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Abstract
The martingale theory of bubbles enables testing for asset price bubbles by analyz-
ing option prices. As recently shown by Piiroinen et  al. (Asset price bubbles: an 
option-based indicator, 2018), the SABR model is a strict local martingale when its 
parameterization implies a positive correlation between stock and option prices. We 
operationalize this theoretical result and analyze stock price bubbles in 2576 stocks 
over 26 years. Martingale defect conditions are absorbed quickly by options markets, 
but identify high proportions in significant and permanent changes in distribution 
of price returns, option trading activity, short interest in the underlying, and insti-
tutional ownership. These results confirm many common assumptions about stock 
price bubbles. These bubbles are temporally clustered, and tend to occur in periods 
of positive market development. Martingale defects are rare in market corrections, 
which indicates that they are a result of overoptimistic speculation.

Keywords Stock price bubbles · Martingale defect · Strict local martingales · SABR 
model

Mathematics Subject Classification 91B28 · 91B70 · 91B84

1 Introduction

An asset price bubble occurs when the price exceeds the fundamental value of the 
asset for a sustained period. Unfortunately, testing for bubbles suffers from a joint 
hypothesis problem: As the fundamental value is, by its nature, unknown, both quan-
tities have to be estimated simultaneously, which severely reduces the usefulness of 
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these types of analysis (Camerer, 1989). The martingale theory of bubbles as devel-
oped by Jarrow (1992), Loewenstein & Willard (2000), Cox & Hobson (2005), Hes-
ton et al. (2007), Jarrow et al. (2010), Biagini et al. (2014), and many others, charac-
terizes asset price bubbles in terms of strict local martingales.

To overcome the joint hypothesis issue, Jarrow (2015) suggests specifying an 
option pricing model, which can be validated separately, and checking whether it 
implies an underlying price process that is a true martingale, and not a strict local 
martingale.1 Piiroinen et al. (2018) derive a martingale defect indicator for SABR 
dynamics, fundamentally transforming the task of identifying an asset price bubble 
into a calibration problem. In this paper, we empirically investigate the connection 
between stock price bubbles and changes in several non-related variables in a large-
scale study of 2576 stocks over approximately 26 years.

We adapt the approach suggested by Piiroinen et al. (2018) to identify martingale 
defects in the volatility surface of single stocks. We evaluate defect persistence, stock 
price return distribution, option trading activity, short interest, and institutional own-
ership on a per-event basis and find strong evidence that martingale defects coincide 
with permanent changes in these variables. Our findings confirm many fundamental 
assumptions about stock price bubbles. Furthermore, we examine the temporal clus-
tering of martingale defect events over time and find that they predominantly occur 
during phases of positive market returns and rarely in phases of sustained negative 
returns.

Monitoring the volatility surface for martingale defects is a useful tool to detect 
overoptimistic speculation in stocks. It enables investors to identify individual stocks 
which may not be rationally priced and adjust their exposure accordingly. It is fur-
thermore an appropriate tool for regulators to improve market monitoring and focus 
their resources in order to protect retail investors. Across the entire market, it pro-
vides a gauge of general investor optimism and a markets propensity to develop 
bubbles.

The remainder of this paper is structured as follows. To provide background and 
context to our study, we will begin with a short review of the related literature. Then 
we examine the details of the martingale theory of bubbles and the implementation 
by Piiroinen et al. (2018). Section 4 provides an overview of the data, specifics of 
our calibration procedure, and further implementation details. Our subsequent anal-
ysis is two-fold. First, we examine individual bubble events and evaluate changes 
after observing a martingale defect. Second, we aggregate bubble events across the 
entire market and investigate their clustering behaviour over time. Section  6 con-
cludes the paper and identifies topics for further exploration.

2  Literature review

The martingale theory of bubbles is fundamentally based on the idea that an asset in 
bubble conditions is not a fair bet, as market participants are willing to overpay for a 
potential upside.

1 Specifically, see section 3.2.3 of Jarrow (2015).
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Participating in these bubbles can be rational under certain conditions, such as 
laid out by Jarrow (1992), who analyzes asset price bubbles as market manipulation 
by large traders and extends arbitrage pricing theory, which is based on an economy 
of price taking actors, by allowing for large traders. These purchase large positions 
in individual stocks, and may corner the market or squeeze holders of short posi-
tions to force them to pay an arbitrary price. He derives sufficient conditions under 
which these strategies are impossible under fair pricing measures. In this study, we 
find that martingale defects in option prices do indeed coincide with increased short 
interest.

We now review the literature concerning the martingale theory of bubbles, delv-
ing into its fundamental assumptions and constraints. In a seminal paper, Delbaen 
& Schachermayer (1994) generalize the fundamental theorem of asset pricing and 
introduce No Free Lunch with Vanishing Risk (NFLVR), thus paving the way for 
the martingale theory of bubbles. Jarrow et al. (2007) review the literature on asset 
price bubbles in complete markets with infinite trading horizons and conclude that, 
under NFLVR no arbitrage conditions, the existence of bubbles implies that markets 
must be incomplete. Cheridito et al. (2007) show that it is necessary and sufficient 
for stocks and bonds to be undominated trading opportunities for an equivalent local 
martingale measure to exist. Heston et al. (2007) provide conditions on the prices of 
options to rule out bubbles in the underlying. Jarrow et al. (2010) extend the NFLVR 
framework by imposing the no dominance (ND) conditions suggested by Merton 
(1973) and allow an infinite number of local martingale measures to coexist, which 
represent the fundamental economic regimes. For each trade, the market chooses 
one of these measures to determine the price. When market fundamentals change, a 
different measure is chosen. While asset prices remain unchanged, derivatives prices 
must change, which implies that stock price bubbles can be inferred from option 
prices.

Jarrow & Protter (2013) investigate perceived positive alpha under incomplete 
information, leading to the illusion of arbitrage opportunities in asset price bubbles. 
Biagini et  al. (2020) extend Jarrow and Protter (2013) and study the relationship 
between private information and perceived bubbles formally, with the potential con-
sequence that asset price bubbles are less likely for assets with less hidden informa-
tion, such as indices, when compared to single stocks.

The utilization of martingale theory in empirical research proves valuable for 
examining financial bubbles. Jarrow & Protter (2010) examine the implications for 
derivatives pricing and detection of asset price bubbles. They suggest three differ-
ent approaches to detect asset price bubbles. The first approach relies on model-
ling the fundamental value of assets directly, leading to the joint hypothesis issues 
described by Camerer (1989). The second approach specifies a stochastic process for 
the underlying which is calibrated against the time series of stock price returns. The 
third approach chooses an option pricing model, and calibrates it against observed 
option prices. The advantage of this approach is that by calibrating the model, it is 
automatically validated. In this paper, we follow the this suggestion by calibrating 
the SABR model to observed out-of-the-money option prices. Jarrow et al. (2011) 
employ martingale-based volatility modelling to detect bubbles. They estimate a 
non-parametric volatility function as proposed by Florens-Zmirou (1993) from past 
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asset prices. They illustrate their method based on four stocks during the dotcom-
bubble and find that the bubble conditions they identify overlap with stocks and 
periods that where previously considered bubbles as well. Obayashi et al. (2016) uti-
lize the first approach proposed by Jarrow et al. (2011) to analyze a large number of 
stocks and examine the lifetime of bubbles. They find that these stock price bubbles 
exhibit surprisingly long lifetimes, typically spanning several months or years. As 
irrational exuberance would typically be short-lived, this points towards the rational-
ity of stock price bubbles. In contrast, we find that bubble conditions in the volatil-
ity surface are typically absorbed within a few days. In conjunction with our other 
findings, this lends some support to the notion that bubbles in option markets are 
predominantly propelled by irrational speculation.

By imposing boundary conditions on option prices at extreme strikes, Jarrow & 
Kwok (2021) identify bubble conditions in the S &P 500 Index and develop a profit-
able momentum trading strategy based on the concept of “riding the bubble to the 
top”, as suggested by Conlon (2004), indicating that martingale defects in option 
prices may have some value for forecasting price returns.

Piiroinen et  al. (2018) develop the martingale defect indicator from the SABR 
model by analytically deriving an expression to describe the magnitude of the defect. 
They analyze the bubble risk of SNAP Inc., Twitter Inc., and Square Inc. in 2017 
and 2018 and show that bubble conditions can be accurately detected by calibrating 
a SABR model to observed option prices. Our empirical investigation relies on this 
indicator due to its straightforward implementation, as well as the extensive research 
on the SABR model, which makes its calibration a well-documented process.

Fusari et al. (2022) exploit the put-call price differential to identify bubble con-
ditions from option prices. By estimating a specifically developed generalized sto-
chastic volatility jump diffusion or G-SVJD model, which admits both martingale 
and strict local martingale representations, to put and call options separately, they 
are able to show that bubbles tend to occur in call options, but not in put options. 
Furthermore, they find that bubbles tend to occur regularly in single stocks, but 
rarely in indexes.

A different approach is proposed by Biagini et al. (2022), who suggest training 
a neural network to recognize whether a smile of call option prices is generated by 
a strict local martingale or a true martingale. The advantage of this approach is its 
independence from model specifications, at the cost of computational complexity.

Asset price bubbles are examined not solely through the lens of martingale theory 
but also via alternative approaches. In our empirical investigation, we are able to 
substantiate some of these findings. Bakshi et al. (2021) analyze VIX futures curves 
and find that volatility is mean-reverting and VIX futures are in backwardation when 
disaster risk is elevated. This provides some empirical backing for the approach 
of Piiroinen et  al. (2018), who identify martingale defects when the correlation 
between stock price and variance level turns positive.

The concept of dark matter in asset pricing models draws a connection to eco-
nomic components that are difficult to measure directly and quantifies its impact 
on model stability, which was formalized by Chen et  al. (2022). Using a sem-
imartingale-based approach, Bakshi et al. (2022) show how to decompose equity 
option risk premiums and examine the dynamics of jumps crossing the strike and 
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local time. Intuitively, our approach identifies bubble conditions in the underlying 
when the correlation of price and volatility is positive, which suggests a possible 
link with the findings of Bakshi et al. (2022), who show that negative premia for 
upside equity risk are consistent with the presence of unspanned risks.

Blocher et  al. (2021) find that short sellers are regularly forced to exit posi-
tions earlier than optimal. In our study, we find that bubble conditions induce 
increased short selling activity, supporting their short squeeze hypothesis. SEC 
(2021) examine market structure and trading activity around the GameStop Inc. 
bubble in January 2021 and find, contrary to common perception at that time, that 
short covering was not the primary driver of the stock price run-up. Instead, the 
primary driver for this specific bubble event were overly optimistic, young, inex-
perienced investors. Observing overoptimistic speculation in the volatility surface 
further corroborates these findings. Mohrschladt & Schneider (2021) link option 
prices with internet search interest and find that retail investors contribute to idio-
syncratic volatility through irrational trades, which are exploited by sophisticated 
market participants in the options market.

3  Theoretical background

In this section we describe the market setting and adapt the approach by Piiroinen 
et  al. (2019) to utilize the SABR model to detect bubble conditions for a large 
data set.

We fix a finite time horizon T > 0 and consider the filtered probability space (
�,F, (Ft)t≥0,ℚ

)
 , where F is the �-field of measurable subsets of � and the filtra-

tion (Ft)t≥0 satisfies the usual conditions (see Protter (2016)). ℚ denotes an equiv-
alent local martingale measure and, by possibly embedding 

(
�,F, (Ft)t≥0

)
 into a 

larger complete market, we can assume that ℚ is also unique. We consider a stock 
price process (St)t≥0 on � with continuous paths ℚ almost surely. Its forward price 
is then given by

for some constant risk free rate r and dividend yield d which might include borrow 
costs. We denote the expectation operator with respect to ℚ by � and, if we want to 
empathize on the current price x = S0 ≥ 0 , we put x into the subscript �x.

We follow Piiroinen et al. (2019) by making the following

Definition 1 The stock price St is said to admit a bubble on [0, T] with respect to ℚ if 
the discounted process

is a strict local martingale on [0, T] with respect to ℚ . The normalized martingale 
defect is defined as

Ft = Ste
(r−d)t,

Ste
−(r−d)t
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The intuition behind this definition is as follows: the asset is currently in the state of 
a bubble if the current market value of the asset S0 exceeds its fundamental value which 
is the discounted expectation of its future value e−rT�[ST ].

From the definition of a (local) martingale it is immediate that our martingale defect 
indicator satisfies dx(T) ≥ 0 with equality if and only if our model does not admit a 
bubble.

It shall be noted that dx not only tells us whether or not an asset is currently in bubble 
condition but also, due to its domain dx ∈ [0, 1] , quantifies the strength of the bubble: 
the closer dx is to one, the stronger the indication of a bubble event.

We use the results in Piiroinen et al. (2019) to calculate an analytical expression for 
dx from market data. More precisely, we use available option prices for a given asset, 
calibrate a SABR model to this data and use the resulting parameters to compute our 
bubble indicator. This reduces our problem of estimating dx to the problem of calibrat-
ing a volatility smile and leads to a particularly simple representation of dx in the model 
parameters. We start by giving a rough overview over the model.

The stochastic volatility model introduced by Hagan et al. (2002), commonly known 
as stochastic alpha, beta, rho or SABR model, is an extension of the CEV model and is 
determined by the SDEs

where �0 = � and

The elasticity parameter � ∈ [0, 1] controls the general behaviour of the model and 
is usually not calibrated but chosen in advance. Following (Piiroinen et  al., 2019, 
Theorem 3.1), we set � = 1 , which is the log-normal case. � ≥ 0 is the volatility-of-
volatility and � ∈ [−1, 1] is the correlation between the driving Brownian motions 
Z1 and Z2.

The advantage of the SABR model in this context is that it admits a strict local 
martingale representation, unlike many traditionally used option pricing models. The 
SABR model therefore implies that stock price bubbles can possibly exist. Fusari 
et al. (2022) examine this issue in further detail, and contribute a more sophisticated 
approach based on their G-SVJD model.

For notational clarity and without loss of generality, from now on, interest rates and 
dividend are omitted and assumed to be zero. Piiroinen et al. (2019) then show that 
under SABR dynamics the martingale defect takes the particularly simple form

dx(T) ∶= 1 −
e(d−r)T

x
�x[ST ].

(1)dFt = �tF
�

t dZ
1

t

(2)d�t = ��tdZ
2

t
,

(3)⟨dZ1

t
dZ2

t
⟩ = �t.

(4)A(�, �, �) ∶= lim
T→∞

dx(T) = 1 − e
−2��

� .
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This is Piiroinen et al., (2018, Equation 15).
Since both volatility � and volatility-of-volatility � must be strictly positive, A can 

only become positive when the correlation between stock price and volatility � is 
positive as well. Intuitively, this means that options get more expensive as the stock 
experiences positive returns, hinting at optimistic risk-seeking preferences.

4  Data and calibration

Our analysis covers the constituents of the MSCI USA Investible Market Index, 
which attempts to cover all large-, mid- and small-cap US stocks.2 We analyze daily 
close prices of all put and call options on all stocks within the universe within a 
set of restrictions outlined below. In total, 2576 stocks are considered, and our uni-
verse is updated monthly to match the index. Constituent information is provided by 
MSCI. The option data is provided by OptionMetrics, begins on January 1st, 1996, 
and ends on April 25th, 2022, spanning 6758 trading days. The options dataset con-
sists of daily close prices for approximately 51.3 million option contracts on all ana-
lyzed stocks. Stocks for which no options have been traded are excluded from the 
analysis. The option price data is matched to price data of the underlying price and 
to linearly interpolated U.S. treasury rates. Dividends are assumed to be a constant 
yield, based on the last known dividend payment. American options are evaluated 
using the approach suggested by Cox et al. (1979). Average daily trading volume, 
outstanding short interest, and institutional holdings data have been provided by 
Bloomberg.

Options with a daily trading volume of less than 100 contracts are excluded for 
that day. We write ki = log

(
Ki

FT

)
 for the log moneyness. Our calibration only consid-

ers out-of-the-money options, as they tend to be more liquid than in-the-money 
options. This entails using call implied volatilities for strikes below the forward 
price and put implied volatilities for strikes exceeding the forward price. As shown 
by Fusari et al. (2022), we will not be able to see a bubble solely based on the put 
options. However, it is worth highlighting that the martingale defect indicator, as it 
is fundamentally derived from the parameter � , effectively models the skew of the 
volatility smile. In the SABR model, this parameter characterizes the ’difference’ 
between the call and put wings of the smile. In this regard, our approach is consist-
ent with Fusari et al. (2022). We further restrict the calibration to options with abso-
lute log-moneyness |k| < 0.5.

This leaves us with a number of pairs (Ki, �i)i of strikes and implied volatilities 
for the remaining call or put options. The remaining contracts are enumerated by 
running variable i = 1,… ,N , where N is the total number of remaining contracts. If 
N < 5 , the stock is excluded from the analysis for that day. On average, each calibra-
tion is fitted against 6.12 contracts. This number increases over time as more con-
tracts are traded. Figure 4 in the appendix provides the average number of available 
contracts per calibration over time.

2 MSCI (2017) documents the index’ construction.
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As the volatility process 2 is not mean reverting, the SABR model is better suited 
for short expirations (Gatheral, 2006, Ch. 7). Our analysis is therefore two-fold. We 
calibrate the model against the full option price surface and refer to these results 
as full surface. We repeat the analysis, but restrict the calibration of the model to 
options with 1 month to expiration. For the one-month-tenor, contracts are selected 
to have a remaining lifetime between 25 and 35 days. We do not use shorter expira-
tions, because the relative volume has shifted within the time frame of our analysis. 
Options with short maturities became more popular within the time frame of our 
analysis.3

We calibrate the model to the remaining option mid prices, which we convert to 
implied volatilities. Our minimization problem is

where ��,�,�(⋅) is the SABR implied volatility function for given parameters �, �, � 
and fixed time to maturity T.

We implement the suggestion of Le Floc’h & Kennedy (2014), who present an 
explicit initial guess procedure to generate an initial parameter guess for the mini-
mization problem. This initial guess is the starting point for a Nelder & Mead 
(1965)-minimization of equation 5. We repeat this procedure for both the 1-month 
tenor as well as the full surface calibration daily for every stock under consideration. 
In order to avoid redundancy, we occasionally present only results for the full sur-
face in the text body and move one-month tenor to Appendix E, where appropriate.

To validate the model calibration, we calculate the at-the-money SABR-model 
implied volatility of the root mean squared error on a 30 day horizon RMSEIV . In 
total, we have 1.4 million calibrations with a mean RMSEIV of 0.97% . Of these, 
56722 calibrations ( 4.05% of all calibrations) show a martingale defect A(⋅) ≥ 0.05 , 
with a mean RMSEIV of 1.99% . Appendix A provides full results.

From these calibrated parameters � , � and � , the martingale defect A(⋅) follows 
from Eq. 4. Due to the large number of stocks in our study and the computational 
effort required for Markov Chain Monte Carlo methods, we forgo obtaining a distri-
bution for the martingale defect as suggested by Piiroinen et al. (2019).

For our analysis across a large number of stocks we must convert the martin-
gale defect indicator A(�, �, �) of Eq. 5 into a binary signal I(A(⋅)) ∈ {0, 1} . A posi-
tive signal marks an event in our study, which is specific to a single stock and date, 

(5)minimize
�,�,�

n∑

i=1

(
��,�,�(ki) − �i

)2

(6)
s.t.

� ≥ 0

(7)𝜈 > 0

(8)� ∈ (−1, 1)

3 Appendix C shows that the relative proportion of contracts shifts to the short end from 2012 onward.
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at which the option price surface for this stock indicates bubble conditions for its 
underlying.

By design, the defect indicator be will greater when the volatility surface defor-
mation is more pronounced, and very small values indicate a low bubble intensity 
(Piiroinen et  al., 2018). To reduce the noise created by the faintest bubble condi-
tions, we impose a minimum threshold Amin on the indicator.4 Since the martingale 
defect indicator is based on the correlation � , which is normalized and thus time 
independent, we pick a static threshold Amin.

Asset price bubbles are in part defined by their persistence. We utilize this prop-
erty to fortify our analysis against calibration issues which may not have been dealt 
with by the calibration procedure described in section 4. By requiring A(⋅) to remain 
above a threshold for a number of consecutive days p, the total number of events 
is reduced, but the accuracy of the signal can be improved. Section 5.1 examines 
defect persistence in more detail. Days where we cannot find a sufficiently accurate 
calibration are excluded, and break persistence. Our indicator is thus defined as

To prevent counting the same fundamental event multiple times, event periods must 
be non-overlapping. Where SABR model is calibrated against the full surface, the 
indicator is denoted Ifull , and where it is calibrated against the 1-month tenor of 
the volatility surface, it is denoted I1m . Figure 1 provides the numbers of events for 
various thresholds and persistence requirements. Increasing these two requirements 
reduces the total number of events considered as well as the number of affected 
companies. We will further examine this in the next section. Calibrating the SABR 
model against the full surface generates a larger number of bubble events because 
the number of datapoints for each calibration is larger, and calibration errors are 
less likely. Consequently, persistent events are less likely to be interrupted by mis-
calibrations. Since calibrating the SABR model on the full volatility surface tends 
to smooth out anomalies in the low-DTE part, we expect to see more false negatives 
(Type II errors) compared to the 1-month tenor.

Most events do not persist over multiple days, which will be examined in detail in 
the next section. While we observe 18526 events with a persistence of 1 day above 
a threshold of Amin = 0.01 based on the 1-month tenor, this count reduces to 3505 
after 2 days, and to 1339 after 3 days. Based on the full surface, we observe 38798 
events with a persistence of 1 day, which reduces to 6731 after two, and 2477 after 
3 days. The effect of Amin is similar. For Amin = 0.05 , only 9983 events remain for 
the 1-month tenor, while 21087 events remain on the full surface calibration. The 
effect is even stronger for Amin = 0.1 , with 6659 and 14602 events remaining before 
applying a persistence requirement. A threshold of Amin = 0.05 with a minimum per-
sistence of 2 trading days appears to strike a balance between sensitivity and noise, 
and are chosen for the remaining analysis. With these requirements, 1518 events 

(9)It =

{
1, if At−n ≥ Amin∀ n ∈ [0,… , p]

0, otherwise.

4 Appendix A provides summary statistics of all events conditional on the martingale defect level.
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remain for the 1-month tenor, and 2745 events remain when calibrating against the 
full surface.

5  Analysis

In order to investigate the relationship between martingale defects derived from the 
volatility surface and bubble conditions in the underlying, we assess return distribu-
tion and trading activity before and after detecting a martingale defect event. Fur-
thermore, we examine the relative occurrence of martingale defects over time.

For each event, we consider data during a certain number of trading days before 
and after the event, which we refer to as event period tevent . To assess whether an 
effect is persistent, we provide results for multiple event periods

Since bubbles are hard to quantify, we analyze a variety of metrics to establish a 
tight-knit connection between martingale defect and bubble conditions in the under-
lying. Since it is the foundation of our analysis, we begin with the reaction of the 
option market to a martingale defect event. Assessing the persistence of martingale 
defects in the volatility surface gauges the ability of the options market to arbitrage 
irregularities away. Next, we analyze whether the distribution of returns changes 
after observing a defect. Using the number of actively traded option contracts, we 
find that the martingale defect coincides with increasing option trading activity for 
this underlying. We also find that outstanding short interest increases. By examin-
ing institutional ownership, we find that institutional traders tend to reduce their 
exposure to stocks in suspected bubble conditions, leaving the participation to retail 
investors.

tevent ∈ {21, 63, 84, 105, 126, 189, 252}.

Fig. 1  Relative frequencies of persistence of martingale defect events in trading days. Martingale defects 
based on SABR calibration of the 1-month tenor as well as the full volatility surface with thresholds 
A
min

= {0.01, 0.05, 0.1}
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These four characteristics are naturally time-varying, and might exhibit time 
dependent variation that are unrelated to stock price bubbles. To avoid confounding 
the bubble-induced change with natural variation over time, we study a set of pla-
cebo-events and compare the results to identified bubble events. We generate these 
placebo events on a per-stock basis by shuffling the dates at which martingale defect 
events have been identified. This way, the number of events per stock remains identi-
cal, but the timing of the events is randomized. The events are restricted to the time 
period where each stock is a constituent of the IMI Index. We repeat the analysis on 
this set of placebo events and report the results for comparison.

Finally, we investigate bubble events over time across the entire market and find 
that martingale defects tend to occur more often in good times, and rarely in bad 
times.

5.1  Defect persistence

The martingale defect fundamentally indicates an irrational deformation of the vola-
tility surface.

Figure  1 shows the frequency of event persistence for all incidences with 
Amin ∈ {0.01, 0.05, 0.1} . The majority of events occurs for only 1 day, and frequency 
drops quickly. The longest event in the 1-month tenor analysis was Sundial Growers 
Inc., where a defect was indicated for 14 consecutive days in May 2021. In the full 
surface analysis, Myriad Genetics Inc. indicated a defect for 20 consecutive days 
in December 2007. PubMatic Inc. also indicated a 20 day defect in June 2021. All 
three companies are well-known as meme stocks on various retail trading investing 
websites.5

The short persistence of the martingale defect hints at the efficiency of options 
markets to absorb bubble conditions in the underlying into a rational shape of the 
volatility surface. It does not imply that irrational exuberance in the underlying is 
not persistent, but rather that options markets can accommodate and return to effi-
ciency quickly. Obayashi et al. (2016) analyze the lifetime of financial bubbles by 
modelling the distribution of the underlying directly, and find that bubble conditions 
in the underlying persist on the scale of years.

Appendix D presents more details on the effect of threshold and persistence on 
the number of observed events, as well as the number of affected companies.

5.2  Change of distribution

To confirm the connection between martingale defect events in the volatility sur-
face and the price process of the underlying, we analyze whether the distribution 
of historical log returns changes with an event.

To assess whether the martingale defect indicator can reliably identify a change 
in the distribution of log-returns of the underlying, we employ the two-sample 
Kolmogorov–Smirnov (K–S)-test. The Null-hypothesis is that the distribution of 

5 For example, see Sun (2021), Smith (2007), Farooque (2022).
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log-returns during a period of given length before and after an event is identi-
cal. The interpretation of this would be that observing a martingale defect in the 
volatility surface does not coincide with a changing log-return distribution of the 
underlying, and is purely an anomaly in the volatility surface.

More specifically, for given underlying and length of event period tevent > 0 and 
for each date t0 where we observe a martingale defect signal, we perform a K–S-
test between the two sets {rt0−1,… rt0−tevent} and {rt0+1,… rt0+tevent} , where we denote 
by

the return on day ti.
For each event, we compute the K–S test statistic and p-value. Finally, we calcu-

late the 1%-quantile and 5%-quantile of all p-values, which we report for a range of 
event periods in Table 1. These quantiles represent the proportion of events where 
the Null hypothesis that distribution of log-returns before and after an event is equal 
can be rejected with a confidence level of 1% and 5% respectively. By comparing 
different time frames, we gain insight into the persistence of changes. It should be 
emphasized that, regardless of the event period length, the martingale defect events 
are identical. The number of events changes only where event periods overlap or 
extend beyond the available data.

We observe that, for both the 1%-quantile and 5%-quantile, a longer event period 
increases the proportion of significantly different return distributions. For an event 
period of 252 trading days, almost 60% of events reject the null hypothesis of an 
unchanged log-return distribution with a confidence of 95% . Even though the 
options market absorbs the martingale defect within a few days, these findings imply 
that it hints at a permanent change of the underlying’s price process for a large 

(10)ri = log

(
Sti

Sti−1

)

Table 1  Aggregate results of two-sample Kolmogorov–Smirnov tests to compare empirical daily return 
distributions of the underlying before and after an event

Results on the left side are based on the calibration of the SABR model against the 1-month tenor of 
the volatility surface, while results on the right side are based on the full surface. Event Period tevent pro-
vides the number of trading days before and after an event under consideration. N refers to the number of 
events after discarding stocks with insufficient data and overlapping event periods. p ≤ 5% and p ≤ 1% 
report the quantile of p-values in the sample. The corresponding results of the placebo study with shuf-
fled event dates are shown in parentheses

Period tevent One-Month Tenor Full Surface

N p ≤ 1% p ≤ 5% N p ≤ 1% p ≤ 5%

63 867 12.31% (1.29%) 22.99% (3.28%) 1402 11.40% (0.94%) 21.65% (2.18%)
84 860 17.25% (1.86%) 28.80% (5.71%) 1393 15.24% (2.50%) 26.44% (6.82%)
105 836 21.09% (2.31%) 33.81% (8.29%) 1371 19.97% (2.44%) 31.94% (10.26%)
126 820 23.93% (4.29%) 37.00% (14.54%) 1345 23.56% (3.50%) 36.61% (11.71%)
189 793 36.69% (4.07%) 50.55% (15.03%) 1310 35.14% (3.81%) 48.58% (13.36%)
252 739 47.07% (10.57%) 59.66% (22.05%) 1245 47.71% (8.47%) 59.20% (20.06%)
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proportion of events. A longer event period increases the number of datapoints and 
reduces uncertainty, therefore longer event periods are inherently more reliable. It is 
therefore not clear whether the effect is immediate or takes some time to manifest.

In our placebo study, we shuffle the identified event dates for each stock in 
order to randomize the timing component. The randomized sample shows a highly 
reduced proportion of significant changes in the return distribution, indicating that 
this distribution is indeed changing over time but to a generally lesser degree than 
when only accounting for bubble events.

5.3  Option trading activity

In order to examine the relationship between a martingale defect in the volatility sur-
face and option trading activity, we analyze whether the number of contracts avail-
able remains constant before and after an event.

For each day, we calculate the number of traded options contracts for the underly-
ing, while applying the liquidity requirements laid out in Sect. 4. For a pre-specified 
event window length, we calculate the average number of daily available contracts 
before and after each event. We calculate results counting contracts on either the full 
surface or restrict ourselves to the 1-month tenor. This is independent of the tenor 
selection for the calibration. Over the time period of our sample, the number of daily 
actively traded options has grown considerably. Appendix B provides a short over-
view of option trading activity over time. Therefore, the number of active contracts 
after an event should be expected to be larger than before, just due to the length 
of the event period. To compensate for this positive trend in the number of avail-
able options we adjust the observations downwards by calculating the total growth 
in options contracts during estimation and event period and distributing it equally 
across stocks. This implies (falsely) that option trading activity grows at a constant 
rate during the event period, and is equally distributed amongst securities. The effect 
of this adjustment is on average 0.0014 contracts for an event period of 10 days, 
and 0.0354 contracts for an event period of 1 year, and is negligible. The remaining 
difference can therefore be attributed to the martingale defect event. The number of 
contracts is consistently higher after an event. We evaluate this effect using a paired 
t-test, i.e. we compare the number of options contracts before and after an event on 
a per-event basis. Results are reported in Table 2. The resulting p-values are consist-
ently very small across event periods, indicating that the increased number of traded 
contracts is significant. The mean difference grows with longer event windows and 
does not rebound after a while. This implies that the cause for the increase is not a 
sudden price movement, but rather a persistent effect created by increased options 
trading activity for the affected underlying. The observed effect is much stronger 
when considering all available options, not only those within the 1-month tenor, 
implying that the market prefers either shorter or longer options for bubble specula-
tion. As the number of daily available contracts has grown continuously over time, 
the placebo study shows a similar pattern over time, but for a much smaller propor-
tion of events.
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5.4  Short interest ratio

Jarrow (1992) develops the martingale defect theory of bubbles to investigate price 
manipulation by large traders. One of his examples involves cornering the market 
and squeezing the holders of short positions to pay any price arbitrarily chosen by 
the large trader.6 He provides two reasons why this might happen. First, short traders 
are unable to observe the large traders purchases, thus not realize that the market is 
cornered. Second, that the cornering is technical in nature, i.e. that the short position 
exceeds the floating supply of shares, and the large traders position exceeds the float.

To investigate this hypothesis, we analyze the short interest in a stock relative 
to its available supply before and after observing a bubble event. As a proxy for 
freely available shares we use Average Daily Trading Volume (ADTV) as reported by 
the exchange. We divide outstanding short interest by ADTV, which is commonly 
referred to as days-to-cover ratio, as it measures the number of days would take 
short sellers buying the entire trading volume to cover their short positions.

For each stock, we retrieve daily outstanding short interest and ADTV, and cal-
culate the days-to-cover ratio. Stocks where either is missing are removed from the 
sample. Individual missing values are filled forward. For each event, we calculate 
t-statistics of the days-to-cover ratio before and after the event over a certain number 
of trading days in the same fashion as above. We repeat this analysis for multiple 
event periods from 21 to 252 days. The results of the t-tests are aggregated.

Table  3 provides results based on the events generated by the I1m . The mean 
t-statistic is positive for all event periods, with the largest value being 2.185 for the 
shortest event period, and ranging between 0.647 and 0.998 for event periods longer 
than 3 months. This implies that the short interest rises after a martingale defect is 
observed in the volatility smile. It rises, on average, by roughly one standard devia-
tion of the days-to-cover ratio. For an event period of 21 days, 75.2% of events have 
a p-value of less than 5% , and 66.7% have a p-value of less than 1% . With longer 
event periods, and more daily observations per event, the proportion of significant 
test results rises. The longest event period shows the largest proportion of highly 
significant results, with 88.0% of events have a p-value of less than 5% , and 83.7% 
have a p-value of less than 1% . Appendix E provides similar results based on I1m in 
Table 9.

After a martingale defect in the volatility surface, the market appears to be 
increasing short positions. For a very large proportion of events, this is highly sig-
nificant. The effect is largest in the short term and levels off after a few months, but 
remains elevated for at least a year. This seems to confirm that the martingale defect 
can reveal bubble conditions in the underlying, and that some traders have similar 
perceptions. Similar to the previous results, the placebo study shows a similar pat-
tern of growth with longer event periods, but with significantly reduced proportions. 
While short interest seems to be on an upward trend long event periods, martingale 
defects provide a clear indication of distinct increases in short interest.

6 Specifically, example 2 in Jarrow (1992).
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5.5  Institutional ownership

In recent years, retail traders have shown increased interest in option markets (Desh-
pande et al., 2020). We investigate whether martingale defects spike the interest of 
retail investors by analyzing the percentage of shares held by institutions before and 
after an event.

Our data is matched to institutional holdings data provided by Bloomberg, which 
includes the holdings of institutions of type 13F, US and International Mutual 
Funds, US Insurance Companies, and aggregate institutional stake holdings.7. This 
data is available on a weekly basis since March 2010. Stocks where either is missing 
are removed from the sample. Individual missing values are filled forward. For each 
event, we calculate t-statistics of institutional ownership before and after the event 
over a certain number of trading days. We repeat this analysis for multiple event 
periods from 21 to 252 days. The results of the t-tests are aggregated.

Table  10 provides results based on the events generated by the Ifull . The mean 
t-statistic is negative for all event periods, however, no clear trend is apparent. It 
ranges from −0.102 to −0.479 . In a similar pattern as before, with longer event 
periods, and more daily observations per event, the proportion of significant test 
results rises. The longest event period shows the largest proportion of highly signifi-
cant results, with 64.7% of events have a p-value of less than 5% , and 63.1% have a 
p-value of less than 1% . Appendix E provides similar results based on I1m in Table 4.

We find strong evidence that after a martingale defect in the volatility surface the 
percentage of institutional ownership tends to be lower than before. Our analysis 
does not reveal whether this is due to institutional investors reducing their position 

Table 3  Aggregate results for t-tests of outstanding short interest divided by ADTV before and after a 
martingale defect event, based on the calibration of the SABR model against the 1-month tenor of the 
volatility surface

Event Period tevent provides the number of trading days before and after an event under consideration. N 
refers to the number of events after discarding stocks with insufficient data and overlapping event peri-
ods. Mean t-statistic reports the mean of the t-statistic of all events. p ≤ 5% and p ≤ 1% report the quan-
tile of p-values in the sample. The corresponding results of the placebo study with shuffled event dates 
are shown in parentheses

Period tevent N t-statistics p-values

Mean p ≤ 5% p ≤ 1%

21 683 1.454 75.3% (51.7%) 66.3% (47.0%)
63 670 1.331 79.6% (59.4%) 74.0% (61.0%)
84 661 1.069 80.8% (57.9%) 75.2% (55.7%)
105 635 0.614 81.6% (70.6%) 76.9% (62.1%)
126 623 0.260 82.7% (74.8%) 78.2% (63.9%)
189 594 0.336 85.2% (70.9%) 80.1% (67.1%)
252 538 0.528 86.6% (78.2%) 82.1% (74.2%)

7 For further information, see Bloomberg Terminal FLDS DS211.
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in response to bubble conditions, or due to increased retail trader demand, and is 
limited to ownership of the stock, not the options. In addition, the placebo study 
reveals an overarching trend of slowly increasing non-institutional market partici-
pation. Proportions of significant changes are lower throughout, with a larger gap 
for shorter event periods, indicating that martingale defects mark distinct short-term 
changes in institutional ownership even under long-term trends.

5.6  Bubbles as market‑wide phenomenon

We will now analyze whether the occurrence of martingale defects between stocks 
are related to each other by examining temporal clustering of events. We show 
that bubbles happen predominantly in good times, and occurrence of bubbles falls 
sharply when the overall market corrects.

For our entire stock universe, we count daily bubble events. During the time span of 
our analysis, option trading activity has grown.8 The number of observed events grows 
in line with this trend. This does not indicate that more assets are in bubble conditions, 
rather that these conditions are now tradeable in the options market. Figure 2 reports 
the total count of daily events as a fraction of daily total liquid contracts with the inten-
tion of compensating this development for our analysis. For the 1-month tenor, we use 
the total number of traded contracts within that tenor as denominator. Since the number 
of active contracts fluctuates daily, we use 252 trading day rolling averages for normali-
zation. As a proxy for overall market performance, we use the S &P 500 Index.

Relative occurrence of bubbles based on both the full surface and the 1-month tenor 
follow a very similar pattern. Over time, the relative number of bubble events fluctuates 
between zero and 0.25% of daily liquid options. From 1997 to 2000, the SPX Index had 
positive performance, and the relative occurrence of martingale defects was highest in 
the entire sample. In the recession of 2001, the relative number of martingale defects 
was lower and less clustered, showing waning optimism. After a short rebound, the 
number of bubble events increases and is more clustered than during the drawdown. 
A further market correction until June 2003 disappoints the optimism, and a relatively 
bubble-free period commences until January 2004. As market performance is positive, 
the relative number of bubbles increases steadily, reaching a peak at the market top in 
2007. During the recession, the number of bubble events falls quickly, and there are no 
bubble events between November 2008 and February 2009. From 2009 to 2012, SPX 
Index performance is positive, and the number of martingale defects grows. As a reac-
tion to the 2012 correction, the number of events collapses, but continues to be elevated 
until 2016, after which it slightly levels off. At the beginning of 2020, the number of 
bubble events reaches 0.5% , which it has not reached since 2014. During the Covid-19 
market correction, the number of events drops off sharply but rises quickly afterwards 
and remains elevated throughout the pandemic.

Overall, we observe that long periods of positive returns lead to a rise in martin-
gale defect events in single stock volatility surfaces. By construction, our indicator 

8 Appendix B examines the number of daily liquid option contracts over time.
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is elevated when—in the parameters of the SABR model—stock price and volatility 
become positively correlated. Our observation implies that single stock options are 
used by the market to express strong optimism, and that option prices are higher 
than rational. These results support the hypothesis that asset price bubbles are an 
expression of overly optimistic expectations.

From 2016 on, the number of actively traded contracts begins to rise at a larger 
rate than before. The number of martingale defect events in relation to the total num-
ber of contracts is only very slightly lower. This implies that the multitude of single 
stocks with active option markets now absorb the gambling needs of the market. The 
bottom panel of Fig. 2 compares relative occurrence of bubble events of the 1-month 
tenor to those of the entire surface. A negative value means that bubble events are 
more prevalent in the one-month tenor, while a positive value means the opposite. 
While monthly contracts appear to be preferred for trading bubble events for the 
majority of our sample, trading activity shifted with the introduction of weekly and 
bi-weekly options. The expansion of options markets into shorter expirations and 
smaller companies does not appear to have created more bubble events, but redis-
tributed them among a larger number of smaller securities.

6  Conclusion

This paper provides a large scale study of martingale defects in the volatility surface 
and changes in stock price dynamics and trading reaction. We find that martingale 
defects tend to coincide with other bubble characteristics.

We operationalize the detection of stock price bubbles by calibrating a SABR 
model to observed option prices, simplifying the approach suggested by Piiroinen 

Table 4  Aggregate results for t-tests of the percentage of institutional ownership before and after a mar-
tingale defect event, based on the calibration of the SABR model against the 1-month tenor of the volatil-
ity surface

Event Period tevent provides the number of trading days before and after an event under consideration. N 
refers to the number of events after discarding stocks with insufficient data and overlapping event peri-
ods. Mean t-statistic reports the mean of the t-statistic of all events. p ≤ 5% and p ≤ 1% report the quan-
tile of p-values in the sample. The corresponding results of the placebo study with shuffled event dates 
are shown in parentheses

Period tevent N t-statistics p-values

Mean p ≤ 5% p ≤ 1%

21 880 −0.585 62.0% (43.1%) 54.5% (34.2%)
63 867 −1.031 68.1% (49.1%) 64.8% (43.8%)
84 860 −0.193 67.4% (48.6%) 65.3% (49.4%)
105 836 −0.178 67.3% (57.4%) 65.4% (54.0%)
126 820 −0.671 67.4% (58.5%) 65.9% (56.4%)
189 793 −0.326 66.5% (57.4%) 64.5% (53.5%)
252 739 −0.088 66.9% (59.6%) 65.3% (56.8%)
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et al. (2018). Using a large stock and option price dataset, we calculate a daily bub-
ble indicator for the constituents of the MSCI IMI Index.

The volatility surface admits bubble conditions regularly, but rarely for longer 
than 3 days, which implies that the options market is generally efficient absorbing 
bubble conditions.

For each identified martingale defect event, we analyze changes of the return dis-
tribution, option trading activity, short interest, and institutional ownership. For all 
four factors, we find that a large proportion changes significantly after bubble condi-
tions are observed. These effects appear to be permanent. By comparing our results 
with those obtained from a set of event dates that have been randomly shuffled, we 
affirm the reliability of martingale defects in identifying bubble conditions. This 

Fig. 2  Number of daily bubble events divided by the number of daily actively traded options contracts 
for the entire stock universe. Top panel shows the performance of the S &P 500 Index. Second panel 
shows the relative occurrence of bubble events based on the full surface. Third panel shows the relative 
occurrence of bubbles based on the 1-month tenor. Bottom panel compares relative occurrences from 
panel two and three, smoothed by 252 trading days
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shows that our methodology successfully avoids any potential confounding of stock 
price bubbles with naturally changing characteristics.

The empirical distribution of returns is significantly different for almost 60% of 
events after 1 year. Option trading activity, measured by actively traded contracts of 
any maturity, remains significantly elevated a year after an event for about 55% of 
events. Short interest remains significantly increased after a year for 88% of events. 
Institutional ownership decreases significantly within the year after 67% of events. 
Our results become more robust as the event period increases, and all examined 
effects appear to be permanent.

Our market-wide analysis of bubble events over time reveals that martingale 
defects in the volatility surface tend to occur in periods of positive market returns. 

Table 5  Descriptive statistics of calibration results.

The first two rows provide the number of valid calibrations in the sample, as well as their proportions. 
The second set of rows provides statistics of calibration RSMEIV . The third set of rows provides statistics 
of the resulting martingale defect indicator A(⋅) . The columns provide statistic conditional on wether A(⋅) 
exceeds a given threshold [0.0, 0.01, 0.05, 0.1]

Full sample A(⋅) > 0 A(⋅) ≥ 0.01 A(⋅) ≥ 0.05 A(⋅) ≥ 0.1

Count Total 1,402,230 159,309 109,414 56,722 39,270

% of total 11.36% 7.80% 4.05% 2.80%

RSME
IV

Mean 0.0097 0.0192 0.0182 0.0199 0.0219
Min 0.0000 0.0000 0.0000 0.0000 0.0000
25% quantile 0.0000 0.0000 0.0000 0.0000 0.0017
50% quantile 0.0027 0.0080 0.0072 0.0094 0.0116
75% quantile 0.0102 0.0255 0.0238 0.0259 0.0280
Max 0.2121 0.2121 0.2121 0.2121 0.2121

Defect A(⋅) Mean 0.0172 0.1511 0.2181 0.3978 0.5432
Min 0.0000 0.0000 0.0100 0.0500 0.1000
25% quantile 0.0000 0.0071 0.0228 0.0857 0.1743
50% quantile 0.0000 0.0245 0.0535 0.1886 0.4281
75% quantile 0.0000 0.0973 0.2038 0.8419 1.0000
Max 1.0000 1.0000 1.0000 1.0000 1.0000

Fig. 3  Daily active options contracts for the SPX Index as well as our entire universe
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Market corrections lead to an immediate collapse of the number of martingale 
defects across all stocks. As option contract availability increased over time, martin-
gale defects are distributed across more stocks, but the relative occurrence of defects 
remains somewhat constant. The implication is that overoptimistic speculation is a 
constant element of markets, and that better availability of options can help distrib-
ute this irrational force across a larger number of underlyings.

The advantages of the presented simplified implementation of the martingale 
defect indicator make it a promising tool for future research. Of particular interest 
might be the correlation between the analyzed factors, the distribution of option 
trading activity between retail traders and institutional investors to isolate the pro-
pensity to take more risk than intended, and the particular effect of options with a 
lifetime of less than 2 weeks. Furthermore, our results might be of interest to reg-
ulators to help balance option availability, since an overabundance of options for 
small stocks might permit easier market cornering and thus manipulation, negatively 
affecting market stability and trust in institutions.

A Calibration results

Table 5 provides descriptive statistics of calibration results. The large sample size 
leads to a small number of calibrations with above-desirable RSMEIV figures, but for 
the vast majority of observations these results indicate adequate fit. Comparing cali-
bration results for the full sample with those observations where the resulting A(⋅) 
exceeds a set of thresholds confirms that the calibration achieves acceptable fit most 
of the time even under martingale defect conditions.

Fig. 4  Average daily number of contracts available for calibration. For visual clarity, the plot shows 
1 year rolling averages

Table 6  Tenor classifications

Tenor 1 week 2 weeks 1 month 3 months 6 months

DTE 2 − 7 days 12 − 16 days 25 − 35 days 80 − 100 days 165 − 195 days
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Fig. 5  Proportions of traded option contracts by tenor. For visual clarity, the plot shows 1 year rolling 
averages

B Total trading activity over time

Within the timespan of our dataset, option trading activity has increased. The 
number of underlyings with actively traded options as well as the number of 
options per underlying have both grown. This development propagates into our 
results, since more underlyings with active option trading implies a higher num-
ber of possible events. To measure and compensate for this trend, we use the total 
number of actively traded option contracts as proxy for market-wide option trad-
ing activity. We employ the same liquidity requirements as laid out in Sect.  4. 
Figure 3 provides the total number of daily active contracts for the SPX Index as 
well as the complete securities universe. As activity is fluctuating strongly from 
day to day, we use 252 trading day rolling averages. Figure 4 provides the average 
number of contracts available for the calibration of the SABR model.

C Relative trading activity over time by maturity

Appendix B examines the total number of actively traded contracts. In this sec-
tion, we will examine the proportional trading activity by maturity, as far as it 
is relevant to our analysis. We separate contracts by their remaining lifetime in 
days. These slices are commonly called tenors. Table  6 provides a list of tenor 
definitions.

Figure  5 provides an overview of the development of available option con-
tracts within a tenor. It shows the number of contracts within a range of days-to-
maturity relative to the total number of contracts available. We apply the liquidity 
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requirements laid out in Sect.  4. As the periods are not exactly adjacent, the sum 
of the relative proportions may be less than 100% . Each day, all available option 
contracts are sorted by days to expiration, and their proportions are compared over 
time. The proportion of available options with a lifetime of less than 1 month begins 
to increase in 2012. The proportion of options with a lifetime of approximately 1 
month remains very roughly constant, while the proportion of longer options 
declines from 2012 onward. After 2012, the proportion of available contracts has 
increased strongly. The proportion of the one-month tenor is relatively stable, but 
has increased as well. Overall, the market appears to have embraced the availability 
of low-DTE contracts. This fundamental shift in the dataset motivates us to provide 
our findings based on the 1 month tenor as well as the full surface.

D Persistence

Table 7 provides details on the results discussed in Sect. 4. Furthermore, the number 
of affected stocks is disclosed.

E Results for full surface

Table 8 complements table 2 and provides results based on the full surface.
Table 9 complements Table 3 and provides results based on the full surface.
Table 10 complements Table 4 and provides results based on the full surface.

Table 7  Number of events 
and number of unique affected 
companies for different 
persistence and threshold 
configurations

The left half provides results based on options with approximately 
one month to expiration, the right half provides results based on 
the entire volatility surface. The upper row provides the number of 
events in total, the lower row shows across how many companies 
these events are spread out. A persistence of 1 day means that the 
indicator must be above threshold for one day, i.e. there is no persis-
tence requirement

By Threshold By Persistence

1 Month tenor Full surface

1 day 2 days 3 days 1 day 2 days 3 days

0.01 Events 18526 3505 1339 38798 6731 2477
Companies 1591 820 475 1923 1193 717

0.05 Events 9983 1518 529 21087 2745 856
Companies 1391 527 249 1806 806 382

0.10 Events 6659 823 274 14602 1519 390
Companies 1203 353 149 1674 561 217
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Table 9  Aggregate results for 
t-tests of outstanding short 
interest divided by ADTV 
before and after a martingale 
defect event, based on the 
calibration of the SABR model 
against the full volatility surface

Event Period tevent provides the number of trading days before and 
after an event under consideration. N refers to the number of events 
after discarding stocks with insufficient data and overlapping event 
periods. Mean t-statistic reports the mean of the t-statistic of all 
events. p ≤ 5% and p ≤ 1% report the quantile of p-values in the 
sample. The corresponding results of the placebo study with shuffled 
event dates are shown in parentheses

Period tevent N t-statistics p-values

Mean p ≤ 5% p ≤ 1%

21 1060 2.185 75.2% (46.5%) 66.7% (38.5%)
63 1042 1.250 77.9% (64.4%) 71.8% (64.2%)
84 1033 0.979 80.8% (73.7%) 75.4% (63.1%)
105 1010 0.867 81.0% (60.9%) 75.7% (48.1%)
126 985 0.647 83.1% (79.5%) 77.9% (66.5%)
189 950 0.879 86.3% (73.8%) 81.5% (63.5%)
252 884 0.998 88.0% (75.1%) 83.7% (63.2%)

Table 10  Aggregate results 
for t-tests of the percentage of 
institutional ownership before 
and after a martingale defect 
event, based on the calibration 
of the SABR model against the 
full volatility surface

Event Period tevent provides the number of trading days before and 
after an event under consideration. N refers to the number of events 
after discarding stocks with insufficient data and overlapping event 
periods. Mean t-statistic reports the mean of the t-statistic of all 
events. p ≤ 5% and p ≤ 1% report the quantile of p-values in the 
sample. The corresponding results of the placebo study with shuffled 
event dates are shown in parentheses

Period tevent N t-statistics p-values

Mean p ≤ 5% p ≤ 1%

21 1060 −0.264 59.0% (43.1%) 52.9% (34.2%)
63 1042 −0.479 65.1% (49.1%) 62.9% (43.8%)
84 1033 −0.176 64.5% (48.6%) 62.0% (49.4%)
105 1010 −0.319 63.8% (57.4%) 61.4% (54.0%)
126 985 −0.244 64.0% (58.5%) 61.7% (56.4%)
189 950 −0.308 65.4% (57.4%) 63.3% (53.5%)
252 884 −0.102 64.7% (59.6%) 63.1% (56.8%)
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