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Abstract It is already well documented that model risk is an important issue regard-
ing the pricing of exotics (see Schoutens et al., in A perfect calibration! Now what?,
Wilmott Magazine, March 2004: pp 66–78, 2004). Arguments have been made to put
this into the perspective of bid-ask pricing using the theory of conic finance and pric-
ing to acceptability (Cherny and Madan Review of Financial Studies, 22: 2571–2606,
2009). In this paper we show also the presence and importance of calibration risk.
More particularly, we point out that a variety of plausible calibration methods lead
again to serious price differences for exotics and different distributions of the P&L
of the delta-hedging strategy. This is illustrated under the popular Heston stochastic
volatility model, which is used among practitioners to price all kinds of exotic and
structured products. This paper shows that it is prudent to take some additional safety
margin into account for the pricing of these structured notes.
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1 Introduction

The multiplicity of financial models has inevitably given rise to what is nowadays
commonly referred to as model uncertainty or model risk. Indeed the fair price of any
financial instrument typically strongly depends on the model which is used to describe
the dynamics of the financial market. Moreover, different models yielding the same
precision for benchmark instruments turn out to lead to a substantial uncertainty once
we are faced with the pricing of more exotic products (see for instance Cont 2006 or
Schoutens et al. 2004). In particular, if several trading desks are asked to price a set
of exotic derivatives from similar market quotes for the most liquid derivatives, they
will probably come up with significantly different prices for the more exotic products.
This relatively new kind of risk, due to the choice of the model itself, has signifi-
cantly increased this last decade given the rapid growth of the derivative market and
has led to substantial losses arising from the misvaluation of financial derivatives. In
particular, in January 2004 the national Australian Bank reported losses on currency
options amounting to more than 280 million U.S. dollars, partially due to misvaluation
(see Stulz 2004). The tremendous losses due to model uncertainty suffered by many
financial institutions have led the Basel Committee on banking supervision to adopt
a directive which compels financial institutions to take into account the uncertainty
of the model valuation in the mark-to-model valuation of structured products. In par-
ticular the Basel Committee distinguished two types of model risk: the one arising
by making use of a possibly incorrect valuation procedure and the one due to unob-
servable and thus possibly incorrect calibration parameters (see Basel Committee on
Banking Supervision 2009).

Once a particular class of models has been selected, financial institutions are faced
with the construction of the risk-neutral pricing measure Q. This calibration procedure
consists of the determination of the model parameter set which is compatible with the
observed market prices of liquidly traded derivatives. Trading desks thus select the
parameters p� which minimize the discrepancy f ({Pi }, {P̂i }; p) between the model
prices P̂i and the market prices Pi of benchmark instruments. In particular, they are
faced with choosing a particular objective function f which links the model prices
with the market quotes. The current industry practice is to use the root mean square
error leading to a least-squares problem

RMSE =
√
√
√
√

N
∑

j=1

(Pj − P̂j )2

N
, (1)

where N stands for the number of benchmark instruments. However, there exist other
alternatives just as suitable such as the average absolute error as a percentage of the
mean price (APE) or the average relative error (ARPE):

APE = 1
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Calibration risk: illustrating the impact of calibration risk under the Heston model 59

The optimal parameter set p� typically strongly depends on the choice of the objec-
tive function, leading to significantly different prices for the more exotic options such
as one-touch barrier or cliquet options. This particular type of model risk which is
inherent to the calibration procedure was introduced by Detlefsen and Härdle 2007
under the terminology calibration risk and formally defined as the different optimal
parameter sets arising from the different specifications of the functional f . In this
paper, we extend the concept of calibration risk to include not only the choice of
the objective function but also the calibration methodology and illustrate its impact
under the Heston stochastic volatility model by pricing a wide range of exotics and by
looking at the P&L distribution of the delta hedging strategy.

2 Calibration of the Heston model

The recent emergence of a liquid market for volatility derivatives has given rise to
new calibration procedures. Before, equity models were calibrated on the basis of the
implied volatility surface only by the minimization of a particular objective function.
This standard calibration often leads to optimal parameters which are instable or set at
extreme levels. However, given the substantial liquidity of the volatility market, prac-
titioners might resort to time series or market quotes to determine some of the model
parameters beforehand and perform therefore a calibration on a reduced parameter
set. In particular, the spot variance of the Heston model can be inferred from the spot
value of the VIX volatility index whereas the long run variance can be determined
either from the VIX time series or from the VIX option price surface. The remaining
parameters are then calibrated from the stock option price surface by minimizing a
particular functional. The different calibration procedures will typically lead to dif-
ferent optimal parameter sets and hence to different exotic prices and different hedge
ratios. This gives evidence that it is prudent to consider some additional safety margin
for the pricing of these exotics, as it has been advised by the Basel Committee.

2.1 The Heston stochastic volatility model

In (Heston 1993), Heston extends the Black-Scholes model by making the volatility
parameter σ stochastic. More particularly, the squared volatility is modeled by a CIR
process, which is coherent with the positivity and mean-reverting characteristics of the
empirical volatility (Whaley 2009). The stock price process follows the well-known
Black-Scholes stochastic differential equation:

d St

St
= (r − q)dt + √

vt dWt , S0 ≥ 0 (2)

and the squared volatility process follows the CIR stochastic differential equation:

dvt = κ (η − vt ) dt + λ
√

vt dW̃t , v0 = σ 2
0 ≥ 0, (3)
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where W = {Wt , t ≥ 0} and W̃ =
{

W̃t , t ≥ 0
}

are two correlated standard Brownian

motions such that Cov
(

dWt , dW̃t

)

= ρdt . v0 is the initial variance, κ > 0 the mean

reversion rate, η > 0 the long run variance, λ > 0 the volatility of variance and ρ

the correlation. The variance process (3) is always positive and can not reach zero if
2κη > λ2. The model parameters can be determined either by matching data or by
calibration. In practice, parameters calibrated on the implied volatility surface might
turn out to be unstable and often unreasonable (see Wilmott 2006). Hence, we will
propose an alternative methodology which consists of a mixture of matching data and
calibration in order to enhance the stability of the model parameters and decrease the
calibration computation time.

2.2 Calibration sets

We start with describing three different ways of estimating/calibrating the long run
variance parameter η. The first two estimates of the long run variance are determined
on the basis of time series, in the example the VIX index, and are therefore histori-
cal estimates. The final estimate is a market-implied one that allows us to take into
account additional market information in the calibration methodology. In the illustra-
tion, it is derived from the VIX option surface which is not a calibration instrument in
the standard calibration.

– The moving window (MW) estimate
The moving window estimate is computed as the mean of the variance of the stock
price process over a time series window which moves forward through time:

ηMW = 1

T VIX

t0∫

t0−T VIX

(
VIX(t)

100

)2

dt = mean
t0−T VIX≤t≤t0

(
VIX(t)

100

)2

. (4)

For the numerical study, we will consider a length of the VIX time series window
equal to 6 months, 3 or 5 years. Since the choice of the length of the time series win-
dow to fix the long run variance strongly depends on the market volatility regime
(see Guillaume and Schoutens 2010), it might be interesting to consider estimates
of η which are independent of the length of the time series window, such as the
exponentially weighted moving average estimate.

– The exponentially weighted moving average (EWMA) estimate
The exponentially weighted moving average estimate of the long run variance is
given by

ηEWMA = (1 − α)

N
∑

i=1

αN−i
(

VIX(ti )

100

)2

(5)

where α ∈ (0, 1), ti = t0 − (N − i)	t and where N → ∞ is the number of data
in the time series. The most recent the VIX quote, the highest the corresponding
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weight. In particular, the weight αN−i decreases exponentially as we move back
through time. The parameter α determines how responsive the estimate ηEWMA is
to the most recent daily percentage change of the VIX: a low value of α corresponds
to a highly volatile estimate. For the numerical study, we consider a parameter α

equal to 0.94, which is also the value used by JP Morgan for the RiskMetrics
database (see Hull 2006).

– The market-implied (MI) estimate
Finally, we propose a robust way of computing a risk-neutral long run volatility
estimate, referred to as long VIX, or LVIX and inferred from the market price of
long term European vanilla options on the VIX; reflecting therefore the expecta-
tions of the investors.
The Chicago Board Options Exchange (CBOE) launched trading of VIX option
contracts on the 24th of February 2006. After 9 months, the VIX option trading
volume almost reached 4.5 million contracts, making it the most successful new
product launched in CBOE history. Hence, given the substantial liquidity of VIX
options, we expect to infer an accurate estimate of the long run volatility from their
market quotes.
From the non-arbitrage principle, the long run volatility should be equal to the
at-the-money strike for long term VIX options. Indeed, from the put-call parity,
we have that

P(K , T ) − C(K , T ) = exp(−rT )(K − VIXT )

and in particular K = VIXT iff P(K , T ) = C(K , T ). Hence, the long run variance
can be approximated by the at-the-money strike of long term options on the VIX:

ηMI =
(

K ATM

100

)2

=
(

LVIX(t0)

100

)2

. (6)

For the numerical study, we will consider the options with the longest available
quoted maturity. The at-the-money strike is obtained by interpolation of the call-put
spread.

We will compare six different calibration performances of the Heston model: a fully
free parameter set {v0, κ, η, λ, ρ} and five reduced parameter sets {κ, λ, ρ}, using the
market data to fix v0 and η, where v0 is set equal to the square of the spot price of the
VIX index expressed in units:

v0 =
(

VIX(t0)

100

)2

;

and η is estimated either

– on the basis of the empirical VIX index by Eq. (4) with three different time series
windows (0.5, 3 and 5 years);

– on the basis of the empirical VIX index by Eq. (5);
– using the VIX option market quotes by Eq. (6).
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For the numerical study, we consider daily S&P 500 and VIX market quotes for
a period extending from the 24th of February 2006 until the 31st of October 2009,
including therefore the credit crunch. The different calibrations are performed on the
whole set of quoted vanilla options (i.e. for both call and put options on the whole
strike and time to maturity ranges). The vanilla option prices are computed by using
the Carr-Madan formula (see Carr and Madan 1998 and Albrecher et al. 2007 for the
closed-form expression of the Heston characteristic function).

3 Calibration performance and evolution of the model parameters through time

Except for a period extending from mid-October 2008 until mid-December 2008, the
RMSE functional (1) obtained by considering the market implied estimate of η is
pretty close to the RMSE functional of the full calibration procedure (see Fig. 11). In
particular, ηMI leads to a better fit of the S&P 500 implied volatility surface than the
time series estimates obtained by the MW or the EWMA technique; which is coherent
with the fact that ηMI reflects the future expectations of market participants whereas
ηMW and ηEWMA reflect their past expectations.

Moreover, the moving window calibration performance depends on the length of
the time series window. In particular, we can distinguish two periods: the first one
extending from February 2006 until July 2007 and the second one from August 2007
until October 2009. For the first period, the optimal moving window calibration is
obtained by considering the widest time series window, i.e. T VIX equal to 5 years
whereas, for the second period, the narrowest window (i.e. T VIX equal to 6 months)
leads to the best calibration of the S&P 500 option surface.

To have some insight into the precision of the different calibration settings, it is
interesting to have a look at the evolution through time of the two parameters which
are inferred beforehand from the VIX quotes, i.e. the initial variance v0 and the long
run variance η.

From the evolution of the spot VIX (see upper part of Fig. 2), it is clear that the two
periods previously mentioned correspond to two different volatility regimes. More
precisely, the transition in between the two periods coincides with the beginning of
the credit crisis, characterised by a substantial increase of the VIX index. Moreover,
the market implied spot variance, as well as the calibrated v0 to a smaller extent,
exhibit a sharp increase from mid-September 2008. This date coincides with the bank-
ruptcy of Lehman Brothers which is therefore the trigger of the panic wave occurring
between October and December 2009, where the market spot variance reached some
exceptional level of more than 65%, which corresponds to a volatilty near 80%.

By comparing Figs. 1 and 2, we note that the significant difference between the
RMSE objective function of the standard calibration and this of the market implied
setting over the period ranging from mid-October to mid-December 2008 might be
explained by the significant difference between the calibrated v0 and the square of the
spot VIX during the panic wave. Nevertheless, except for this 2 months period, the
square of the spot VIX appears to be close to the initial variance parameter obtained by

1 Given the significant difference in the magnitude order of the different quantities of interest, the total
period will be typically split into two parts.
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Fig. 1 Evolution of the RMSE through time for the different calibration procedures

calibrating the whole parameter set on the S&P 500 volatility surface and both exhibit
a similar trend.

On the other hand we note that the estimate of the long run variance η turns out to
be significantly different from one calibration procedure to the other. In particular, the
time series estimates and the market implied estimate of η are typically lower than the
value of η resulting from the standard calibration. However, we notice some exception
for the EWMA and the 6 months MW estimate from October 2008 until May 2009
and for the market implied estimate from October 2008 until December 2008, which
might be explained by the relatively high value of the market implied spot variance
in comparison to the calibrated value of v0 during the investors’ fear wave of the end
of 2008. Furthermore the moving window estimates exhibit a significantly smoother
trend than the calibrated parameter, especially for a wide time series window whereas
both the market implied and the EWMA estimate of η roughly follow the same trend
as the calibrated parameter. Moreover, the market implied estimate and to a larger
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Fig. 2 Evolution of the parameter v0 (upper) and η (lower) through time for the different calibration
procedures
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extent the EWMA estimate exhibit the same, although clearly smoother, trend as the
spot variance (or equivalently as the square of the spot VIX).

The calibrated parameter usually turns out to be closer to ηMI than to ηEWMA or
ηMW which explains the better fit of the S&P 500 option price surface obtained by
inferring the long run variance from VIX option quotes. For the first period, the MW
long run variance computed for a period T VIX of 5 years leads to an accurate fit of
the S&P 500 option surface since then the average of the calibrated parameter η turns
out to be of the same order of magnitude than ηMW. On the other hand, for the second
period the 6 months window leads to the smallest difference between the calibrated
and moving window estimates of the long run variance.

From the lower part of Fig. 2, it is clear that both ηMI and ηEWMA immediately react
to the switch in the volatility regime, which is consistent with their definition. Indeed,
the computation of ηMI is directly inferred from current market quotes and ηEWMA is
assessed by associating more weight to the spot variance than to historical variances.
On the other hand, the reflection of the market trend in the moving window estimate
is delayed by a period which increases with the length of the time series window. In
particular, the sixth months MW estimate reflects almost immediately the switch from
one volatility regime to the other, although we clearly observe a delay in between
the reaction time of this estimate and the reaction time of both the EWMA and MI
estimates. On the other hand, the three and 5 years estimates need more than 1 year
to reflect the switch of volatility regime. Moreover, these two estimates are not able
to reflect the peak in the VIX index occurring during the panic wave, which might be
explained by the (too) wide time series window.

The matching of the spot variance and the long run variance results in some adjust-
ment of the other parameters calibrated on the S&P 500 implied volatility surface.
Figure 3 shows the evolution through time of these parameters, i.e. λ, κ and ρ under
both the standard and the reduced settings. In particular, the parameters λ and κ are
typically set to a higher value than the optimal ones whereas the correlation ρ is
typically set to a lower value.

4 Pricing of exotic options

Both the standard and the market implied reduced calibration procedure lead to a
pretty good fit of the whole set of liquid S&P 500 options except during the panic
wave period (see Fig. 1 or Guillaume and Schoutens 2010 for more evidence). Hence,
we can usually hardly discriminate between the two calibration methods from the
sole replication of the market price of benchmark instruments. We will next compare
the calibration procedures by pricing several exotic options ranging from one-touch
barrier options, lookback options and cliquet options.

The path dependent nature of exotic options requires the use of the Monte Carlo
procedure to simulate sample paths of the underlying index and its volatility, or equiv-
alently its variance. The stock price process (2) is discretised by using a first order
Euler scheme and the variance process (3) using a second order Milstein scheme. The
Monte Carlo simulation is performed by considering one million scenarios and 252
trading days a year.
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Fig. 3 Evolution of the parameters λ (upper), κ (center) and ρ (lower) through time for the different
calibration procedures
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Fig. 3 continued

123



68 F. Guillaume, W. Schoutens

Table 1 Call and put lookback prices

Calibration 31/10/2006 18/09/2008 19/10/2009

LC LP LC LP LC LP

calibration 247.1450 144.2566 320.0110 277.1198 296.2825 287.0761

MW - T VIX = 0.5 243.3814 134.8871 291.4523 268.1978 290.9191 285.8290

MW - T VIX = 3 243.3555 135.1626 290.4874 245.2662 294.0654 285.7428

MW - T VIX = 5 246.2371 141.4669 292.0366 243.4269 269.9777 283.7615

EWMA 212.9100 107.4609 313.6819 280.8053 268.9217 283.8554

VIX 246.4530 139.3560 304.7779 281.0082 286.9627 285.9993

The payoff of lookback call and put options corresponds to the call and the put
vanilla payoff where the strike is taken equal to the lowest and highest levels the stock
has reached during the option lifetime, respectively. The initial price of the lookback
call and put options is given by

LC = exp(−rT )EQ

[

(ST − mS
T )+

]

and L P = exp(−rT )EQ

[

(M S
T − ST )+

]

,

respectively where m X
t and M X

t denote the minimum and maximum processes of the
process X = {Xt , 0 ≤ t ≤ T }, respectively:

m X
t = inf {Xs, 0 ≤ s ≤ t} and M X

t = sup {Xs, 0 ≤ s ≤ t} .

The payoff of a one-touch barrier option depends on whether the underlying stock
price reaches the barrier H during the lifetime of the option. We illustrate the findings
by looking at the down-and-in put and the up-and-in call price:

DIBP = exp(−rT )EQ

[

(K − ST )+1
(

mS
T ≤ H

)]

and

UIBC = exp(−rT )EQ

[

(ST − K )+1
(

M S
T ≥ H

)]

.

The payoff of a cliquet option depends on the sum of the stock returns over a series
of consecutive time periods

[

ti , ti+1
]

; each local performance being first floored and/or
capped. Moreover the final sum is usually further floored and/or capped to guarantee
a minimum and/or maximum overall payoff such that cliquet options protect investors
against downside risk while allowing them for significant upside potential:
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Cliquet =

exp(−rT )EQ

[

min

(

capG , max

(

floorG ,

N
∑

i=1

min

(

capL , max

(

floorL ,
Sti − Sti−1

Sti−1

))
))]

.

As it can be seen from Table 1, Figs. 4 and 5, the price of the different exotic
options under the Heston model turns out to be sensitive to the calibration method. In
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Fig. 4 Down-and-in put (left) and up-and-in call (right) option prices
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Fig. 5 Cliquet option prices

particular, the reduced calibration which leads to the lowest objective function does
not necessarily lead to exotic option prices which are the closest to the prices obtained
by considering the standard optimal parameter set (for more details see Guillaume
and Schoutens 2010). It is also clear that the calibration risk depends on the contract
specifications such as the barrier level or the cap and floor levels. In particular, the
calibration risk of cliquet options decreases with the global floor level and it turns out
to be significant for the widely traded capital protected cliquets (i.e. cliquets with a
global floor equal to zero).2

Table 2 shows an estimate of the impact of the global calibration risk (i.e. arising
from the choice of both the calibration methodology and the objective function) on
short and long term exotic option prices. We measure this risk by

max
i, j

P̂i, j − min
i, j

P̂i, j

M∑

i=1

N∑

j=1

P̂i, j
N M

(7)

2 For more exotic prices, see Guillaume and Schoutens (2010).
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Table 2 Global calibration risk
(7) for different exotic options
maturities

Quoting date/T 0.25 0.5 1 2

Lookback call
31/10/2006 0.099454 0.114375 0.138969 0.191766

18/09/2008 0.202491 0.176726 0.210603 0.262799

11/12/2008 0.201495 0.251864 0.307942 0.341169

19/10/2009 0.082971 0.102074 0.126567 0.166206

DIBP (K = S0, H = 0.75 S0)

31/10/2006 1.960904 0.874819 0.543727 0.629034

18/09/2008 0.656278 0.397121 0.366175 0.181164

11/12/2008 0.362686 0.351415 0.383152 0.416484

19/10/2009 0.519131 0.246416 0.176765 0.191923

UIBC (K = S0, H = 1.25 S0)

31/10/2006 9.118238 3.831980 2.355436 0.823998

18/09/2008 1.753460 0.939958 0.427795 0.352885

11/12/2008 0.313618 0.330268 0.371631 0.390901

19/10/2009 3.645171 0.817110 0.212333 0.241628

Cliquet (floorL = −0.03, capL = 0.05, floorG = 0,
capG = +∞, N = 6, ti = T/6)
31/10/2006 0.084757 0.123370 0.161060 0.146625

18/09/2008 0.136895 0.194299 0.276360 0.226304

11/12/2008 0.109767 0.177890 0.253856 0.269136

19/10/2009 0.188438 0.329906 0.324200 0.175856

where P̂ is the Monte Carlo price of the exotic and where N denotes the number of
calibration settings and M the number of objective functions. The number of prices
taken into account in the global calibration risk estimate (7) amounts thus to 18.

The impact of the calibration risk increases with the exotic option maturity for look-
back and cliquet options. On the other hand, for barrier options, it decreases with the
time to expiration, except during highly volatile periods (i.e. for the 11th of December
2008) where the impact of calibration risk is roughly the same whatever the option
maturity.

4.1 Calibration risk: the choice of the calibration procedure

In order to quantify the calibration risk, it is interesting to have a look at the evolution
of the exotic prices through time under the different calibration settings (see Figs. 6, 7
& 8). We computed the price of different exotic options every 2 weeks by the Monte
Carlo simulation for the six sets of model parameters, the number of computation
days amounting then to 96. We first notice that the calibration risk is higher during the
panic wave period, especially for the lookback and knock-in barrier options. More-
over, except during the investors’ fear wave, the lookback call and put prices are not
significantly different from one calibration procedure to the other; indicating that the
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Fig. 6 Evolution of the lookback call (upper) and put prices (lower) through time for the different calibra-
tion procedures

calibration risk is not predominant for this kind of exotic options. The biggest differ-
ence between the exotic option prices under the different settings corresponds to the
cliquet options, followed by the barrier options.

4.2 Calibration risk: the choice of the objective function

Figures 9, 10 and 11 show the evolution of the different exotic prices through time
obtained with the different objective functions under the full and market implied cali-
bration procedures. It is clear that the calibration risk turns out to be more significant
during the panic wave period. Moreover, the difference of the exotic prices obtained
by considering different functionals is more marked under the standard calibration
setting, which might be explained by the fact that the number of degrees of freedom is
higher for this calibration procedure. Indeed, for the reduced settings, the parameters
v0 and η are directly inferred from volatility market data and are thus constant with
respect to the choice of the objective function.
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Fig. 8 Evolution of the cliquet price through time for the different calibration procedures
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Fig. 9 Evolution of the lookback call (upper) and put prices (lower) through time for the different objective
functions

5 Delta hedging

This section features the impact of the choice of the calibration methodology and of
the objective function on the P&L of the delta hedging strategy. More particularly, we
hedge a short position in 3 months call options with different strike prices by adjust-
ing daily our position in the underlying stock. We consider four typical trading days
and for each of them we draw 100,000 Monte Carlo sample paths of the underlying
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Fig. 10 Evolution down-and-in put (upper) and up-and-in call (lower) prices through time for the different
objective functions

process for the different optimal parameter sets. We assess the impact of the calibra-
tion risk on the delta hedge P&L both qualitatively and quantitatively by looking at
the empirical P&L distribution (see Figs. 12 & 13) and by computing the Sharpe ratio
Sharpe (1994) and the Gain loss ratio Bernardo and Ledoit (2000). Table 3 shows an
estimate of the relative variability of these two standard risk measures RM with respect
to the calibration methodology and the specification of the functional. This estimate
is computed by
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Fig. 11 Evolution of the cliquet price through time for the different objective functions
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Fig. 12 Delta hedge P&L cumulative distribution function for the different calibration procedures

max
i, j

ˆRMi, j − min
i, j

ˆRMi, j

M∑

i=1

N∑

j=1

ˆRMi, j
N M

(8)

where ˆRM is the Monte Carlo Sharpe ratio or Gain loss ratio of the delta hedge profit
and loss.

Both the choice of the objective function and the choice of the calibration method-
ology are reflected in the P&L of the delta hedging strategy, whatever the volatility
regime. Nevertheless, the impact is more marked during the low volatility period
(i.e. for the 31st of October 2006) and for deep in-the-money call options.
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Fig. 13 Delta hedge P&L cumulative distribution function for the different objective functions

6 Conclusion

We propose a market implied estimate of the long run variance of stochastic volatility
models such as the Heston model which is directly obtained from the put-call parity
of long maturity vanilla options on the VIX index. We show that this estimate follows
the same trend as the long run variance parameter η obtained by the standard calibra-
tion of the Heston model on the option price surface, although it is typically lower.
We also perform a detailed study of the calibration performance of the Heston model,
considering either the common calibration on the whole parameter set or a reduced cal-
ibration on the set {κ, λ, ρ} where the parameter v0 is inferred from the spot VIX and
the parameter η either from the VIX time series or from the VIX option surface. The
optimal reduced calibration procedure is obtained by considering the market implied
estimate of the long run variance, since then the different objective functions turn out
to be pretty close to the optimal ones, except during the period characterized by huge
investors fear.
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Table 3 The impact of calibration (8) on the delta hedge P&L

Quoting date/K 0.9 0.95 1 1.05 1.1

Sharpe ratio
31/10/2006 −0.631981 −0.586003 −0.516548 −0.330157 −0.329874

18/09/2008 −0.540852 −0.521437 −0.522575 −0.531354 −0.517259

11/12/2008 −0.793438 −0.729650 −0.656095 −0.709454 −0.750170

19/10/2009 −0.466888 −0.434629 −0.401373 −0.342886 −0.280010

Gain loss ratio

31/10/2006 3.193305 2.696743 1.012186 0.200702 0.082658

18/09/2008 1.513670 1.003081 0.673916 0.465949 0.309048

11/12/2008 0.275325 0.206421 0.158969 0.143276 0.125561

19/10/2009 0.821799 0.422809 0.242792 0.141269 0.074425

Although the market implied reduced calibration leads to a fit of the option surface
of a similar quality than the standard calibration, the price of a wide range of exotic
options (one touch barrier, lookback and cliquet options) turns out to be significantly
different under the two calibration settings, the calibration risk being predominant for
the cliquet and barrier options. Moreover, the delta hedge P&L turns out to depend on
both the calibration methodology and the objective function. This might be explained
by the fact that the two calibration procedures, as well as, to a larger extent, the dif-
ferent specifications of the objective function lead to significantly different optimal
parameter sets. Hence, even within a particular model, model risk and calibration risk
are present. We are thus faced with choosing a route to price exotic products out of
the liquid vanilla option prices.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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