these five intact system states has a
hierarchical set of aleatoric contingency states, in this application two per intact state.
These intact states correspond to a different potential level for the variable renewable
energy resources and the demand. Figure2 shows the changes in dispatches for the five
system states considered for two selected cases at the peak hour of the system (hour
13). Each intact probability state is associated with a different PWG realization, and is
numbered from1 to 5. These five states are ranked from the lowest PWG (State 1) to the
highest PWG (State 5). The variables with a 	 correspond to the positive or negative
deviations from the weighted average dispatch. Therefore our results illustrate the
combined effect of epistemic and aleatoric uncertainty. The height of the bar indicates
the positive or negative deviation from the weighted average dispatch over all of these
states.

For each hour, the level of demand by customers is the same for all five states and it
can be met by conventional generation, wind generation and, in Case 3, by discharging
storage (Deferrable Demand (DD) in Fig. 2b). It is also possible to shed load but this
does not happen in Fig. 2.

In Case 2, Fig. 2a, there is no storage and hence conventional generation has to
adjust to accommodate the different levels of PWG. The cost of the reserves needed
for ramping means that it is sometimes optimal to spill PWG generation. In fact, most
of the additional PWG in the high PWG states is spilled, and the levels of conventional
generation in States 2–5 are quite similar because 453 MW and 935 MW of PWG are
spilled in States 4 and 5, respectively. The maximum conventional generation in State
1 is 56.9 GW, and the range of dispatch across the five states is 728 MW, which is less
than the amount of PWG spilled in State 5. Total energy supplied is very similar in all
cases, and there is no load shedding at the optimal solution.

Figure2b shows the different levels of dispatch in Case 3 when storage is managed
centrally by the system operator. The storage capacity accommodates the full range
of PWG, discharging in States 1 and 2 and charging in States 3 and 4. None of the
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Fig. 3 Hierarchical storage management by aggregators

PWG is spilled and conventional generation is roughly the same in all five states (a
range of only 33 MW). Spilling less PWG in Case 3 implies that fuel costs are lower
in the peak hour than they are for Case 2. More importantly, the maximum dispatch
of conventional generation is now 54.9 GW, which is 2 GW lower than the maximum
in Case 2. This implies a reduction in the amount of installed capacity needed for
adequacy and a corresponding reduction in capital costs. Since the full range of PWG
is used in Case 3, the range of energy purchased from the grid is now 1652 MWh,
compared to only 141 MWh in Case 2. This highlights the flexibility provided to the
system by distributed storage.

Figure3 shows the different levels of dispatch in Case 4 when the storage is man-
aged by aggregators who submit bids into the market using either deterministic or
stochastic forecasts of the price of electricity. Figure3a shows the deviations from
the weighted average dispatch when the aggregators use deterministic price forecasts
and submit a deterministic charge/discharge schedule. Although discharging storage
reduces the maximum conventional generation to 55.4 GW, 1.6 GW lower than the
maximum in Case 2 when there is no storage, conventional generation is the only way
to accommodate the different levels of PWG. The results in Figs. 3a and 2a (Case 2)
are similar. In Fig. 3a, the range of conventional generation is 951 MW, compared
to 728MW in Case 2. Moreover, less of the PWG is spilled (231MW and 712MW
in States 4 and 5, respectively) than the amounts in Case 2. Overall, if aggregators
use deterministic price forecasts, the potential benefits to the system that could be
provided by the flexibility of storage are wasted. Generally, storage managed by an
aggregator using deterministic bids serves as a bridge between a situation in which no
storage is available, and the case in which storage is optimally managed by the system
operator. Figure3b shows the deviations from the weighted average dispatch when
the aggregators use stochastic price forecasts and submit bids with price thresholds
for charging and discharging storage. The results in this instance are almost identical
to Case 3 when the storage is managed by the SO. None of the PWG is spilled and
the range of conventional generation is still relatively small (82 MW). The maximum
conventional generation is 55.1 GW, only 0.2 GW higher than Case 3. The fact that
the storage managed by aggregators does provide flexibility to the grid implies that the
shadow prices are sufficiently negatively correlated with the level of PWG to provide
the signals needed to trigger charging and discharging effectively.
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Even though the results in Figs. 2b and 3b are similar in terms of the composition
of dispatch in the different system states, they are derived using two fundamentally
different approaches. In Fig. 2b, the SO has visibility of the full system and perfect
knowledge about everything except the actual level of PWG. Consequently, the SO
can ensure that the expected dispatch does not violate the physical limits of storage
over the 24-h horizon. In contrast, an aggregator only has access to a price forecast,
and with a fixed horizon, only one set of the bids is submitted for 24h ahead. Since the
SO does not know the physical limits of storage when it is managed by aggregators,
it is likely that the SO’s optimal dispatch plan will violate these limits. Moreover, we
assume that the aggregator has knowledge of the probability distributions for the prices,
fXi . Mismatches the information available to the SO and the aggregator can lead to
divergent situations between the central management and the distributedmanagement.
This problem is exacerbated by the characteristics of VRES, and in particular PWG.
Even with knowledge of the underlying price distributions, the high positive auto-
correlation of the residuals implies that forecasting errors are persistent, and as a
result, on unexpectedly high/low wind days, the SO will tend to charge/discharge
storage more than the physical limits allow. In this situation, an aggregator would
have to ignore a price signal to, for example, charge the energy storage if the capacity
is already full.

The situation in Case 3 corresponds to having thermal storage that is fully dis-
patchable by the SO, and the ramping provided by storage is treated the same way
as it is for conventional generation. By contrast, when aggregators submit bids with
price thresholds in Case 4, the storage represents price-responsive load in a two-sided
market with demand that is no longer perfectly inelastic. The fact that the performance
of the two cases in Figs. 2b and 3b are so similar is an encouraging sign. As the num-
ber of Distributed Energy Resources (DER) increase and become more varied, it is
simply unrealistic to expect an SO to manage this complexity effectively. Establishing
the interface between demand and supply at substations with DER managed locally
by aggregators7 and the bulk power grid managed by the SO, is a more promising
structure for the wholesale market, as in FERC order 2222.

Nevertheless, the problem of aggregators being unable to respond to price signals
when storage limits are binding still remains. One way to address this issue is to use
a receding horizon optimization and allow aggregators to adjust their hourly bids.
This assumes that the aggregators will also have access to updated price forecasts
for the next periods (e.g., 24h) so that they can determine an optimum plan for their
storage. There is, however, a more important justification for using a receding horizon
optimization. The forecasts of PWG can also be updated, and given the statistical
properties of these forecasts, the range of PWG levels in the intact system states will
be smaller for 1-h ahead than it is, for example, in Figs. 2 and 3 when the peak hour is
13h ahead. Consequently, the ramping requirements will be substantially lower, and
having more accurate forecasts of PWG is always an effective way to reduce operating
costs.

In the next subsection, we depart from our current theme of operating within cur-
rent market designs and illustrate how a receding horizon optimization can improve

7 Or managed by third-party aggregators that coordinate with a Distribution System Operator (DSO).
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operations on the grid and lower costs. This is done by comparing the daily system
costs for the four different cases using both a fixed horizon and a receding horizon
optimization. In Case 4, the aggregators have access to stochastic forecasts of the
price.

4.2 Optimizing for a 1-h ahead receding horizon

Table 1 presents a selected set of physical metrics at the optimum levels of operation
for the four cases using a fixed 24-h horizon, and the corresponding four cases using a
receding-horizon. The receding horizon results are based on 24 separate optimizations
using updated 24-h ahead forecasts of PWG and price for each hour. We assume that
the next day is exactly the same as the current day to make the results for the fixed
and receding horizons easier to compare, and for the same reason, the realized PWG
is assumed to be the same as the forecasted PWG.

The first four columns in Table 1 show the results for the fixed-horizon optimization.
The availability of PWG in Case 2 replaces over 15% of the conventional generation
in Case 1. However, the uncertainty of PWG also requires increases in the amounts
of reserves for up and down ramping, δti+, δti−, and contingency reserves, r ti+, r ti− , by
just over 50%, from 60 GW/day in Case 1 to 91 GW/day in Case 2. These reported
amounts are the sums of the 24hly commitments of reserves. Even though ramping
increases in Case 2, the sum of the maximum commitment for each generating unit
over all system states and all hours (The last row in Table 1), decreases by more than
5 GW, roughly one third of installed wind capacity. Consequently, the capital costs of
the installed conventional capacity needed for adequacy is also reduced.

Adding storage in Case 3 improves operations on the grid compared to Case 2 by
(1) spilling less PWG so that an additional 2.3 GWh/day of wind energy is dispatched;
(2) providing ramping services that displace 33 GW/day of reserves capacity; and (3)
reducing the maximum commitment of conventional generation by an additional 2
GW due to shifting some load to off-peak hours. The results for Case 4, when the
storage is managed by aggregators, are very similar to Case 3 when the SO manages
everything.

The last four columns of Table 1 show the results using a receding horizon, and
these results are compared with the corresponding cases using a fixed horizon. The
differences for Case 1 are trivial because the initial amounts of wind capacity are
negligible and this is themain source of uncertainty. For Case 2, the improved forecasts
of PWG using a receding horizon lead to a 20% reduction in ramping requirements.

However, comparing Case 3 with the corresponding case using a fixed horizon, the
increase in wind generation is small, the reductions in ramping are modest, and the
reduction in conventional capacity is small.

Doing the same comparison with Case 4, the results are mixed. Wind generation is
slightly higher, but the total ramping and the conventional capacity are also slightly
higher. However, using a receding horizon avoids violations of the energy storage lim-
its. The overall conclusion is that the improvements associated with using a receding
horizon optimization aremost apparent, particularly for ramping, in Case 2when there
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Table 2 A summary of the operating costs for the fixed and receding horizons

Fixed horizon Receding horizon
Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

Composition of wholesale costs ($1000/day)

E[generation
cost]

30,947 22,871 19,565 19,575 31,992 21,845 19,324 19,559

E[ramp wear
cost]

2 198 28 29 5 29 5 5

LF ramp-up
reserve cost

234 1,161 363 376 272 690 294 327

LF ramp-down
reserve cost

204 387 239 219 244 304 167 186

Contingency
reserve cost

88 122 50 53 94 92 36 54

E[total operat-
ing cost]

31,475 24,739 20,245 20,252 32,607 22,960 19,826 20,131

Fig. 4 Fixed versus receding horizon examples

is no storage. This conclusion is confirmed by inspecting the cost results summarized
in Table 2.

Table 2 presents results for the major components of the expected daily operating
costs using the same layout as Table 1. The differences in total costs among the dif-
ferent cases are more pronounced than the differences between the fixed and receding
horizon. Installing more wind capacity in Case 2 shows the largest reductions in costs
of 22% and 29% for the fixed and receding horizon, respectively. The reductions in
fuel costs caused by displacing fossil generation are much larger than the increases
in ramping costs compared to Case 1. Additional reductions of 14% and 10% are
obtained by adding storage in Case 3 for the fixed and receding horizons, respectively
(the corresponding reductions for Case 4 are 14% and 9%). Although these reduc-
tions in cost from adding storage are modest, the main economic benefits from storage
come from reducing the peak load and the amount of conventional capacity needed for
adequacy, but the associated reductions in capital costs are not part of the operating
costs in Table 2.
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Figure4a shows the expected hourly operating costs using a fixed (blue line) ver-
sus a receding (orange line) horizon for Case 2 when there is no storage. The lower
hourly costs using the receding horizon are mainly caused by dispatching more wind
generation in the early morning hours when PWG is abundant. This additional wind
generation displaces conventional generation because there is no storage in Case 2.
This has implications for the aggregator’s economic viability: an aggregator partici-
pating in an energy-only market is able to perform close to the benchmark of a Ramsey
central planner.

Figure4b shows the expected hourly levels of stored energy at a specific bus close
to Boston (Bus 4) for Cases 3 and 4 using a fixed and receding horizon. The levels for
Case 3, when storage is managed by an SO, are similar for both the fixed and receding
horizon. Storage is almost fully charged at night and then almost fully discharged
during the day. The results when the storage is managed by aggregators in Case 4
are different. With a fixed horizon, storage is fully charged at night but the amount
discharged during the day is much larger than the storage capacity. In other words, it is
not a feasible plan and no discharging would be possible after Hour 15. However, with
a receding horizon, the stored energy is always within the capacity limits of storage. In
this example, however, the maximum level of stored energy is well below the capacity
limit and this probably contributes to making the operating costs in Table 2 higher for
Case 4 than they are for Case 3 when storage is managed by an SO.

Hence, in situations as illustrated in Fig. 4b in which the threshold prices for dis-
charging are not high enough to prevent excessive discharging, the system operator
requests the aggregator to perform dispatches that are not possible physically (out of
the feasible solution region for the aggregator). The receding horizon optimization
updates the bids for each period according to the most updated forecasts. Therefore,
the strategy precludes exceeding the capacity limits on the deferrable demand.

5 Conclusion

This article proposes a two-sided market in which aggregators manage ESS, in the
form of deferrable demand for space cooling, thermal storage, and submit bids into the
wholesale market for purchasing energy from the grid for a given planning horizon
(e.g., 24h). This structure establishes the market interface at the substation level,
aggregating potentially millions of individual loads. The bids by aggregators would
have similar characteristics to the bids by wholesale customers, and in this respect, the
market structure is simple. Even though the aggregators only participate in the energy
market, they still provide ramping capabilities to the systemoperator. The overall result
is that the variability of VRES can be accommodated when the aggregators face real-
time prices, 8 paving the way, for example, for the implementation of order 2222 from
FERC. Negative prices may arise when there are “excess” VRES, and this provides a
clear incentive for aggregators to charge their storage. Similarly, high prices when the
wind generation is less than expected trigger discharging and a reduction in purchases

8 To avoid paying excessively high prices, aggregators should be hedged by, for example, holding collar
derivatives that specify a “floor" and a “ceiling" for prices determined in a separate market or by bilateral
negotiations.
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from the grid. Ideally, distributed storage could smooth out the realized generation
from conventional units and increase their average capacity factors. This would be a
valuable benefit for conventional generators because their earnings in the wholesale
market tend to fall when there are high penetrations of renewable generation.

An empirical application demonstrates how distributed storage managed by an SO
or by aggregators can reduce the conventional capacity needed for ramping, and also
increase the amount of VRES dispatched.

Currently, there are two competing proposals for managing Distributed Energy
Resources (DER). The first is to extend the logic of nodal pricing from the high-voltage
grid to distribution systems, so that all customers can participate in the wholesale
market. The second, which we favor, is to have DER managed locally by aggregators
who submit bids into the wholesale market and work on behalf of their customers to
reduce the expected cost of their energy purchases from the grid.

There is an important qualification that underlies our conclusions. Our empirical
application assumes implicitly that the optimum results in all system states are in
equilibrium with a unit power factor. However, with rooftop solar, for example, local
voltage problems will occur whenever clouds pass overhead. In our two-sided market,
these voltage problems should be managed locally through the installation of equip-
ment such as smart inverters that can respond rapidly to voltage problems. A simple
market mechanism that provides the incentives for maintaining a stable power factor
already exists for wholesale customers. These customers pay a penalty whenever their
power factor falls outside a specified range. In contrast, in a highly disaggregated
market, local voltage problems on the distribution systems will be the responsibility
of the DSO.

In summary, our results show how the local control of DERs by aggregators, as
opposed to centralized control by an SO, can manage the increasing complexity of
DERs effectively. From the perspective of an SO, it would be preferable to have a
few wholesale customers with stable power factors in our two-sided markets than to
manage all of the local voltage problems caused by thousands of retail customers.
This does, however, leave open the questions of how should aggregators bill their
customers and how should they control the ESS. These are promising topics for future
research.Although state regulatorswould lose their jurisdiction over the newwholesale
customers, they could still treat the customers of an aggregator as retail customers and
regulate the rates that they pay. The combination of aggregators submitting bids into the
energy market and having equipment to manage local voltage problems automatically
is practical, and possibly cost effective, and it is consistent with the concept of “grid
edge intelligence."
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Appendix A: Interaction between aggregators and system operator

The full formulation for the system operator model and the economic analysis and
counterfactual studies are presented in Murillo-Sanchez et al. (2013), Lamadrid et
al. (2019) and Jeon et al. (2019). Table 3 presents the nomenclature for a stylized
presentation of the system operator model.

Table 3 Nomenclature associated to stylized system operator model

Functions and variables

Vu(·) Upper level value function for aggregator and supply-side participants

Vδ(·) Upper level cost function for quadratic ramping adjustments,
supply-side participants

Voth(·) Upper level value function for other variables including demand-side
participants

fuc(·) Upper level cost function for binary variables, supply-side participants

Vl (·) Lower level value function for aggregator participants using proxies to
system variables (e.g., nodal prices)

gbal(·) Function for balancing supply and demand

g	(·) Functions for balancing economic, financial and physical variables

a Vector of energy decisions for energy participation, aggregator

x Vector of state system resources

u Vector of system dispatches, supply-side participants

s Vector of states of nature

xoth Vector for all other variables for both supply and demand side
participants (e.g., reserves, curtailable demands, minimum operating
times)

y Vector of binary decisions (e.g., startup and shutdown states)

〈·〉′ Vectors of proxies used by aggregators to determine their participation
strategy
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Consider a stylized formulation of the system operator problem accounting for the
bi-level nature of the aggregator decisions, a. Namely,

min Vu(a, x, u, s) + Vδ(u) + Voth(xoth, s) + fuc(y, s) (MOST)

s. t. a ∈ argmina′ Vl(a
′, x ′, u′, s′, x ′

oth, y′, λ′), (9a)

gbal(a, x, u, s, xoth) = 0, (λ) (9b)

g	(a, x, u, s, xoth, y) ≤ 0, (9c)

y ∈ {0, 1}, (9d)

where the objective function (MOST) is a Mixed Integer Linear Program (MILP)
that maximizes social welfare as outlined in section 3.1. The aggregator solves a
problem (9a) as outlined in section 3.2.2 and section E, using priors to determine, e.g.,
the probability density functions of energy prices, λ′, at their participating nodes. The
way these priors are obtained can vary frommarket tomarket (e.g., the system operator
can provide non-binding forecasts). The system operator balances supply and demand
as per (9b), and the dual variable is presented in parenthesis, after the considerations
in (O’Neill et al., 2005; Kuang et al., 2019).. This market is cleared using a supply
function equilibria with a uniform price at each node (locational marginal prices). All
other inequality constraints, including both economic, financial and physical limits,
for the system operator are represented by (9c) (e.g., energy and reserve contracts,
ramping limits, reserve amounts, power).

Appendix B: Proof of Theorem 3.1

Proof Due to the cost minimizing behavior we impose, the aggregator in a two-period
problem buys the energy needed in the period with the lowest expected energy price,
hence minimizing the expected procurement cost.

Fig. 5 Demand curves for deterministic price behavior
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Fig. 6 Demand curves with threshold prices L1 and L2

These demand curves are completely inelastic, as shown if Fig. 5. For any t ∈
{1, . . . T }, Fig. 5a shows the case for a moderate price, with ct∗ = dt∗ = 0, and
Fig. 5b illustrates a case for a low price, with ct∗ = c, dt∗ = 0.

Once prices are stochastic, there is a probability p > 0 that the aggregator pays a
price above the expected price in a given period, even when the expected price for that
period is the lowest of the two periods. Let P1 and P2 be the stochastic prices faced
by an aggregator in periods one and two respectively. Let fXi , i ∈ {1, 2} denote the
known the probability density functions for the prices in the two periods. A possible
strategy is to specify low threshold prices for each time period, Li , i ∈ {1, 2}. The
aggregator purchases an amount S f if the realized price is below the threshold as
illustrated in Fig. 6.

In general we can assume that the objective for an aggregator with deterministic
price forecasts is Jd = minE[Pt ](Dt +ct −dt ) = minE[Pt ∗(Dt +ct −dt )]whereas
the objective function with the stochastic price forecasts satisfies Js = minE[Pt ∗
(Dt (Pt )+ ct (Pt )− dt (Pt ))] ≤ Jd . Js is a relaxation of Jd , and therefore the feasible
set for Js is at least as large as that of Jd . �

Appendix C: Proof of Theorem 3.2

Proof The problem for an expected cost minimizing aggregator is given by (10).

min
L1,L2

{
E[P1|P1 ≤ L1].S f .Prob(P1 ≤ L1) + E[P2|P2 ≤ L2].S f .Prob(P2 ≤ L2)|

Prob(P1 ≤ L1) + Prob(P2 ≤ L2) = 1
}
, (10)

where the constraint in (10) means that the aggregator is expected to buy a quantity
S f over the two periods.
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1. For fXi (Li∗) > 0, i ∈ {1, 2}, then Prob(Pi ≤ Li∗) > 0, i ∈ {1, 2}, and the
aggregator can make purchases in both periods. Because E[Pi |Pi ≤ Li ] =∫ Li

−∞ Pi fXi (Pi )d Pi/Prob(Pi ≤ Li ), and S f > 0, the objective function is equiv-
alent to (11).

min
L1,L2

{∫ L1

−∞
P1 fX1(P1)d P1 +

∫ L2

−∞
P2 fX2(P2)d P2|

∫ L1

−∞
fX1(P1)d P1

+
∫ L2

−∞
fX2(P2)d P2 = 1

}
. (11)

We solve this problem using Lagrangean relaxation, leading to (12).

L(L1, L2, λ) =
∫ L1

−∞
P1 fX1(P1)d P1 +

∫ L2

−∞
P2 fX2(P2)d P2

+ λ

(
1 −

∫ L1

−∞
fX1(P1)d P1 −

∫ L2

−∞
fX2(P2)d P2

)
. (12)

The first order conditions (FOCs) for the problem are given by (13).

(Li )
∂L
∂Li

≡ Li fXi (Li ) − λ fXi (Li ) ≤ 0, i ∈ {1, 2}

(λ)
∂L
∂λ

≡ 1 −
∫ L1

−∞
fX1(P1)d P1 −

∫ L2

−∞
fX2(P2)d P2 = 0. (13)

2. For fX1(L1∗) = 0, L1∗ is out of the range of P1. Formally, L1∗ ≤ inf supp( fX1) =
sup{L1 : Prob(P1 ≤ L1) = 0}; the (λ) FOC implies

∫ L2∗
−∞ fX2(P2)d P2 = 1 or

L2∗ ≥ sup supp( fX2) = inf{L2 : Prob(P2 ≤ L2) = 1}. In such case, the objective
value is E[P2|P2 ≤ L2∗].S f = E[P2]. Therefore it is optimal for the aggregator
to purchase all the energy in period 2, given the high prices expected for period 1.
The analysis for the case where fX2(L2∗) = 0 is analogous and in that case, the
objective value is E[P1|P1 ≤ L1∗].S f = E[P1]

3. If Prob(Xi ≤ Li ) > 0, i ∈ {1, 2}, the aggregator makes purchases in both periods.
For 0 < fXi (Li ) < 1, i ∈ {1, 2}, the aggregator purchases energy in period
i , implying Li = λ. Hence, setting Li = L∗, i ∈ {1, 2} so that Prob(P1 ≤
L∗)+Prob(P2 ≤ L∗) = 1 is the optimal strategy. In such case, the objective value
is αE[P1|P1 ≤ L1].S f . + (1 − α)E[P2|P2 ≤ L2].S f for some α ∈ (0, 1) �

Appendix D: Proof of Corollary 3.1

Proof If E[P1] = E[P2] then the objective value of the local optimal solution sat-
isfying Li = L∗, i ∈ {1, 2}, such that Prob(P1 ≤ L∗) + Prob(P2 ≤ L∗) = 1 is
z2 = αE[P1|P1 ≤ L1].S f . + (1 − α)E[P2|P2 ≤ L2].S f α ∈ (0, 1). Thus, since
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E[Pi |Pi ≤ L∗] ≤ E[Pi ], i ∈ {1, 2} then z2 ≤ αE[P1].S f . + (1 − α)E[P2].S f =
S f μ = z1, where z1 is the objective value given by the first case above. A useful infer-
ence from the results is that the aggregator’s optimal thresholds for the two periods
should be equal. Otherwise, the aggregator could always reduce the expected procure-
ment cost by lowering the higher threshold and raising the lower threshold accordingly.
Using this strategy, the optimal expected cost is lower than E[Pi ], i ∈ {1, 2}, the pur-
chase price is capped at L∗ and therefore it is less risky than buying in the period with
the lowest expected energy price. �

Appendix E: Stochastic behavior of an aggregator, multiple periods

Weformulate the problem for an aggregator in the day-ahead energymarket (first stage)
by combining the optimal strategies outlined in section 3.2 to minimize the expected
cost of serving deferrable demand over certain periods, and using the differences in
prices over a optimization horizon (e.g., the 24h of a day).

Proof Proof of Theorem 3.3
The optimization problem is given by (14).

min
Lt ,Ht

{
v(Lt , Ht ) =

∑
t∈T

(
Dt .E[Pt ] + c.E[Pt |Pt ≤ Lt ]Prob(Pt ≤ Lt )

)

−
∑
t∈T

min{Dt , d}E[Pt |Pt > Ht ] Prob(Pt > Ht )|

gτ1(Lt , Ht ) =
∑
t≤τ1

(
c.Prob(Pt ≤ Lt ).η − min{Dt , d}Prob(Pt > Ht )

)

− (Smax − S0) ≤ 0, ∀τ1 ∈ T \{T }
hτ2 (Lt , Ht ) =

∑
t≤τ2

(
min{Dt , d}Prob(Pt > Ht ) − c. Prob(Pt ≤ Lt ).η

)

− S0 ≤ 0, ∀τ2 ∈ T \{T }
k(Lt , Ht ) =

∑
t∈T

(
min{Dt , d}Prob(Pt > Ht ) − c.Prob(Pt ≤ Lt ).η

) = 0
}
.

(14)

The set of constraints gτ1(Lt , Ht ) ≤ 0 and hτ2(Lt , Ht ) ≤ 0 are on the upper and
lower bounds of the storage capacity respectively at the end of each period. The con-
straint k(Lt , Ht ) = 0 is an expected balance between total charging and discharging
over the optimization horizon T (e.g., 24h). This is equivalent to a transversality con-
dition stating that the final level of energy stored should be equal to the initial one, thus
avoiding assuming that the energy S0 is free. Note that the storage capacity constraints
for the final hour hT and gT would be weaker than k(Lt , Ht ) = 0 and therefore are
not included.
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Let fXt denote the probability density function of the energy price at hour t . This
problem can be expressed as (15). The dual variables are indicated in parentheses on
the right.

min
Lt ,Ht

v(Lt , Ht ) =
∑
t∈T

(∫ +∞

−∞
Pt fXt (Pt )d Pt .Dt + c

∫ Lt

−∞
Pt fXt (Pt )d Pt

)

−
∑
t∈T

min{Dt , d}
∫ +∞

Ht
Pt fXt (Pt )d Pt

st.

gτ1 (Lt , Ht ) =
∑
t≤τ1

(
c
∫ Lt

−∞
fXt (Pt )d Pt .η − min{Dt , d}

∫ +∞

Ht
fXt (Pt )d Pt

)

− (Smax − S0)

≤0, ∀τ1 ∈ T \{T } (μτ1 )

hτ2 (Lt , Ht ) =
∑
t≤τ2

(
min{Dt , d}

∫ +∞

Ht
fXt (Pt )d Pt − c

∫ Lt

−∞
fXt (Pt )d Pt .η

)
− S0

≤0, ∀τ2 ∈ T \{T } (λτ2 )

k(Lt , Ht ) =
∑
t∈T

(
min{Dt , d}

∫ +∞

Ht
fXt (Pt )d Pt − c

∫ Lt

−∞
fXt (Pt )d Pt .η

)
= 0. (γ )

(15)

The Karush-Kuhn-Tucker (KKT) conditions can be expressed as (16).

(Lt )
∂L
∂Lt

≡ ∂v

∂Lt
+

∑
t≤τ1

μτ1
∂gτ1

∂Lt
+

∑
t≤τ2

λτ2
∂hτ2

∂Lt
+ γ

∂k

∂Lt
= 0,

∀τ1 ∈ T \{T }, ∀τ2 ∈ T \{T }
(Ht )

∂L
∂ Ht

≡ ∂v

∂ Ht
+

∑
t≤τ1

μτ1
∂gτ1

∂ Ht
+

∑
t≤τ2

λτ2
∂hτ2

∂ Ht
+ γ

∂k

∂ Ht
= 0,

∀τ1 ∈ T \{T }, ∀τ2 ∈ T \{T }
(gτ1) gτ1(Lt , Ht ) ≤ 0, ∀τ1 ∈ T \{T }
(hτ2) hτ2(Lt , Ht ) ≤ 0, ∀τ2 ∈ T \{T }

(k) k(Lt , Ht ) = 0

(cgτ1) μτ1gτ1(Lt , Ht ) = 0, μτ1 ≥ 0 ∀τ1 ∈ T \{T }
(chτ2) λτ2hτ2(Lt , Ht ) = 0, λτ2 ≥ 0 ∀τ2 ∈ T \{T }. (16)

For the condition (Lt ), the FOC implies:

(Lt1)
∂L
∂Lt

≡ c.η. fXt (Lt )
∑

t≤τ1≤T

μτ1 − c.η. fXt (Lt )
∑

t≤τ2≤T

λτ2 − γ.c.η. fXt (Lt )

+ c.Lt fXt (Lt ) = 0,
(17)
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which can be simplified to

Lt fXt (Lt ) + η. fXt (Lt )

⎛
⎝ ∑

t≤τ1≤T

μτ1 −
∑

t≤τ2≤T

λτ2 − γ

⎞
⎠ = 0, (18)

and for any hour t , if fXt (Lt ) �= 0 in optimality, then

Lt + η

⎛
⎝ ∑

t≤τ1≤T

μτ1 −
∑

t≤τ2≤T

λτ2 − γ

⎞
⎠ = 0, (19)

and therefore

(Lt ′) Lt = −η

⎛
⎝ ∑

t≤τ1≤T

μτ1 −
∑

t≤τ2≤T

λτ2 − γ

⎞
⎠ . (20)

By the complementary slackness condition (cgτ1), if gτ1(Lt , Ht ) < 0, when the
upper bound of the storage is not binding at the end of hour τ1, this implies μτ1 = 0.
Similarly, by the complementary slackness condition (chτ2), λτ2hτ2(Lt , Ht ) < 0,
when the lower bound of the storage is not binding at the end of hour τ2. This implies
λτ2 = 0. Thus, for any hour t , if μt = μt+1 = · · · = μT −1 = λt = · · · = λT −1 = 0,
then Lt = ηγ , implying that Lt = Lt+1 = · · · = LT . This establishes the result. �
Proof Proof of Lemma 3.1 For the condition (Ht ),

(Ht1)
∂L
∂ Ht

≡ min{Dt , d}.Ht fXt (Ht ) + min{Dt , d}. fXt (Ht )
∑

t≤τ1≤T

μτ1

− min{Dt , d}. fXt (Ht )
∑

t≤τ2≤T

λτ2 − γ min{Dt , d}. fXt (Ht ) = 0,

(21)

and for any hour t , if fXt (Ht ) �= 0 in optimality, then

Ht +
⎛
⎝ ∑

t≤τ1≤T

μτ1 −
∑

t≤τ2≤T

λτ2 − γ

⎞
⎠ = 0. (22)

and therefore

(Ht ′) Ht = −
⎛
⎝ ∑

t≤i≤T

μτ1 −
∑

t≤τ2≤T

λτ2 − γ

⎞
⎠ . (23)
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Analogous to the analysis for Lt using the complementary slackness conditions, if
μt = μt+1 = · · · = μT −1 = λt = · · · = λT −1 = 0, then Ht = Ht+1 = · · · =
H T = γ . This establishes the result. �

Analogous to the analysis for Lt using the complementary slackness conditions, if
μt = μt+1 = · · · = μT −1 = λt = · · · = λT −1 = 0, then Ht = Ht+1 = · · · = Ht =
γ . This implies the following.

Proof Proof of Corollary 3.2 If the upper bound of the storage capacity is binding at the
end of period τ1, gτ1(Lt , Ht ) = 0, and μτ1 > 0. From (Ht ′), the optimal discharging
thresholds for period τ1 and all periods before τ1 are lowered by μτ1 . The charging
thresholds for periods k ≤ τ1 are also lowered, according to Lt = ηHt .

Similarly, if the lower bound of the storage capacity is binding at the end of period
τ2, hτ2(Lt , Ht ) = 0, and λτ2 > 0. From (Lt ′), the optimal charging threshold Lτ2 is
increased at period τ2 and for all periods before τ2 by ηλτ2 . The discharging thresholds
for periods k ≤ τ2 are also increased, according to Lt = ηHt . �

In practice, it is possible that the storage is charged in one system state and dis-
charged in another for the same hour. This capability implies that DD can provide
ramping services even though there is no formal market for ramping. Consequently,
the benefits of the aggregator’s strategy for managing storage are not limited to min-
imizing the expected cost of meeting the DD requirements. The bid strategy also
provides the flexibility needed to deliver ramping services to the system operator even
though the nodal price of energy is the onlymarket signal. Note that in thismarket there
are non-convexities due to the unit commitment problem that can affect the prices.
This fact is beyond the control of aggregators.

Appendix F: Parameters for the aggregator proxies

We assume that the forecast of prices follows a shifted lognormal distribution for
each hour. Further, we assume that the participation in the market does not change the
distribution of the price forecast on which the bids and offers are based.

Consider a Z ∼ log N (μ, σ 2). The probability density function (PDF) of z is given
by

fZi (z, μ, σ ) = 1

zσ
√
2π

e− (ln z−μ)2

2σ2 , z > 0. (24)

Let X = g(Z) = Z + Pmin denote a shifted lognormal distribution. Then Z =
g−1(X) = X − Pmin. The pdf for X is given by

fXi (x, μ, σ, Pmin) = 1

(x − Pmin)σ
√
2π

e− (ln(x−Pmin)−μ)2

2σ2 , x > Pmin. (25)

The Cumulative Distribution Function (CDF) of X is given by

FXi (x, μ, σ, Pmin) = FZi (x − Pmin, μ, σ ), x > Pmin. (26)
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The first two moments of this distribution are

E[X ] = E[Z ] + Pmin = eμ+ σ2
2 + Pmin

V[X ] = V[Z ] = (E[X ] − Pmin)
2(eσ 2 − 1). (27)

Therefore, the mean and variance can be calibrated by the expectation and variance
of the prices, E[P],V[P] as follows

μ = ln(E[P] − Pmin) − σ 2

2

σ 2 = ln(1 + V[P]
(E[X ] − Pmin)2

). (28)

We also consider other distributions (truncated normal, triangular). A normal distribu-
tion is attractive, as it provides a simple closed form. However the implicit assumption
is that prices are distributed symmetrically around the mean. In our simulation cases,
this is not the case.

The triangular distribution is given by three parameters. The lower limit, the higher
limit and the mode.We omit the results from using a triangular distribution for brevity.

Appendix G: Model calibration

Our calibration is based on publicly available sources, including the information for
the electricity network, the characteristics of the installed generating units, the model
attributes for the stochastic resources and load, and the energy and power properties for
deferrable demand. The stochastic resources (e.g., wind, solar, wave energy; demand)
are modeled as Markovian processes with discretized probability distributions over
a finite number of states (in our application five per time period), and each of these
states allows for contingencies (equipment failures). We summarize the input here and
highlight the main differences with respect to our previous work (Jeon et al., 2015,
section 4).

G.1 Network and generation fleet

The test network is a 36-bus reduction of a New England and New York centric
version of the North Eastern Power Coordinating Council (NPCC) network (Allen et
al., 2008). The information for the generating units corresponds to reported data to
the U.S. Energy Information Administration (EIA, 2011), complemented with data
provided by Energy Visuals (EVFR, 2012) for over 690 generators, including the
location of the units, and the initial estimated fuel costs. We internalize the ramping
costs incurred by conventional generators when accommodating the variability and
uncertainty of stochastic resources. These costs are consistent with the information
in Lew et al. (2013) and the estimation of ramping effects by Cullen (2013), and
they are specified by fuel type. Changing the dispatch of conventional generation to
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provide ramping services reduces their efficiency and causes damages that are accrued
over time (Kumar et al., 2012; Moarefdoost et al., 2016). The ramping costs include
lower thermal performance, e.g., heat rate degradation for thermal generating units;
equipment damage, e.g., creep damage, increases in equipment forced outage rates
(EFOR); and higher operating and maintenance costs (O&M). The system operator
manages aleatoric uncertainty by scheduling enough contingency reserve capacity to
cover (by potentially re-dispatching) intra-temporal equipment failure contingencies.
This means that if the system losses any element randomly, it can continue operating,
or what is called n − 1 reliability in electric systems. Each period of time has its
own contingency set. The system operator also schedules robust inter-temporal load
following reserves for the worst-case ramp necessary, in the empirical application
for the five states described in “Appendix G.2”. In practice, reserve capacity can be
used for covering both contingency and load following events. The amount of down
ramping reserves determines how much potential wind generation has to be spilled
when e.g., wind speeds are unexpectedly high.

G.2Modeling the uncertainty of VRES

We limit our attention to modeling wind energy sources. This follows two main
research considerations: (1) the negatively correlated diurnal patterns between the
demand for thermal services and the availability of the VRES modeled (2) the poten-
tial for capacity additions of VRES in the region of analysis, the Northeastern United
States (EIA, 2019b). We estimate time-series models using hourly data to forecast
temperature, wind speed and load for specified locations. These equations are esti-
mated in two steps, first for temperature, and then for wind speed and load, using the
estimated temperature as an input, as Auto-Regressive Moving Average (ARMAX)
models with exogenous variables. We use the estimated variances and covariances of
the white-noise residuals for these estimated equations to generate random sequences
of multivariate normal residuals. We specify for any day and starting hour and then
calculate the deterministic forecasts for temperature. For this we use the previously
estimated model for a 24-h ahead forecast. This model is used to do deterministic
forecasts of load, and a Monte Carlo simulation of wind speed for 1,000 realizations.
The obtained wind speeds are transformed to the equivalent potential wind generation
(PWG) obtained from a multi-turbine modeling approach. The details of the statistical
fit and the Monte Carlo simulation are presented in Jeon et al. (2015). One of the spec-
ifications of our model is that the uncertainty of PWG is Markovian, and discretized
in a finite number of states. We rank the simulated PWG and group them into a finite
number of bins (five in what follows). We build the profiles and transition probability
matrices based on simulations for August 8th, 2006. We create inputs for 24 reced-
ing horizon settlements (N = 24) for successive periods based on the Monte Carlo
econometric model, each one with a 24-h horizon nt = 24. The transition probability
matrices are consistent with respect to the first settlement period. That is, they repre-
sent a conditional forecast. This assumption bounds extreme possible realizations out
of the forecasts available at the beginning of the day. But the substantial persistence
observed in the transitions between periods supports this modeling decision. The two
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more important features of the PWG profiles are (1) they exhibit substantial persis-
tence because the residuals of the forecasts are highly positively auto-correlated; and
(2) the range between the highest and lowest PWG increases over the 24-h horizon,
because the forecasting accuracy deteriorates over time. Some demand may not be
served, particularly in the rare contingency states. However, shedding load is expen-
sive, and the specified VOLL are $10,000/MWh for urban areas and $5000/MWh for
rural areas.

G.3 Deferrable demandmodel

The specifications of deferrable demand (DD) consider only thermal storage for space
cooling because air conditioning is the main cause of the annual peak load. Reducing
this peak reduces the amount of installed generating capacity needed for generation
adequacy. The ARMAX model of load distinguishes between temperature-sensitive
and non-temperature-sensitive load. Some customers have thermal storage but most
do not. The energy capacity of thermal storage is 17 GWh corresponding to 1/15 of the
total daily amount of electricity used for space cooling that is potentially deferrable
(temperature-sensitive demand in the peak day). The optimal management of storage
determines when to charge (usually at night) and when to discharge (usually during
peak load periods) the storage. This storage is allocated to five load centers in propor-
tion to the load at each center. The technical characteristics of storage are based on the
products described by Evapco (EVAPCO, 2007) and Calmac (Hunt et al., 2010). The
hourly ice building power rate is 12% and the hourly ice melting power rate is 16.7%
of the total storage capacity, but rates can vary in practice with the number of chillers
installed. The specified efficiency of 86% is based on an average Energy Efficiency
Ratio (EER) of 8.8 for thermal storage compared to an EER of 10.2 for a conventional
air conditioner.
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