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Abstract
In order to estimate volatility-dependent probability weighting functions, we obtain 
risk neutral and physical densities from the Pan (J Financ Econ 63(1):3–50, 2002. 
https:// doi. org/ 10. 1016/ S0304- 405X(01) 00088-5) stochastic volatility and jumps 
model. Across volatility levels, we find pronounced inverse S-shapes, i.e. small 
probabilities are overweighted, and probability weighting almost monotonically 
increases in volatility, indicating higher skewness preferences and crash aversion in 
volatile market environments. Moreover, by estimating probabilistic risk attitudes, 
equivalent to the share of risk aversion related to probability weighting, we shed fur-
ther light on the pricing kernel puzzle. While pricing kernels estimated from the Pan 
(J Financ Econ 63(1):3–50, 2002. https:// doi. org/ 10. 1016/ S0304- 405X(01) 00088-5) 
model display the typical U-shape as documented in the literature, pricing kernels—
net of probability weighting—are strictly monotonically decreasing and thus in 
line with economic theory. Equivalently, we find risk aversion to be positive across 
wealth levels. Our results are robust to alternative maturities, wealth percentiles, 
alternative functional forms, a nonparametric empirical setting and variations of 
the Pan (J Financ Econ 63(1):3–50, 2002. https:// doi. org/ 10. 1016/ S0304- 405X(01) 
00088-5) coefficient estimates.

Keywords Volatility · Probability weighting · Pricing kernel puzzle · Risk 
preferences

JEL Classification G11 · G14 · G41

1 Introduction

According to Jackwerth (2000), risk neutral probabilities are tantamount to the 
product of physical probabilities and a risk aversion adjustment. The pricing kernel, 
defined as the ratio of risk neutral and physical probabilities, is expected to mono-
tonically decrease in wealth and distinctly reflects risk aversion. However, several 
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studies find U-shaped pricing kernels (the pricing kernel puzzle) or, equivalently, 
negative episodes of risk aversion functions (the risk aversion puzzle). We attrib-
ute this finding to investors who overweight small probabilities for tail events and 
therefore distort the pricing kernel. Moreover, it has long been suggested that time-
varying risk aversion or, put differently, a time-varying price of risk, is key to under-
stand asset prices. For example, Fama (2014) notes that both risk and investors’ risk 
aversion are likely to change over time, resulting in a time-varying equity premium. 
In line with this, we refer time variation in pricing kernels and risk aversion to a 
volatility-dependent and hence time-varying degree of probability weighting.

Our study thus contributes to two strands of literature: time-varying risk prefer-
ences and the pricing kernel puzzle. First, we obtain risk neutral and physical densi-
ties from the Pan (2002) stochastic volatility and jumps model and find a strikingly 
robust relationship between volatility and Cumulative Prospect Theory (CPT)’s 
probability weighting parameter gamma (see Tversky and Kahneman, 1992). Across 
volatility levels, the probability weighting function exhibits an inverse S-shape, i.e. 
small (large) probabilities are overweighted (underweighted) and gamma (probabil-
ity weighting) almost monotonically decreases (increases) in volatility, suggesting 
that skewness preferences and crash aversion are more pronounced in volatile mar-
kets. Second, consistent with our hypothesis, it is the probabilistic risk attitude that 
produces the puzzling U-shape of the pricing kernel. In other words, pricing kernels 
net of probability weighting are strictly monotonically decreasing and therefore in 
line with economic theory. As a direct result, risk aversion functions net of probabil-
ity weighting are positive throughout wealth levels.

In a seminal study, Campbell and Cochrane (1999) propose a habit-formation 
model with slowly moving external habits and find both risk aversion and mar-
ginal utility to countercyclically depend on the business cycle. Moreover, the model 
explains several asset pricing phenomena, including the procyclical (countercycli-
cal) variation of stock prices (volatility). Brandt and Wang (2003) extend the habit-
formation model by including a process for aggregate risk aversion and also find risk 
preferences to vary. They conclude their results to be consistent with both, an agent 
irrationally fearing unexpected inflation, and an economy with heterogeneous pref-
erences where risk aversion varies with the cross-sectional distribution of wealth. 
In a more recent study, Guiso et al. (2018) analyze portfolio data and repeated sur-
veys of Italian bank clients in 2007 and 2009. After the financial crisis, they find 
both qualitative and quantitative measures of risk aversion to increase substantially. 
As potential mechanisms behind their findings, the authors suggest fear of losses 
and overweighting of salient payoffs. Hence, it seems reasonable to explain time-
varying risk preferences from a behavioral perspective. In this sense, Barberis et al. 
(2001) propose a prospect theory framework in which, in contrast to Campbell and 
Cochrane (1999), changes in risk aversion are caused by changes in the level of the 
stock market. They find that, after recent run-ups, agents are less risk averse because 
prior gains cushion subsequent losses. In comparison to consumption-based mod-
els, the level of risk aversion is smaller but still explains several market character-
istics. While Barberis et al. (2001) restrict their model to reference-point dependent 
valuation and loss aversion, several recent studies highlight the importance of CPT’s 
probability weighting component. Kliger and Levy (2009) assess the performance of 
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expected utility (EUT), rank-dependent expected utility (RDEU), and CPT models 
and find that probability weighting functions exhibit a pronounced inverse S-shape.1 
Moreover, when including probability weighting, the model fit improves substan-
tially. Polkovnichenko and Zhao (2013) and Dierkes et al. (2022) estimate option-
implied probability weighting functions and find them to substantially vary over 
time. Notably, variation is not erratic, but systematic. For example, Kilka and Weber 
(2001) find in the lab that probability weighting is more pronounced when agents 
are less confident in assessing the uncertainty of a decision situation – much like in 
a high volatility regime, especially when volatility drives up jump intensity. In line 
with this finding, Liu et al. (2005) propose that risk and rare events should have an 
impact on risk preferences and Chabi-Yo et al. (2008) relate changes in preferences 
and beliefs to regime shifts in state variables.2 Moreover, Gao et al. (2021) show that 
investors dislike high-skewness securities in low volatility regimes, while Polko-
vnichenko and Zhao (2013) note that periods with less inverse S-shaped probability 
weighting functions tend to coincide with these regimes.

We capture these findings by estimating volatility-dependent probability weight-
ing functions from the Pan (2002) stochastic volatility and jumps model. We choose 
simulations within this model as it offers the advantage that, in addition to the wealth 
level, it includes the volatility as an additional state variable which we can change 
counterfactually (with all else being equal). Compare this to an empirical setting 
where changes in volatility can only be observed over time and it is impossible to 
rule out unobserved factors other than volatility as drivers of probability weighting. 
Furthermore, note that probability weighting is particularly sensitive to estimates of 
the tails of physical and risk neutral distributions. The structural approach of the 
Pan (2002) model, calibrated to the options market and S&P 500 returns, avoids the 
noise of nonparametric tail estimates. Nevertheless, in a robustness check, we also 
refer to nonparametric estimates of physical and risk neutral probabilities and find 
our model-based results to hold in a fully nonparametric setting.

Following Ziegler (2007), we first obtain risk neutral and physical densities for 
a wide range of volatilities. Thereafter, we follow Dierkes et al. (2022) and employ 
these densities to estimate the probability weighting parameter gamma for any given 
volatility. Even though the Pan (2002) model was never designed to match CPT 
preferences, our results are strikingly robust and correspond to earlier studies. In 
our main specification, we normalize the return horizon to one year and find gamma 
(probability weighting) to almost monotonically decrease (increase) in volatility. For 
example, with the two-parameter specification of Prelec (1998), gammas vary from 
roughly 0.99 for very low volatilities to 0.70 for high volatilities. Results for the two-
parameter linear-in-log-odds (0.90–0.68) and the one-parameter Tversky and Kah-
neman (1992) function (0.95–0.82) are similar. Most importantly, we find the aver-
age probability weighting function over volatilities to display a pronounced inverse 

1 See also Camerer and Ho (1994), Tversky and Fox (1995), Wu and Gonzalez (1996), Gonzalez and 
Wu (1999), Abdellaoui (2000), and Bleichrodt and Pinto (2000).
2 See also Bliss and Panigirtzoglou (2004) and Brown &Jackwerth (2012).
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S-shape. These findings are robust to alternative return horizons (three months and 
six months) and a nonparametric empirical setting.

As risk aversion is closely connected to the pricing kernel, we can directly 
transfer our estimation approach to the pricing kernel puzzle. In a seminal study, 
Jackwerth (2000) recovers risk aversion from risk neutral and physical probabili-
ties, estimated via S&P 500 options and stock returns, respectively.3 While he finds 
risk aversion to be positive and decreasing in wealth prior to the 1987 stock market 
crash, risk aversion is partially negative and increasing in the post-crash era. Among 
others, the puzzle has been confirmed by Ait-Sahalia and Lo (2000) and Rosenberg 
and Engle (2002). Moreover, Beare and Schmidt (2016) and Golubev et al. (2014) 
perform statistical tests and reject pricing kernel monotonicity for the S&P 500 and 
the German DAX, respectively.4 In the recent past, several studies proposed possible 
solutions to the pricing kernel puzzle. For example, Bakshi et al. (2010) assume het-
erogeneity among investors, with pessimists short selling the market portfolio and 
thus driving increases in the pricing kernel. Ziegler (2007) estimates risk aversion 
functions from the Pan (2002) model and finds them to be monotonically decreasing 
but negative for gains (implying an increasing pricing kernel). Although assuming 
heterogeneous investors might solve the problem, the degree of heterogeneity would 
need to be implausibly large. Further possible solutions include state-dependence 
in fundamentals (Chabi-Yo et al., 2008) and the inclusion of higher moment prefer-
ences (Chabi-Yo, 2012; Cuesdeanu and Jackwerth, 2018). Hens and Reichlin (2013) 
show that if at least one of the three standard assumptions (market completeness, 
risk aversion, correct beliefs) is violated, the pricing kernel may have increasing 
parts. Most importantly, they find the combination of distorted beliefs (i.e. probabil-
ity weighting) and misestimation of probabilities to be a possible solution.5 Hence, 
it appears reasonable that applying behavioral insights may solve the pricing kernel 
puzzle.

In this sense, Baele et al. (2019) develop an asset pricing model with CPT prefer-
ences (based on Barberis et al., 2001) and find the implied CPT pricing kernel to 
display a pronounced U-shape (implying partially negative risk aversion functions). 
In line with Barberis et al. (2016), they conclude that the key driver of their results 
is the probability weighting component. Polkovnichenko and Zhao (2013) and 
Dierkes et al. (2022) estimate pricing kernels to study the time variation in probabil-
ity weighting functions. While their results are generally consistent with a U-shaped 
pricing kernel, they rather focus on the time variation in probability weighting and 
its asset pricing implications.

3 To obtain densities, Jackwerth (2000) employs a variation of Jackwerth and Rubinstein (1996)’s 
approach.
4 Bliss and Panigirtzoglou (2004) find risk aversion estimates to be positive. However, they restrict the 
pricing kernel by assuming power or exponential utility functions. Linn et  al. (2018) argue that prior 
pricing kernel estimates are inconsistent because they compare forward looking risk neutral densities to 
backward looking physical densities. While they find a monotonically decreasing pricing kernel, Cues-
deanu and Jackwerth (2018) attribute this result to their specific estimation procedure.
5 However, they need to assume a slightly negative expected mean return.
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By adjusting model-implied pricing kernels and risk aversion functions for prob-
ability weighting, we shed further light on the role of probability weighting as 
an important driver of the pricing kernel puzzle. Since Benzoni et  al. (2011) and 
Babaoğlu et  al. (2018) find pricing kernels to be variance-dependent, we again 
employ the Pan (2002) stochastic volatility and jumps model and estimate proba-
bilistic risk attitudes, equivalent to the share of risk aversion related to probability 
weighting.6 We add to the results of previous studies in two ways. First, we pro-
vide direct measures of pricing kernels and risk aversion functions, and second, we 
explicitly relate the pricing kernel puzzle to the probabilistic risk attitude. Before 
accounting for probability weighting, we find the average pricing kernel to exhibit a 
strong U-shape, implying episodes of negative risk aversion (consistent with Ziegler, 
2007). However, since the probabilistic risk attitude is strikingly close to the risk 
aversion estimated from Pan (2002), the adjusted risk aversion function is consist-
ently positive and the corresponding pricing kernel is monotonically decreasing in 
wealth. Our results are robust to alternative return horizons (3 and 6 months), wealth 
percentiles, an alternative functional assumption, a numerical approach to estimate 
the probabilistic risk attitude, and variations of the Pan (2002) coefficient estimates. 
We therefore conclude that probability weighting intensifies in volatile market envi-
ronments and plays an important role in explaining the pricing kernel puzzle.

2  Methodology

2.1  Estimation of probability weights

Our framework closely follows Dierkes et al. (2022) who introduce a fully nonpara-
metric estimation procedure to derive time-varying probability weighting functions. 
For the sake of brevity, we therefore limit this section to the most important compo-
nents and refer to their study for more details.

By assuming a representative agent who derives utility from the market return S 
and has both a monotonically increasing and twice continuously differentiable utility 
function u and probability weighting function w, we yield the pricing kernel, net of 
probability weighting, as

where fQ(ST ) and fP(ST ) denote the risk neutral and physical densities with corre-
sponding distribution functions FQ and FP . Moreover, u�(ST ) and u�(St) are marginal 
utilities with respect to the future and current stock price, respectively, and � is a 
normalizing constant. Note that the adjusted pricing kernel varies with the physical 
distribution, FP(ST ) , if w is not linear. In case of linear w, however, Eq. (1) collapses 

(1)
fQ(ST )

fP(ST ) ⋅ w
�(1 − FP(ST ))

= �
u�(ST )

u�(St)
,

6 Further studies that relate the pricing kernel and risk aversion to volatility are Christoffersen et  al. 
(2013), Song and Xiu (2016), and Linn et al. (2018).
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to the standard pricing kernel, i.e. the ratio of risk neutral to physical probabilities. 
Taking the logarithm on both sides of Eq. (1) then gives

which is equivalent to

Adding the term with the probability weighting function on both sides and multiply-
ing by −1 then yields

Next, we take the derivative with respect to ST . Noting that the first term on the right 
hand side is a constant, we obtain the absolute risk aversion function, ARA(ST ) , with 
probability weighting

where ARAu(ST ) denotes the absolute risk aversion after accounting for probability 
weighting, i.e. the level of risk aversion only associated with the utility function u. 
In contrast, ARAw(ST ) describes the probabilistic risk attitude and reflects the level 
of risk aversion originating from the probability weighting function w.7 Moreover, 
Eq.  (5) reveals that without probability weighting, the probabilistic risk attitude 
becomes zero and absolute risk aversion boils down to Jackwerth (2000)’s Eq. (4). 
An expression of relative risk aversion is easily derived by multiplying both sides of 
Eq. (5) with ST (see e.g. Eq. (5.3) in Ait-Sahalia and Lo, 2000):

where RRAu and RRAw denote the relative risk aversion associated with u and w, 
respectively. In case of the typically observed inverse S-shaped probability weight-
ing function, the probabilistic risk attitude is positive (and decreasing) for low 

(2)log

(

fQ(ST )

fP(ST ) ⋅ w
�(1 − FP(ST ))

)

= log

(

�
u�(ST )

u�(St)

)

,

(3)

log(fQ(ST )) − log(fP(ST )) − log
(

w�(1 − FP(ST ))
)

= log

(

�

u�(St)

)

+ log(u�(ST )).

(4)

log(fP(ST )) − log(fQ(ST )) = − log

(

�

u�(St)

)

− log(u�(ST )) − log
(

w�(1 − FP(ST ))
)

.

(5)

f �
P
(ST )

fP(ST )
−

f �
Q
(ST )

fQ(ST )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

ARA(ST )

= −
u��(ST )

u�(ST )
⏟⏞⏟⏞⏟
ARAu(ST )

+
w��(1 − FP(ST ))

w�(1 − FP(ST ))
fP(ST )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ARAw(ST )

,

(6)
ST

f �
P
(ST )

fP(ST )
− ST

f �
Q
(ST )

fQ(ST )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

RRA(ST )

= −ST
u��(ST )

u�(ST )
⏟⏞⏞⏞⏟⏞⏞⏞⏟

RRAu(ST )

+ ST
w��(1 − FP(ST ))

w�(1 − FP(ST ))
fP(ST )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
RRAw(ST )

,

7 By assuming an increasing probability weighting function, the denominator of the probabilistic risk 
attitude is always positive. See also Polkovnichenko and Zhao (2013) and Quiggin (1993).



7

1 3

Volatility‑dependent probability weighting and the dynamics…

wealth levels and negative for high wealth levels. Thus, convex episodes of the prob-
ability weighting function increase the observed risk aversion ( ARAw(ST ) > 0 or 
equivalently RRAw(ST ) > 0 ), while concave parts reduce it ( ARAw(ST ) < 0 or equiv-
alently RRAw(ST ) < 0 ). For example, consider the probability weighting function 
w(p) = p� . Although it does not feature the typically observed inverse-S shape, it 
serves as an easy to understand example since it holds w��(p)∕w�(p) =

�−1

p
 , so that

For � ∈ (0, 1) , this probability weighting function is strictly concave for all p ∈ [0, 1] 
and RRAw is negative for all wealth levels. Thus, relative risk aversion RRA  is 
reduced by RRAw . Intuitively, this probability weighting function transfers probabil-
ity mass to higher wealth states and, thus, renders the representative investor more 
optimistic or risk prone relative to risk aversion RRAu (associated only with the 
investor’s utility function). If 𝛾 > 1 , however, then w is convex and RRAw is positive 
for all wealth levels and risk aversion increases because the investor behaves as if 
there is more probability mass moved to bad wealth states. As for the utility func-
tion, the constant relative risk aversion utility function u(ST ) , for example, implies 
that RRAu(ST ) is a constant c and ARAu(ST ) =

c

ST
.

To identify u and w, we do not assume any parametric form of u and w. Instead, we 
utilize the fact that probabilistic risk attitude, expressed by RRAw(ST ) or ARAw(ST ) , 
varies with the physical distribution, FP(ST ) , while ARAu(ST ) remains constant. 
Assuming two different physical distributions, FP1

(ST ) and FP2
(ST ) , merging � and 

u�(St) to a single normalizing constant � , and dropping the time index T for notional 
convenience then yields

Since we are able to estimate risk neutral and physical densities from the Pan (2002) 
stochastic volatility and jumps model (see Sect. 2.2), Eq. (7) leaves w′ as the only 
unknown. To estimate w′ , and thus w, we impose the so-called single-crossing 
assumption: Suppose that P1 has more mass in the tails than P2 , such that for some 
value Ŝ it holds

Then, Eq.  (7) constitutes two Delay Differential Equations (DDE) of neutral type, 
one DDE for all S ≤ Ŝ and one DDE for all S ≥ Ŝ . More precisely, on both subsets, 
today’s derivative of the yet unknown function w depends on its derivative in the 
past. As a result, we are able to identify w�(1 − FP2

(S)) at ‘time point’ 1 − FP2
(S) 

when ‘time point’ 1 − FP1
(S) lies in the past and w�(1 − FP1

(S)) is already known 

RRAw(ST ) = ST ⋅ fP(ST )
� − 1

1 − FP(ST )
.

(7)w�(1 − FP2
(S)) =

fQ2
(S)

fQ1
(S)

fP1
(S)

fP2
(S)

�1

�2
⋅ w�(1 − FP1

(S)), ∀ S.

FP1
(S) ≥ FP2

(S) ∀ S ≤ Ŝ,

FP1
(S) ≤ FP2

(S) ∀ S ≥ Ŝ,

FP1
(Ŝ) = FP2

(Ŝ).
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(and vice versa). Consequently, we can solve the DDE for w′ on the two intervals 
[0, Ŝ] and [Ŝ,∞) and finally, with w(0) = 0 and w(1) = 1 , we identify w.

However, while Dierkes et al. (2022) estimate risk neutral and physical densities 
from empirically observed option prices, we derive densities from the Pan (2002) 
model, which we describe in Sect. 2.2. In Sect. 2.3, we provide more details on the 
estimation of the DDE and outline differences with respect to Dierkes et al. (2022).

2.2  The Pan Pan (2002) model

We obtain risk neutral and physical densities from the Pan (2002) stochastic vola-
tility and jumps model as it offers the advantage that, besides the wealth level, it 
includes the volatility as an additional state variable, which we can change coun-
terfactually. Note that our analyses are difficult to execute in a nonparametric 
setup, since—for any given cross-section of option prices—we would not be able 
to change the volatility state counterfactually without the model framework. At the 
same time, the Pan (2002) model is rich enough to explain relevant characteristics of 
S&P 500 index returns and options written on them. Moreover, it provides closed-
form expressions for the transforms of both fP(ST ) and fQ(ST ) , making it appealing 
for our estimation technique. Given that Polkovnichenko and Zhao (2013) casually 
observe S-shaped probability weighting functions during times of low volatility and 
Kilka and Weber (2001) find probability weighting to be more pronounced when 
agents are less confident in assessing a decision situation, we expect volatility to be 
an important determinant of probability weighting.8

Pan (2002) fits an elaborate model, based on Bates (2000), to S&P 500 option 
prices and time series of the underlying. More specifically, she proposes a model 
with stochastic volatility and jumps in the underlying’s price process, where jump 
intensity is correlated with the current level of volatility. The model determines 
three risk premia: a diffusive (Brownian) risk premium, a volatility risk premium, 
and a state-dependent jump risk premium. Under the physical measure, Pan (2002) 
proposes the following process for the underlying index price St and variance Vt

where the riskless rate rt and the dividend yield qt both follow a square-root process 
with long-run means r̄ and q̄ , mean reversion rates �r and �q , and volatility coef-
ficients �r and �q , respectively.9 Random innovations are introduced by two inde-
pendent standard Brownian motions, dB1

t
 and dB2

t
 , and a poisson (pure-jump) pro-

cess, Zt , whose jump intensity is �Vt and which is thus perfectly correlated with 

(8)dSt = [rt − qt + �SVt + �Vt(� − �∗)]Stdt +
√

VtStdB
1
t
+ dZt − �St�Vtdt,

(9)dVt = 𝜅v(v̄ − Vt)dt + 𝜎v
√

Vt

�

𝜌dB1
t
+
√

1 − 𝜌2dB2
t

�

,

8 In addition to that, several studies relate volatility to the pricing kernel puzzle or risk aversion, e.g. 
Bliss and Panigirtzoglou (2004), Ziegler (2007), and Linn et al. (2018).
9 See Pan (2002)’s Equation (2.3).



9

1 3

Volatility‑dependent probability weighting and the dynamics…

the instantaneous variance Vt . The logarithm of the relative jump size, conditional 
on a jump occurring, is normally distributed with mean �J = ln(1 + �) − �2

J
∕2 and 

variance �2
J
 . Thus, the last term of Eq.  (8), �St�Vtdt , compensates for the instan-

taneous change in expected index returns introduced by the pure-jump process Zt . 
The premia for Brownian return risks and jump risks are estimated by �SVt and 
�Vt(� − �∗) , respectively. The variance process is modeled by Eq. (9) and follows a 
square-root process with long-run mean v̄ , mean reversion rate �v , and volatility �v . 
The Brownian shocks to price St and variance Vt are correlated with constant coef-
ficient � . Under the risk neutral measure, the dynamics of St and Vt evolve according 
to

where rt and qt are assumed to behave as under the physical measure. dB1
t
(Q) , 

dB2
t
(Q) , and ZQ

t  are two independent standard Brownian motions and the poisson 
(pure-jump) process under the risk neutral measure, respectively. Again, jump inten-
sity is defined by �Vt and the logarithm of the jump size, conditional on a jump 
occurring, is normally distributed with mean �∗

J
= ln(1 + �∗) − �2

J
∕2 and var-

iance �2
J
 . The variance process in Eq.  (11) is defined by the mean reversion rate 

�∗
v
= �v − �v , the long-run mean v̄∗ = 𝜅vv̄∕𝜅

∗
v
 , and the volatility coefficient �v . The 

volatility risk premium is estimated by �vVt.
Pan (2002) estimates parameters with an ‘implied-state’ generalized method of 

moments (IS-GMM) approach and joint spot and option data from the Berkeley 
Options Data Base.10 We provide an overview of the coefficient estimates in Table 1 
and employ these to obtain risk neutral and physical densities via Fourier inversion. 
Thereby, we closely follow Ziegler (2007) and refer to Appendix A for more details.

An obvious concern of our approach is that Pan (2002) applies option data from 
1989 to 1996 and the market environment has changed thereafter. In Sect. 4.1, we 
therefore provide an out-of-sample test by implementing a nonparametric empirical 
setting for the period from 1996 to 2020. Moreover, in Sect. 4.4 we re-run our simu-
lation with alternative parameters. In both cases, we find our results to hold.

2.3  Differentiation from earlier studies

Although the economic theory underlying our analysis is very similar to that of 
Dierkes et  al. (2022), the actual implementation differs significantly. While they 
conduct a fully nonparametric approach and obtain risk neutral and physical den-
sities from option prices, we rely on the Pan (2002) model. Our analysis is thus 
entirely simulation-based. A simulation within this model has clear advantages over 

(10)dSt = (rt − qt)Stdt +
√

VtStdB
1
t
(Q) + dZ

Q
t − �∗St�Vtdt,

(11)dVt = [𝜅v(v̄ − Vt) + 𝜂vVt]dt + 𝜎v
√

Vt

�

𝜌dB1
t
(Q) +

√

1 − 𝜌2dB2
t
(Q)

�

,

10 We refer to Pan (2002) for more details.
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a nonparametric empirical study. In an empirical study, a variation of volatility can 
only be observed over time. However, as time proceeds there might also be changes 
in uncontrolled factors, potentially driving probability weighting, or equivalently, 
probabilistic risk attitudes. Any empirical study will thus have difficulties in ruling 
out unobserved variables which drive probability weighting and, coincidentally, cor-
relate with volatility. For example, volatility and, say, sentiment might have changed 
from month t to month t + 1 , alongside probability weighting. Then is it difficult 
to cleanly link the change in probability weighting to the change in volatility. In 
our present simulation study, based on Pan (2002), we are able to change volatility 
and, importantly, volatility alone. Furthermore, since probability weighting affects 
the tails of the underlying’s distribution, empirical studies need reliable estimates of 
those tails. Nonparametric estimates of extreme tails, however, might be contami-
nated by far out of the money options’ illiquidity. The structural nature of a realisti-
cally calibrated option pricing model, such as Pan (2002), avoids these pitfalls. Nev-
ertheless, it is reassuring that when we analyze empirical estimates of probability 
weighting and correlate it with empirically observed volatility, we find results to be 
consistent with our simulation results (see Sect. 4.1).

To solve the DDE introduced in Sect. 2.1, Dierkes et al. (2022) employ different 
S&P 500 maturities.11 By repeating this approach each month, they estimate a time 
series of probability weighting functions. We adjust their approach by assuming 
different levels of volatilities. More specifically, we solve the DDE for volatilities, 
vt =

√

Vt , from 0.01 to 0.60 by choosing two adjacent volatility levels, e.g. vt = 0.10 
and vt + 0.01 = 0.11 . We thus provide a cross-section of probability weighting func-
tions, which enables us to investigate the relationship between probability weighting 
and volatilities.

2.4  Fitting probability weighting functions

Given that we have estimated nonparametric probability weights according to 
Sects. 2.1 through 2.3, we now have to fit these weights to parametric functions. To 
do so, we make use of three different functional forms: the two-parameter Prelec 
(1998) function, the two-parameter linear-in-log-odds function (Tversky and Fox, 
1995; Bleichrodt and Pinto, 2000), and the one-parameter Tversky and Kahneman 
(1992) function, as defined by Eqs. (12), (13), and (14), respectively.

(12)w(p) = e−�(− log(p))� ,

(13)w(p) =
�p�

�p� + (1 − p)�
,

11 We refer to their study for more details. See also Dierkes (2013) who was the first to introduce the 
elicitation procedure described above.
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where 𝛾 < 1 implies overweighting of small probabilities and the typical inverse 
S-shape. We estimate � and � by fitting Eqs.  (12) and (13) with linear regressions 
according to

on the interval p ∈ {0.01, 0.02,… , 0.99} , while Eq.  (14) is fitted with non-linear 
least squares. � denotes the residuals.

3  Results

3.1  Implied probability weighting functions

In this section, we report results for the main specification of our study, character-
ized by a return horizon of one year and stochastic volatilities ranging from 0.01 to 
0.60. However, in Sect. 4, we show that our results extend to return horizons of three 
and six months.

In order to estimate implied probability weighting functions, we first obtain phys-
ical and risk neutral probabilities according to Sect. 2.2. Figure 1 illustrates the cor-
responding densities (Panel A) and distribution functions (Panel B) across wealth 
levels (averaged over volatilities). Dashed lines correspond to 95% point-wise con-
fidence intervals. By construction, our results are very similar to those of Ziegler 
(2007). This is, the average physical density is located to the right of the risk neutral 
density and exhibits a more pronounced peak (at a wealth level of 1.13). However, in 
contrast to Ziegler (2007), we find both densities to be more dispersed and attribute 
this finding to a different choice of volatilities. While we average over a large set of 
volatilities, Ziegler (2007)’s results are based on five rather low volatilities, ranging 
from roughly 0.097–0.145.12

In Fig. 2, we illustrate the estimated probability weighting parameters for each 
volatility level and each of the three functional forms outlined in Sect. 2.4. While 
we also report the elevation parameter delta (Panel B), we follow Polkovnichenko 
and Zhao (2013) and focus our analysis on the curvature parameter gamma (Panel 
A). Although the Pan (2002) model was never designed to match CPT preferences, 
the relationship between volatilities and probability weighting is strikingly clear. For 
all weighting functions, probability weighting is present across volatility levels and 

(14)w(p) =
p�

(p� + (1 − p)� )1∕�
,

(15)log (− log(w(p)) = log(�) + � log (− log(p)) + �,

(16)log

(

w(p)

1 − w(p)

)

= log(�) + � log

(

p

1 − p

)

+ �,

12 Ziegler (2007) bases his choice on the average volatility reported in Pan (2002), i.e. he applies 
v̄ =

√

0.0153± one and two standard errors.
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gammas almost monotonically decrease in volatility. This result is well in line with 
Polkovnichenko and Zhao (2013) and Kilka and Weber (2001). Moreover, it corre-
sponds to Gao et al. (2021) who find that investors dislike high-skewness securities 
when market volatility is low. With the two-parameter Prelec (1998) specification 
( �Prelec ), gamma is about 0.99 for very low volatilities and 0.70 for high volatili-
ties. With respect to the linear-in-log-odds function ( �Log.Odds ), our results are very 
similar as gammas vary from 0.90 to 0.68. In contrast, variation of the Tversky and 
Kahneman (1992) gamma ( �TK92 ) is slightly reduced to 0.95 and 0.82, which is 
likely explained by the fact that the Tversky and Kahneman (1992) function does not 
include the elevation parameter �.

In Table 2, we summarize our results and compare them to parameter estimates 
from previous studies.13 Given that Pan (2002) estimates model parameters from 
the S&P 500, i.e. one of the most liquid and competitive option markets in the 
world, it is not surprising that our gamma estimates are closer to one compared to, 
for example, Bleichrodt and Pinto (2000) and Kliger and Levy (2009). However, 
in line with these studies, we find persistent overweighting of small probabilities, 
indicating a high demand for lottery-like assets and a large potential impact of prob-
ability weighting on the pricing kernel puzzle. Moreover, note that Polkovnichenko 
and Zhao (2013)’s median estimates (0.90–0.95, depending on the assumed level 
of risk aversion) are even closer to one. As a result, the average probability weight-
ing function over volatilities (Panel C) is characterized by a pronounced inverse 
S-shape. According to Polkovnichenko and Zhao (2013), inverse S-shaped prob-
ability weighting functions (including a convex segment) are consistent with non-
monotonicity in pricing kernels and negative risk aversion functions. As we find 
pronounced probability weighting, we expect a strong impact of the probabilistic 
risk attitude on pricing kernels and risk aversion functions.

Apart from that, understanding how probability weighting varies with vola-
tility might help us to understand how negative premia on lottery stocks such as 
IPOs (Green and Hwang, 2012), SEOs (Chen et al., 2019), and OTC stocks (Eraker 
and Ready, 2015) change with aggregate volatility. Moreover, M&A activity 
(Schneider & Spalt, 2017) and the equity share in new issues (Baker & Wurgler, 
2000) might also depend on volatility. To quantify the relationship between prob-
ability weighting and volatility, we fit linear regressions of gamma on volatilities 
( v = 0.01, 0.02,… , 0.60 ) and variances ( v2 = 0.012,… , 0.602 ). We report the 
regression estimates below:

We conclude that there is a distinct and close relationship between volatility and 
probability weighting. In times of market distress (when volatility is high), investors 

�Prelec = 0.977 − 1.181v + 1.253v2, adj. R2 = 0.978

�Log.Odds = 0.889 − 0.861v + 0.892v2, adj. R2 = 0.980

�TK92 = 0.962 − 0.482v + 0.374v2, adj. R2 = 0.989

13 We refer to Stott (2006) for an extensive overview.
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overweight small probabilities and the demand for lottery-like assets increases, 
while during low volatility regimes weighted probabilities are close to their actual 
counterparts.

3.2  The pricing kernel puzzle

According to economic theory, the pricing kernel is defined as the ratio of risk neu-
tral to physical probabilities and should monotonically decrease in wealth. The pric-
ing kernel reflects marginal utility of a representative investor and thus implicitly 
aggregate risk preferences. Put differently, the pricing kernel and risk aversion are 
two sides of the same coin. A locally decreasing (increasing) pricing kernel directly 
implies a locally positive (negative) risk aversion and vice versa. Thus, we can make 
a statement on the pricing kernel either by estimating the pricing kernel itself or by 
retracing it from risk aversion functions.

However, in contrast to economic theory, several recent studies have captured 
(locally) U-shaped pricing kernels or negative episodes of the risk aversion function, 
implying the pricing kernel and risk aversion puzzle, respectively.14 We tackle these 
puzzles by adjusting both pricing kernels and risk aversion functions for probability 
weighting. Note that, although most of our results relate to risk aversion functions, 
we refer to both puzzles by the term ‘pricing kernel puzzle’ as this term is more fre-
quently used in the literature.

In a first step, we investigate the pricing kernel puzzle by calculating both the raw 
pricing kernel, i.e. fQ(ST )∕fP(ST ) , and the pricing kernel net of probability weighting 
(as outlined in Eq. 1). Recall that the adjusted pricing kernel varies with the physical 

Fig. 1  Physical and risk neutral distributions, 1 year horizon. This figure plots physical and risk neutral 
densities (Panel A) and distribution functions (Panel B), estimated from the Pan (2002) stochastic volatil-
ity and jumps model and averaged over volatilities from 0.01 to 0.60. Physical (risk neutral) densities are 
denoted by fP(ST ) ( fQ(ST ) ), whereas physical (risk neutral) distribution functions are denoted by FP(ST ) 
( FQ(ST ) ). We assume a return horizon of 1 year

14 See, for example, Jackwerth (2000), Ait-Sahalia and Lo (2000), and Rosenberg and Engle (2002).
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distribution, FP(ST ) , if the probability weighting function is not linear (i.e. � ≠ 1 ). 
Thus, parts of the probability weighting function with w�(1 − FP(ST )) > 1 reduce the 
pricing kernel, whereas parts with w�(1 − FP(ST )) < 1 increase it. Given our finding 
of pronounced probability weighting across volatilities, we expect the adjusted pric-
ing kernel to monotonically decrease in wealth.

Figure 3 illustrates both the raw and the adjusted pricing kernel, estimated from 
the Pan (2002) model and averaged over volatilities. The return horizon is one year 
and dashed lines correspond to 95% point-wise confidence intervals. Note that, in 
order to obtain a smooth probabilistic risk attitude, we derive w�(1 − FP(ST )) and 
w��(1 − FP(ST )) analytically by fitting the nonparametric probability weights to 
the two-parameter weighting function of Prelec (1998). We obtain an almost per-
fect fit.15 Consistent with the literature, we find the raw pricing kernel (Panel A) to 
exhibit a pronounced global U-Shape, implying a decreasing and partially negative 
risk aversion. Hence, as inferred by Ziegler (2007), the Pan (2002) model alone does 
not lead to well-behaved preferences. However, by providing closed-form expres-
sions for the transforms of both fP(ST ) and fQ(ST ) , the model is well-suited to adjust 
the pricing kernel and risk aversion functions for probability weighting, as outlined 
by Eqs.  (1) and (6). In Panel B, we report results for the adjusted pricing kernel, 

Fig. 2  Implied probability weighting, 1 year horizon. This figure plots results for probability weighting 
functions estimated from the Pan (2002) stochastic volatility and jumps model. We identify probabil-
ity weights nonparametrically and estimate parameter values for three well known probability weight-
ing functions, namely the two-parameter weighting function of Prelec (1998), denoted by Prelec, the 
two-parameter linear-in-log-odds function (as used in Tversky and Fox, 1995; Bleichrodt and Pinto, 
2000), denoted by Log.Odds, and the one-parameter function of Tversky and Kahneman (1992), denoted 
by TK92. While Panel A and Panel B display the curvature parameter � and the elevation parameter � , 
respectively, Panel C shows the probability weighting function averaged over volatilities. We assume a 
return horizon of 1 year

15 Depending on the volatility level, R2 ’s vary from 99.74 to 99.99%. The median estimate is 99.96%.
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which is monotonically decreasing in wealth. Thus, after accounting for probability 
weighting, the pricing kernel is well in line with economic theory and corresponds 
to Baele et al. (2019). To have a closer look at the dynamics driving this result, it 
is natural to investigate risk aversion functions. Fortunately, Eq.  (6) enables us to 
separate risk aversion related to the utility function u (denoted by RRAu ) and risk 
aversion originating from the probability weighting function w (the probabilistic risk 
attitude RRAw).

Figure 4 presents results for a return horizon of 1 year, where risk aversion func-
tions are averaged over volatilities and dashed lines correspond to 95% point-wise 
confidence intervals. In Panel A, we report the relative risk aversion (RRA ) over 
wealth levels. Risk aversion becomes negative for wealth levels greater than 1.32. 
By construction, this finding is consistent with Ziegler (2007) and the raw pricing 
kernel reported in Fig. 3. Moreover, it confirms Campbell and Cochrane (1999) and 
Brandt and Wang (2003): when the business cycle reaches the trough, wealth lev-
els are low and the corresponding risk aversion is high. Panels B and C illustrate 
the adjusted risk aversion, RRAu , and the probabilistic risk attitude, RRAw , respec-
tively. Most importantly, as RRAw closely resembles RRA , the adjusted risk aversion 
is significantly positive and almost constant over wealth levels. Moreover, in accord-
ance with the dynamics outlined in Sect. 2.1, RRAw is positive and decreasing for 
low wealth levels, while it becomes negative for wealth levels greater than 1.10. To 
prove that our findings do not depend on the specific choice of volatilities, we repeat 

Table 2  Typical parameters of probability weighting functions

This table lists parameter estimates of previous studies for different probability weighting functions. We 
report results for the two-parameter weighting function of Prelec (1998), denoted by Prelec, the one- 
and two-parameter linear-in-log-odds function (as used in Tversky and Fox, 1995; Bleichrodt and Pinto, 
2000), denoted by Log.Odds, and the one-parameter function of Tversky and Kahneman (1992), denoted 
by TK92. We outline these functions in Eqs.  (12)–(14), where � denotes the elevation parameter and � 
defines the curvature. The last three rows correspond to our results illustrated in Fig. 2. We report our 
estimates for the lowest and highest volatility (0.01 and 0.60), respectively. Note that Polkovnichenko and 
Zhao (2013) apply the two-parameter Prelec (1998) function, but only report median values for the cur-
vature parameter � . Dierkes et al. (2022) employ the one-parameter linear-in-log-odds function. We only 
report parameters for gains

Functional form Study � �

Prelec Kliger and Levy (2009) 0.60 0.79
Prelec Polkovnichenko and Zhao (2013) 0.90–0.95
Log.Odds Wu and Gonzalez (1996) 0.68 0.84
Log.Odds Tversky and Fox (1995) 0.69 0.77
Log.Odds Bleichrodt and Pinto (2000) 0.55 0.81
Log.Odds Dierkes et al. (2022) 0.89
TK92 Tversky and Kahneman (1992) 0.61
TK92 Wu and Gonzalez (1996) 0.71
TK92 Zeisberger et al. (2012) 0.86–0.87
Prelec This study 0.70–0.99 1.19–1.79
Log.Odds This study 0.68–0.90 0.68–0.83
TK92 This study 0.82–0.95
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our calculations for wealth percentiles instead of levels and present results in Panels 
D to F.16 In fact, the high risk aversion for wealth levels smaller than 0.80 appears 
to be driven by only a few wealth percentiles. However, the probabilistic risk atti-
tude, RRAw , still resembles this behavior very closely, resulting in a positive and 
almost constant adjusted risk aversion, RRAu.17 Again, this is a surprisingly clear 
result given that the Pan (2002) model does not account for probability weighting. 
However, a reasonable concern of our approach is that we calculate w�(1 − FP(ST )) 
and w��(1 − FP(ST )) analytically by fitting the estimated probability weights to the 
weighting function of Prelec (1998). In Sect.  4.3, we accommodate this concern 
by providing results for both an alternative functional assumption and a numerical 
solution.

Our results shed further light on the dynamics driving the pricing kernel puz-
zle. By accounting for probability weighting, we obtain a monotonically decreasing 
pricing kernel and a decreasing but consistently positive risk aversion. Importantly, 
we show that negative episodes of the risk aversion function arise due to the proba-
bilistic risk attitude being negative for high wealth levels. We thus conclude that the 
probabilistic risk attitude is a promising explanation for the pricing kernel puzzle.

4  Robustness

4.1  Empirical relationship between probability weighting and volatility

While our main results are based on the Pan (2002) model and suggest a strongly 
negative relation between gamma and stochastic volatility (i.e. probability weighting 
increases in volatility), it is reasonable to ask whether this relationship extends to a 
nonparametric empirical setting. We therefore follow Dierkes et al. (2022) and uti-
lize a time series of monthly gammas from nonparametric estimates of the physical 
density function fP (via S&P 500 returns) and the risk neutral density fQ (via S&P 
500 option prices).18 To measure volatility, we employ the option-implied volatility 
index VIX which is provided by the Chicago Board Options Exchange (CBOE) on a 
daily basis. To reconcile both time series, we calculate the monthly average of daily 
VIX closing prices. Data on gammas is provided by Dierkes et  al. (2022). Due to 
data availability, we cover a sample period from February 1996 to December 2020. 
As this period directly follows the sample period used in Pan (2002), our robustness 
check also serves as an out-of-sample test.

Most importantly, we once more find a strongly negative relationship. For exam-
ple, a univariate regression of gamma on the VIX yields a negative and highly 

16 For example, low volatilities correspond to almost no probability mass for wealth levels greater than 
1.40.
17 Note that risk aversion estimates become insignificant for the lowest wealth percentiles as there is a 
strongly increased standard deviation.
18 The authors illustrate that their measure closely reflects several stock market episodes like the Dot-
Com bubble, the subprime crisis, and the recent surge in lottery demand in 2020 and 2021 (see their 
Fig. 1). Parameters are fitted based on the two-parameter log-odds function.
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significant coefficient estimate ( t = −10.91 ) and R2 = 28.4% . By including an addi-
tional variance term (as in Sect.  3.1), R2 even increases to 30.1% . Moreover, the 
difference between average gammas in high (0.71) and low volatility regimes (1.06), 
according to a median split of the VIX, is economically important and statistically 
significant at the 1%-level ( t = −8.05).

In Fig. 5, we illustrate the empirical link between probability weighting and vola-
tilities by estimating the lowess-smoothed relationship between gamma and the VIX. 
The range of gammas increases, yet the shape of the smoothed relationship is sur-
prisingly close to that reported in Panel A of Fig  2. First, gamma monotonically 
decreases in volatility, indicating more pronounced probability weighting in volatile 
market environments. Second, gamma strongly decreases for low VIX levels, while 
the slope is less steep for volatilities greater than 0.35, suggesting that the differen-
tial impact is stronger in low volatility periods.19 The empirical relationship is thus 
well in line with Kilka and Weber (2001) and Gao et al. (2021) and confirms our 
simulation-based conclusions.

In Fig. 6, we compare the monthly empirical gammas (Panel A) to a time series 
of gammas implied by our simulation approach (Panel B). In order to estimate 
the model-implied gammas, we employ the monthly average of daily VIX clos-
ing prices and match each value according to the relationship presented in Fig. 2. 

Fig. 3  Average pricing kernel, 1 year horizon. This figure plots pricing kernels estimated from the Pan 
(2002) stochastic volatility and jumps model. Following the literature (e.g. Jackwerth, 2000, Baele et al., 
2019), we estimate the pricing kernel (PK, Panel A) as the ratio of the risk neutral to the physical prob-
abilities, i.e PK = fQ∕fP . In Panel B, we follow Eq. (1) and calculate the pricing kernel, net of probability 
weighting, as PK = fQ(ST )∕fP(ST ) ⋅ w

�(1 − FP(ST )) . We assume a return horizon of 1 year

19 Replacing the average VIX by the maximum VIX per month leads to very similar results. However, 
while maintaining its shape, the lowess-smoothed relationship is, by construction, slightly shifted 
upwards.
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Fig. 4  Implied relative risk aversion, 1 year horizon. This figure plots implied risk aversion functions 
estimated from the Pan (2002) stochastic volatility and jumps model. In Panel A, we report the relative 
risk aversion (RRA ) over wealth levels, averaged across volatilities from 0.01 to 0.60 and calculated as 
RRA = ST

(

F�
P
(ST )∕FP(ST ) − F�

Q
(ST )∕FQ(ST )

)

 . In Panel B, we report RRA  functions adjusted for the 
probabilistic risk attitude (as outlined by Eq.  6), i.e. RRAu = RRA − ST

w�� (1−FP(ST ))

w� (1−FP(ST ))
⋅ fP(ST ) . We derive 

w��(1 − FP(ST )) and w�(1 − FP(ST )) analytically by fitting the nonparametrically estimated probability 
weights to the two-parameter probability weighting function of Prelec (1998). In Panels D to F, we repeat 
all estimations for wealth percentiles instead of wealth levels. We assume a return horizon of 1 year

Fig. 5  Empirical relationship between probability weighting and volatility. This figure plots the lowess-
smoothed empirical relationship between the probability weighting parameter gamma and volatility. 
Gammas are estimated by applying nonparametric estimates of the physical density function fP (via S&P 
500 returns) and the risk neutral density fQ (via S&P 500 option prices), while volatilities are proxied 
by the option-implied volatility index VIX. As data on the VIX is provided on a daily basis, we employ 
the monthly average of daily VIX closing prices. Due to data availability, we cover a sample period from 
February 1996 to December 2020
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While model-implied gammas are, by construction, more condensed, the overall 
shape of both time series is remarkably close. For example, both time series dis-
play lower gammas (i.e. increased probability weighting) during the run-up of the 
DotCom bubble in 1998–2000 and the subprime crisis in 2007–2009. Moreover, 
both estimates nicely reflect increased probability weighting after Covid-19 reached 
global stock markets in March 2020. In line with this, we also find a large correla-
tion between the two time series (54.5%). We therefore consider our results as fur-
ther out-of-sample evidence. Moreover, they are well in line with the literature on 
time-varying risk preferences, e.g. Brandt and Wang (2003), Guiso et al. (2018), and 
Polkovnichenko and Zhao (2013).

While it is reassuring that the empirical results confirm our simulation-based 
findings, note that in such an exercise it is not possible to counterfactually change 
the volatility level with all else being equal. That is, an analysis using several months 
with varying volatility could have been confounded by additional time-varying eco-
nomic state variables. This is why, in our baseline analysis, we opted for model-
based results with volatility as the only additional state variable.

4.2  Alternative maturities

To prove that our results hold for alternative assumptions, we now repeat our 
estimations for return horizons of 6 and 3 months and focus on the most impor-
tant components: volatility-dependent probability weighting and the impact of the 

Fig. 6  Empirical and model-implied probability weighting. Panel A of Fig.  6 plots the time series of 
empirical gammas as described in Fig. 5. Panel B illustrates a time series of model-implied gammas. In 
order to estimate this time series, we employ the monthly average of daily VIX closing prices and match 
each value according to the relationship presented in Fig. 2. Due to data availability, we cover a sample 
period from February 1996 to December 2020
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probabilistic risk attitude on risk aversion functions. However, we report corre-
sponding risk neutral and physical densities as well as pricing kernels in Appendi-
ces B and C, respectively.

Figure 7 illustrates the curvature parameter gamma as well as the average prob-
ability weighting function for return horizons of six and three months, respectively. 
With respect to a return horizon of six months (Panel A), the variation in gamma is 
very similar to our main specification. While �Prelec varies from 1.02 for low volatili-
ties to 0.71 for high volatilities, �Log.Odds decreases from roughly 0.97–0.70. Nota-
bly, �Prelec is rather constant for volatilities between 0.01 and 0.11 and then sharply 
decreases for volatilities between 0.12 and 0.30. Again, the variation in �TK92 is 
somewhat smaller (0.98–0.80) but still reasonable. Most importantly, even though 
gammas seem to be shifted upwards, we still find a strongly negative relationship 
with volatilities. As a result, the average probability weighting function (black solid 
line in Panel C) displays a distinct, but slightly less pronounced, inverse S-shape. 
Panel B reports gammas for a return horizon of three months. �Prelec ( �Log.Odds ) now 
varies from roughly 0.98–0.77 (0.97–0.78), whereas �TK92 ranges from 0.97 to 0.84. 
Again, �Prelec is almost constant for small volatilities and then sharply decreases. 
Although gammas are below one, the overall level is further shifted upwards. As a 
consequence, the average probability weighting function (grey solid line in Panel C) 
is closer to the identity function (dashed line), but still preserves an inverse S-shape. 

Fig. 7  Implied probability weighting, 6 months and 3 months horizon. This figure plots results for prob-
ability weighting functions estimated from the Pan (2002) stochastic volatility and jumps model. We 
identify probability weights nonparametrically and estimate parameter values for three well known prob-
ability weighting functions, namely the two-parameter weighting function of Prelec (1998), denoted by 
Prelec, the two-parameter linear-in-log-odds function (as used in Tversky and Fox, 1995; Bleichrodt and 
Pinto, 2000), denoted by Log.Odds, and the one-parameter function of Tversky and Kahneman (1992), 
denoted by TK92. While Panel A and Panel B display the curvature parameter � for a return horizon of 
six and three months, respectively, Panel C shows the probability weighting function averaged over vola-
tilities. We assume a return horizon of 6 months
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We thus conclude that the estimation of probability weights is robust to alternative 
return horizons.

To further investigate the pricing kernel puzzle, we focus on the adjusted risk 
aversion ( RRAu ). Figure 8 illustrates risk aversion functions for a return horizon of 
six months. In Panel A, we report the average risk aversion over wealth levels. While 
the overall shape is close to our main specification, RRA  is slightly shifted upwards 
and becomes negative for wealth levels greater than 1.20 (compared to 1.32 for a 
return horizon of one year). In contrast to Fig. 4, the adjusted risk aversion, RRAu , is 
somewhat bumpier and slightly increasing for wealth levels greater than 1.60 (with 
very little probability mass, Panel B). Most importantly, RRAu remains significantly 
positive for all wealth levels and thus implies a monotonically decreasing pricing 
kernel. The probabilistic risk attitude is almost unchanged, i.e. RRAw is positive and 
decreasing for low wealth levels, and negative for wealth levels greater than 1.05 
(Panel C). With respect to wealth percentiles (Panels D to F), results correspond 
to our main specification. Notably, except for some noise around the 15% quantile, 
there are no episodes of increasing RRAu . We therefore argue that increasing seg-
ments in Panel B are merely an artifact of averaging over volatilities.

Fig. 8  Implied relative risk aversion, 6 months horizon. This figure plots implied risk aversion functions 
estimated from the Pan (2002) stochastic volatility and jumps model. In Panel A, we report the relative 
risk aversion (RRA ) over wealth levels, averaged across volatilities from 0.01 to 0.60 and calculated as 
RRA = ST

(

F�
P
(ST )∕FP(ST ) − F�

Q
(ST )∕FQ(ST )

)

 . In Panel B, we report RRA  functions adjusted for the 
probabilistic risk attitude (as outlined by Eq.  6), i.e. RRAu = RRA − ST

w�� (1−FP(ST ))

w� (1−FP(ST ))
⋅ fP(ST ) . We derive 

w��(1 − FP(ST )) and w�(1 − FP(ST )) analytically by fitting the estimated probability weights to the two-
parameter probability weighting function of Prelec (1998). In Panels D to F, we repeat all estimations for 
wealth percentiles instead of wealth levels. We assume a return horizon of 6 months
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Figure 9 illustrates results for a return horizon of 3 months. In contrast to our 
main specification, RRA  is shifted upwards and appears to be more bumpy. How-
ever, RRA still strongly decreases in wealth. Since the probabilistic risk attitude 
is only slightly affected, the bumpy shape of RRA  directly transfers to the adjusted 
risk aversion. Hence, RRAu exhibits increasing parts around a wealth level of 0.80 
(with a physical density of almost zero). Most importantly, RRAu is consistently 
positive and Panel E confirms that increasing episodes are, again, an artifact of 
averaging over volatilities.

In summary, we find our results to be robust to alternative maturities. Although 
risk aversion functions are less smooth, we find the risk aversion—net of prob-
ability weighting—to remain significantly positive over both wealth levels and 
wealth percentiles, implying a monotonically decreasing pricing kernel.

4.3  Alternative estimation of the probabilistic risk attitude

A natural concern of our approach is that we derive w�(1 − FP(ST )) and 
w��(1 − FP(ST )) analytically by fitting nonparametric probability weights to the two-
parameter function of Prelec (1998). Thus, our results might reflect the specific 

Fig. 9  Implied relative risk aversion, 3 months horizon. This figure plots implied risk aversion functions 
estimated from the Pan (2002) stochastic volatility and jumps model. In Panel A, we report the relative 
risk aversion (RRA ) over wealth levels, averaged across volatilities from 0.01 to 0.60 and calculated as 
RRA = ST

(

F�
P
(ST )∕FP(ST ) − F�

Q
(ST )∕FQ(ST )

)

 . In Panel B, we report RRA  functions adjusted for the 
probabilistic risk attitude (as outlined by Eq.  6), i.e. RRAu = RRA − ST

w�� (1−FP(ST ))

w� (1−FP(ST ))
⋅ fP(ST ) . We derive 

w��(1 − FP(ST )) and w�(1 − FP(ST )) analytically by fitting the nonparametrically estimated probability 
weights to the two-parameter probability weighting function of Prelec (1998). In Panels D to F, we repeat 
all estimations for wealth percentiles instead of wealth levels. We assume a return horizon of 3 months
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functional assumption. To accommodate this concern, we first replace our functional 
assumption by the linear-in-log-odds probability weighting function and then pro-
vide an entirely numerical solution. Results for the linear-in-log-odds function and a 
return horizon of one year are presented in Fig. 10.20

By construction, relative risk aversion functions in Panels A and D are not 
affected by a change of the functional assumption since RRA  does not depend on 
w�(1 − FP(ST )) or w��(1 − FP(ST )) . Hence, changes in RRAu (Panels B and E) solely 
depend on RRAw (Panels C and F). In contrast to our main specification, we find 
the probabilistic risk attitude to be less pronounced for low wealth levels.21 Thus, 
for a wealth level of 0.50, we find RRAu ≈ 8 , whereas in our main specification it 
holds RRAu ≈ 3 . Most importantly, RRAu remains positive throughout wealth levels 
and all but the highest wealth percentile, again implying a monotonically decreasing 

Fig. 10  Implied relative risk aversion, linear-in-log-odds, 1 year horizon. This figure plots implied risk aver-
sion functions estimated from the Pan (2002) stochastic volatility and jumps model. In Panel A, we report 
the relative risk aversion (RRA ) over wealth levels, averaged across volatilities from 0.01 to 0.60 and calcu-
lated as RRA = ST

(

F�
P
(ST )∕FP(ST ) − F�

Q
(ST )∕FQ(ST )

)

 . In Panel B, we report RRA  functions adjusted for 
the probabilistic risk attitude (as outlined by Eq. 6), i.e. RRAu = RRA − ST

w�� (1−FP(ST ))

w� (1−FP(ST ))
⋅ fP(ST ) . We derive 

w��(1 − FP(ST )) and w�(1 − FP(ST )) analytically by fitting the nonparametrically estimated probability 
weights to the two-parameter linear-in-log-odds probability weighting function (Tversky and Fox, 1995; 
Bleichrodt and Pinto, 2000). In Panels D to F, we repeat all estimations for wealth percentiles instead of 
wealth levels. We assume a return horizon of 1 year

20 Again, we find an almost perfect fit.
21 See Dierkes and Sejdiu (2019) for differences in the probabilistic risk attitude of various probability 
weighting functions for probabilities near zero.
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pricing kernel. Moreover, except for some noise, RRAu is monotonically decreasing. 
Even though RRAu is not significant for wealth levels greater than 1.77, it should 
again be noted that there is only little probability mass for these wealth levels (see 
Fig. 1). We therefore conclude that our findings are robust to a different functional 
assumption.

In Fig. 11, we present the resulting risk aversion functions when w�(1 − FP(ST )) 
and w��(1 − FP(ST )) are derived numerically, i.e. without fitting probability weights 
to a parametric weighting function. A word of caution is in order. As mentioned in 
Sect. 2.4, we estimate probability weights on the interval p ∈ {0.01, 0.02,… , 0.99} . 
Hence, we are not able to estimate probability weights unless it holds for at least one 
volatility that FP(ST ) ≥ 0.01 or FP(ST ) ≤ 0.99 . Moreover, to derive w�(1 − FP(ST )) 
and w��(1 − FP(ST )) numerically, we lose two more observations. We therefore 
propose a fine grid for the two probabilities at the extremes and a regular grid in 
between, i.e. p ∈ {0.001, 0.002, 0.01, 0.02,… , 0.99, 0.998, 0.999} . By this means, 
we obtain the probabilistic risk attitude for at least one volatility and wealth levels 
between 0.72 and 2.00. Consequently, Fig. 11 is also limited to this range.

In Panel A, we report the relative risk aversion which is slightly increasing for 
wealth levels below 0.78 and greater than 1.47. Note that, even though RRA  does 

Fig. 11  Implied Relative Risk Aversion, Numerical Solution, 1 Year Horizon. This figure plots implied risk 
aversion functions estimated from the Pan (2002) stochastic volatility and jumps model. In Panel A, we 
report the relative risk aversion (RRA ) over wealth levels, averaged across volatilities from 0.01 to 0.60 and 
calculated as RRA = ST

(

F�
P
(ST )∕FP(ST ) − F�

Q
(ST )∕FQ(ST )

)

 . In Panel B, we report RRA  functions adjusted 

for the probabilistic risk attitude (as outlined by Eq. 6), i.e. RRAu = RRA − ST
w�� (1−FP(ST ))

w� (1−FP(ST ))
⋅ fP(ST ) . In con-

trast to our main specification, we derive w��(1 − FP(ST )) and w�(1 − FP(ST )) numerically. In Panels D to F, 
we repeat all estimations for wealth percentiles instead of wealth levels. We assume a return horizon of one 
year
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not depend on w�(1 − FP(ST )) or w��(1 − FP(ST )) , the function differs from Figs. 4 
and 10. The rationale is given by the fact that for wealth levels below 0.78 and above 
1.47, w�(1 − FP(ST )) and w��(1 − FP(ST )) are only known for some of the examined 
volatilities. For wealth levels between 0.78 and 1.47, RRA  is equal to Fig. 4. Result-
ing from the estimation instabilities described above, the probabilistic risk attitude is 
less smooth and locally increasing (Panel C). Nevertheless, we find the global shape, 
i.e. RRAw > 0 for small wealth levels and RRAw < 0 for high wealth levels, to be 
preserved. As a consequence, RRAu remains significantly positive for the vast major-
ity of wealth levels (Panel B). Panels D to F present results for wealth percentiles. 
Except for the highest wealth percentile, RRAu is consistently positive and signifi-
cant throughout the vast majority of wealth percentiles.

Even though the estimation procedure is less stable, our results are thus robust 
to a numerical solution. In unreported results, we repeat our calculations for return 
horizons of three and six months and find our conclusions to hold.22

4.4  Sensitivity analysis

Our simulation approach is not only based on the Pan (2002) model, but also relies 
on the corresponding parameter estimates. Although results in Sect. 4.1 hint that our 
findings related to gamma extend to the 1996–2020 period, a reasonable concern of 
our approach is that Pan (2002) employed options data from 1989 to 1996 and the 
market environment has changed thereafter. Below, however, we show that this con-
cern is not warranted as we re-run our simulation with alternative parameters. More 
precisely, we adjust each parameter for ± one standard error ( ̂𝜎SE ) and summarize 
results in Table 3.23

We find our results to be remarkably robust. For example, variation in parameters 
related to the interest rate r and the dividend yield q does not involve any consid-
erable impact on probability weighting and risk aversion functions. Moreover, our 
conclusions remain unaffected by variation in the jump risk premium �Vt(� − �∗) , 
the volatility coefficient �v , and the correlation between Brownian shocks � . Never-
theless, there are some minor instabilities which we want to outline hereafter.

Considering the mean reversion rate of the variance process, �̂�v − 1�̂�SE results in 
an increasing gamma for volatility levels greater than 0.50. The average probabil-
ity weighting function, however, is still strongly inverse S-shaped and RRAu is not 
affected. With respect to the average volatility, we find that ̂̄v − 1�̂�SE results in an 
unstable estimation of the DDE for v > 0.45 . Moreover, RRAu is positive but not sig-
nificant for wealth levels greater than 1.75 (with a corresponding probability mass 
of below 1% ). In case of �̂�S + 1�̂�SE (related to the premium for Brownian risk), esti-
mating the DDE becomes numerically unstable for v > 0.53 and gamma increases 

22 Confidence intervals in the numerical solution tend to increase. However, RRAu remains significantly 
positive for the vast majority of wealth levels and percentiles.
23 We thereby assume the remaining parameters to be constant. Strictly speaking, a changed market 
environment will also result in different standard errors. However, given our results in Sect.  4.1, we 
assume sufficient accuracy.
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for v > 0.43 . Nevertheless, probability weighting remains strongly inverse S-shaped. 
The largest impact on our results is given by a variation of the variance risk pre-
mium �̂�v . In case of �̂�v − 1�̂�SE , even RRA  is consistently positive, while for �̂�v + 1�̂�SE 
both RRA  and the probabilistic risk attitude are strongly negative. As a result, RRAu 
is slightly negative for wealth levels greater than 1.50. Importantly, RRAu over 
wealth percentiles remains positive for all but the highest percentile. Finally, vari-
ation in the jump size volatility ( ̂𝜎J + 1�̂�SE ) causes the DDE to become unstable for 

Table 3  Sensitivity analysis

This table presents parameter estimates from the Pan (2002) stochastic volatility and jumps model (see 
her Tables 3 and 6). To check whether our results are robust to variations of these parameters, we re-run 
our calculations with ±1�̂�SE . While 

√

V  indicates volatilities, RRA , RRAu , and RRAw denote the relative 
risk aversion, adjusted risk aversion (related to the utility function), and the probabilistic risk attitude, 
respectively. We assume a return horizon of 1 year and derive w��(1 − FP(ST )) and w�(1 − FP(ST )) analyt-
ically by fitting nonparametrically estimated probability weights to the two-parameter probability weight-
ing function of Prelec (1998)

Parameter Estimate (Std. 
Error)

Comments

Panel A: Pan (2002), Table 3
�v 6.4 (1.8) In case of �̂�v − 1�̂�SE , gamma increases for 

√

V > 0.50 . Probability 
weighting remains strongly inverse S-shaped.

v̄ 0.0153 (0.0029) In case of ̂̄v − 1�̂�SE , our code becomes numerically unstable for 
√

V > 0.45 . RRAu > 0 , but not significant for wealth levels > 1.75 
(probability mass is below 1%).

�v 0.30 (0.04)
� −0.53 (0.07)
�s 3.6 (2.4) In case of �̂�s + 1�̂�SE , our code becomes numerically unstable for 

√

V > 0.53 and gamma increases for 
√

V > 0.43 . Probability weight-
ing remains strongly inverse S-shaped.

�v 3.1 (2.2) In case of �̂�v − 1�̂�SE , even RRA  is always positive. In case of �̂�v + 1�̂�SE , 
RRA  (and also RRAw ) are strongly negative for higher wealth levels. 
RRAu is moderately negative for wealth levels > 1.50 . RRAu over 
wealth percentiles, however, remains positive for all but the highest 
percentile.

�∗ = � 12.3 (1.9)
� (%) −0.8 (2.4)
�J 0.0387 (0.0072) In case of �̂�J + 1�̂�SE , our code becomes numerically unstable for 

√

V > 0.48 . Numerically derived RRAu is < 0 for wealth levels > 1.92 
(corresponding probability mass is almost zero).

�∗ (%) −19.2 (1.8)
Panel B: Pan (2002), Table 6
�r 0.20 (0.15)
r̄ 0.058 (0.016)
�r 0.0415 (0.0009)
�q 0.24 (0.33)
q̄ 0.025 (0.011)
�q 0.0269 (0.0004)
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v > 0.48 . Despite that, our conclusions with respect to RRAu and probability weight-
ing functions remain unaffected.

In summary, we find some specifications for which solving the DDE becomes 
numerically unstable in case of large volatilities. Our conclusions, however, remain 
largely unaffected. We still find a strongly negative (positive) relationship between 
volatility and gamma (probability weighting), and after accounting for probability 
weighting, risk aversion functions are mostly significantly positive. Lastly, note that 
volatilities greater than 0.50 only occur with a probability of less than one percent.24

5  Concluding remarks

We contribute to a large body of literature on time-varying risk preferences and the 
pricing kernel puzzle. Following Ziegler (2007), we obtain risk neutral and physical 
densities from the Pan (2002) stochastic volatility and jumps model for a large set of 
volatilities. Thereafter, we employ these densities to estimate nonparametric prob-
ability weights, which we fit to three well-known probability weighting functions: the 
two-parameter Prelec (1998) function, the two-parameter linear-in-log-odds function, 
and the one-parameter Tversky and Kahneman (1992) function. Even though the Pan 
(2002) model was not designed to account for CPT preferences, our results are strik-
ingly clear. Implied probability weighting functions are strongly inverse S-shaped and 
the curvature parameter gamma almost monotonically decreases in volatility, suggest-
ing that skewness preferences are more pronounced in volatile market environments. 
Moreover, we estimate probabilistic risk attitudes, equivalent to the share of risk aver-
sion related to probability weighting. In doing so, we fit the estimated probability 
weights to the functional assumption of Prelec (1998) and calculate derivatives analyti-
cally. This enables us to adjust pricing kernel and risk aversion functions for probability 
weighting and to shed further light on the pricing kernel puzzle. We find the raw pric-
ing kernel, implied by the Pan (2002) model, to display a pronounced U-shape, imply-
ing episodes of negative risk aversion. After taking into account probability weighting, 
however, the pricing kernel is monotonically decreasing in wealth and risk aversion 
functions remain significantly positive. Our results are robust to alternative return 
horizons, wealth percentiles, an alternative functional assumption and both a numeri-
cal approach to estimate the probabilistic risk attitude and variations of the Pan (2002) 
coefficient estimates. Moreover, we provide an out-of-sample test by implementing a 
nonparametric empirical setting for the period from 1996 to 2020, confirming that Pan 
(2002)’s parameter estimates are still appropriate. We therefore conclude that probabil-
ity weighting is not only closely related to volatile market environments, but is also a 
key driver of the pricing kernel puzzle.

24 Given daily VIX closing prices from January 1990 to August 2022, the probability for volatilities 
greater than 0.50 (0.45) is 0.90% (1.36%).
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Appendix A: estimation of physical and risk neutral densities

To estimate physical and risk neutral densities, we closely follow Ziegler (2007) who 
provides time-t conditional Fourier transforms of ln(ST ).25 Given the notation outlined 
in Sect. 2.2 and initial values for the interest rate r, the dividend yield q, the volatility v, 
and the return horizon � = T − t , Ziegler (2007) provides the time-t conditional trans-
form under the physical measure as

where �i and �i (i = r, q, v) are defined as

with

(17)�(S;v, r, q, �) = exp
(

�r(S) + �q(S) + �v(S) + �r(S)r + �q(S)q + �v(S)v
)

,

(18)𝛼r = −
𝜅rr̄

𝜎2
r

(

(𝛾r − 𝜅r)𝜏 + 2 ln

(

1 − (𝛾r − 𝜅r)
1 − exp(−𝛾r𝜏)

2𝛾r

))

,

(19)𝛼q = −
𝜅qq̄

𝜎2
q

(

(𝛾q − 𝜅q)𝜏 + 2 ln
(

1 − (𝛾q − 𝜅q)
1 − exp(−𝛾q𝜏)

2𝛾q

))

,

(20)𝛼v = −
𝜅vv̄

𝜎2
v

(

(𝛾v + b)𝜏 + 2 ln

(

1 − (𝛾v + b)
1 − exp(−𝛾v𝜏)

2𝛾v

))

,

(21)�r = −
2(1 − S)(1 − exp(−�r�))

2�r − (�r − �r)(1 − exp(−�r�))
,

(22)�q = −
2S(1 − exp(−�q�))

2�q − (�q − �q)(1 − exp(−�q�))
,

(23)�v = −
a(1 − exp(−�v�))

2�v − (�v + b)(1 − exp(−�v�))
,

(24)�r =

√

�2
r
+ 2(1 − S)�2

r
,

(25)�q = �2
q
+ 2S�2

q
,

(26)�v =

√

b2 + a�2
v
,

25 See his Appendix B, where transforms are based on Pan (2002)’s Appendix B and Duffie et al. (2000).
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Given the parameter estimates reported in Table 1 and the level of the underlying S, 
the physical density fP can be obtained via numerical integration of

To obtain the risk neutral density fQ , some of the parameters have to be replaced by 
their risk neutral counterparts. The time-t conditional transform under the risk neu-
tral measure is then given by

where �r , �q , �r , and �q are defined as in Eq. (17) and

with

Given the parameter estimates reported in Table 1 and the level of the underlying S, 
fQ can again be obtained via numerical integration:

(27)a = S(1 − S) − 2�

(

exp(S�J + S2
�2
J

2
) − 1 − S�∗

)

− 2S�S,

(28)b = �v�S − �v.

(29)fP(S;v, r, q, �) =
1

2� ∫
∞

−∞

�(iz;v, r, q, �) exp(−izS)dz.

(30)�∗(S;v, r, q, �) = exp
(

�r(S) + �q(S) + �∗
v
(S) + �r(S)r + �q(S)q + �∗

v
(S)v

)

,

(31)𝛼∗
v
= −

𝜅∗
v
v̄∗

𝜎2
v

(

(𝛾∗
v
+ b∗)𝜏 + 2 ln

(

1 − (𝛾∗
v
+ b∗)

1 − exp(−𝛾∗
v
𝜏)

2𝛾∗
v

))

,

(32)�∗
v
= −

a∗(1 − exp(−�∗
v
�))

2�∗
v
− (�∗

v
+ b∗)(1 − exp(−�∗

v
�))

,

(33)�∗
v
= �v − �v,

(34)v̄∗ = 𝜅vv̄∕𝜅
∗
v
,

(35)a∗ = S(1 − S) − 2�
(

exp(S�∗
J
+ S2�2

J
∕2) − 1 − S�∗

)

,

(36)b∗ = �v�S − �∗
v
,

(37)�∗
v
=

√

(b∗)2 + a∗�2
v
.

(38)fQ(S;v, r, q, �) =
1

2� ∫
∞

−∞

�∗(iz;v, r, q, �) exp(−izS)dz.
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Appendix B: alternative maturities—distributions

See Figs. 12 and  13.

Fig. 12  Physical and Risk Neutral Distributions, 6 Months Horizon. This figure plots physical and risk 
neutral densities (Panel A) and distribution functions (Panel B), estimated from the Pan (2002) stochastic 
volatility and jumps model and averaged over volatilities from 0.01 to 0.60. Physical (risk neutral) densi-
ties are denoted by fP(ST ) ( fQ(ST ) ), whereas physical (risk neutral) distribution functions are denoted by 
FP(ST ) ( FQ(ST ) ). We assume a return horizon of 6 months

Fig. 13  Physical and Risk Neutral Distributions, 3 Months Horizon. This figure plots physical and risk 
neutral densities (Panel A) and distribution functions (Panel B), estimated from the Pan (2002) stochastic 
volatility and jumps model and averaged over volatilities from 0.01 to 0.60. Physical (risk neutral) densi-
ties are denoted by fP(ST ) ( fQ(ST ) ), whereas physical (risk neutral) distribution functions are denoted by 
FP(ST ) ( FQ(ST ) ). We assume a return horizon of 3 months
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Appendix C: alternative maturities—pricing kernels

See Figs. 14 and 15.

Fig. 14  Average Pricing Kernel, 6 Months Horizon. This figure plots pricing kernels estimated from the 
Pan (2002) stochastic volatility and jumps model. Following the literature (e.g. Jackwerth, 2000; Baele 
et al., 2019), we estimate the pricing kernel (PK, Panel A) as the ratio of the risk neutral to the physical 
probabilities, i.e PK = fQ∕fP . In Panel B, we follow Eq. (1) and calculate the pricing kernel, net of prob-
ability weighting, as PK = fQ(ST )∕fP(ST ) ⋅ w

�(1 − FP(ST )) . We assume a return horizon of 6 months

Fig. 15  Average Pricing Kernel, 3 Months Horizon. Figure 15 plots pricing kernels estimated from the 
Pan (2002) stochastic volatility and jumps model. Following the literature (e.g. Jackwerth, 2000; Baele 
et al., 2019), we estimate the pricing kernel (PK, Panel A) as the ratio of the risk neutral to the physical 
probabilities, i.e PK = fQ∕fP . In Panel B, we follow Eq. (1) and calculate the pricing kernel, net of prob-
ability weighting, as PK = fQ(ST )∕fP(ST ) ⋅ w

�(1 − FP(ST )) . We assume a return horizon of 3 months
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