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Abstract
We investigate the nonlinear links between the housing and stock markets in the UK
using copulas. Our empirical analysis is conducted at both the national and regional
levels. We also examine how closely London house prices are linked to those in other
parts of the UK. We find that (i) the dependence between the different markets exhibits
significant time-variation, (ii) at the national level, the relationship between house
prices and the stock market is characterised by left tail dependence, i.e., they are more
likely to crash, rather than boom, together, (iii) although left tail dependence with the
stock market is a prominent feature of some regions, it is by no means a universally
shared characteristic, (iv) the dependence between property prices in London and other
parts of the UK displays widespread regional variations.

Keywords Housingmarket . Stockmarket . Copulas . Regions

Introduction

The stock and housing markets are not only sources of investment assets for many
investors, but are also two important pillars of an economy. Instabilities in these
markets not only can lead to losses for investors but can also have a detrimental impact
on domestic and global economies, as exemplified by the 2008 financial crisis. In this
paper, we focus on gaining a deeper understanding of the nature of the relationship
between the stock and housing markets in the UK. In particular, we seek to gain
insights into the nonlinear dependence structures between the two markets. We know
that instabilities in these markets can adversely affect the economy. Gaining a more in-
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depth knowledge of the relationship between the two markets can help us better
understand their potential impact on the economy and support investment decisions during
periods of turmoil. The impending Brexit, for example, can potentially have adverse effects on
these markets. One of the consequences of Brexit will be the end of the free movement of
labour and immigration from EU countries. In all likelihood, this will affect demand in the
housing sector and thus potentially put downward pressure on house prices. Similar effects are
also likely to be felt in the stock market. Less immigration implies less demand for goods and
services and thus the share prices ofmany firms are likely to be affected. This effect is likely to
be accentuated if the UK cannot reach a trade deal with the EU or make sufficient trade deals
with other countries to offset the loss in tradewith the EU. Several studies have shown that the
two markets exhibit various forms of causal relationships (see, for example, Kapopoulos and
Siokis 2005, Kakes and Van Den End 2004 and Lean and Smyth 2014). One implication of
these findings is that if one of the markets is adversely affected, the other is likely to suffer
similar consequences; or, if both are affected, the interrelationships between the two markets
will deepen the initial adverse effects. It is therefore quite timely to be seeking to gain a deeper
understanding of the relationship between the stock and housing markets in the UK.

The studies for theUK that are often cited in the literature are Sutton (2002) and Eichholtz
andHartzell (1996). Sutton (2002) studies the impact of total income, interest rates and stock
prices on house prices for the UK, US, Canada, Australia, Netherlands and Ireland using a
vector autoregressive model. For the UK, consistent with other countries, Sutton (2002)
finds that there is a positive relationship between house prices and stock prices.Moreover, he
finds that following a 10% increase in equity prices, house prices rise by 5% after three
years. Eichholtz and Hartzell (1996) investigate the links between the two markets for the
UK, US and Canada. Using property shares as a measure of real estate returns, they find that
in all these countries the two markets exhibit a positive relationship according to both
correlations and linear regressions. Bissoondeeal (2021), a recent study for the UK, adds to
the earlier discussions by showing that the relationship between the housing market and the
stockmarket is different in the long-run compared to the short-run. In the short-run, the study
finds that the two markets are positively linked but in the long-run, they share a negative
relationship.

The literature examining the relationship between the stock and housing markets has
largely relied on linear techniques. However, some recent studies show that this
relationship exhibits nonlinear characteristics. Aye et al. (2013) do not find evidence
of either long-run or causal relationships between the two markets in South Africa
using linear techniques. However, with the use of nonlinear techniques, in particular
nonparametric cointegration, a long-run relationship is established. Moreover, they find
evidence of bidirectional causality between the two markets using nonparametric
Granger causality tests. For the US, Okunev et al. (2000) do not find any evidence of
a long-run relationship between the two markets with linear methods. However, using
the fractional cointegration approach, they find support for a long-run relationship.
Moreover, using the linear approach they find evidence of a unidirectional causal
relationship running from the real estate market to the stock market; but when nonlinear
causality tests are employed, they find that the direction of causality is reversed.
Similarly, Ding et al. (2014) do not find evidence of any linear causal relationships
between the two markets in China. However, their results support the existence of
causal relationships between real estate and the stock market in the upper and lower
quantiles when quantile causality tests are employed.
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Given that the literature presents evidence of nonlinear structures in the relationship
between the housing and stock markets, and it has predominantly used linear methods, this
study will attempt to shed more light on the relationship between the two markets using
nonlinear techniques. In particular, wewill employ copulas (see, for example, Ning 2010) to
understand in more depth the dependence structure between the housing and stock markets
in the UK. The copula approach is fairly novel; it is useful for studying nonlinear
dependence between variables. According to Sklar’s (1959) theorem, the joint distribution
of, say, two variables can be decomposed into their respective marginal distributions and a
copula function. The latter characterises the dependence structure of the two variables under
consideration. Copulas are particularly useful for studying tail dependence. In the context of
housing and stock markets, copulas can be used to study whether the two markets are more
likely to crash or boom together. Understanding the dependence structure between these
variables is vital to, for example, risk managers. A popular measure of dependence is the
correlation coefficient, which measures the strength and direction of a linear relationship
between two variables. This is a useful measure if the dependence structure between two
random variables is linear, but if the dependence structure is nonlinear, an alternative
approach, such as copulas, is required. Copulas allow a great deal of flexibility in
specifying the joint distribution of variables and are suitable for capturing nonlinear
associations. A more detailed presentation of copulas follows in the next section.

Knight et al. (2005) employ copula functions to study the links between the real
estate and equity markets in the UK. They use a constant copula to examine the
dependence structure between real estate indices (constructed from a portfolio of real
estate stocks) and equity prices in the UK (represented by the FTSE All Share Index)
and the global market (proxied by the Morgan Stanley World Equity Series). Using
data from the 1986–2004 period, they report stronger left tail dependence for the case
of the UK but symmetric dependence for the case of the global indices.1 Our study
differentiates itself from Knight et al. (2005) in many ways. First, we use the UK house
price index in contrast to a portfolio of real estate securities, and hence our findings are
more applicable to policymakers or financial institutions that have direct exposure to
the housing market. Second, we consider both constant and time-varying copula
models. Our findings indicate that time-varying dependence is indeed an important
feature of the housing-stock market relationship. Third, our paper examines the rela-
tionship between the stock market and house prices at both the national and regional
levels.

There is a growing literature that shows that there are important differences in the
characteristics of each of the individual regional housing markets. For example, Green
(2002), using linear models, studies the links between the stock and housing markets
for different regions in California, US. He finds evidence of Granger causality running
from share prices to house prices, but with a significant regional disparity. In particular,
he finds that share prices only Granger cause house prices in regions with high-income
households. He discusses that high-income households are more likely to hold rela-
tively large amounts of stocks. In a similar vein, Kapopoulos and Siokis (2005) find
evidence of causality running from share prices to house prices in the capital, Athens,

1 Knight et al. (2005) also experiment with the Investment Property Databank (IPD) index but due to this
series being subject to smoothing they fail to obtain any meaningful results. For this reason, they focus on real
estate securities and their relationship with the overall equity market instead.
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but not in other urban areas of Greece. In the UK, house prices show considerable
variations across different regions. House prices in the South East and the London
commuter belt tend to be significantly higher than those in other parts of the
UK. We will, therefore, also seek to establish if there are regional disparities,
and the nature of those disparities, in the relationship between the housing and
stock markets using the copula approach.

Within the literature on the regional analysis of the housing market, there is a strand
looking at the dominant roles of major cities. Holly et al. (2011) andMacDonald and Taylor
(1993), for example, show that London plays a leading role in terms of influencing house
prices in other regions. Along these lines, given that London property prices tend to be the
highest in the UK and are affected not just by domestic but also global economic conditions,
we will investigate their linkages with other regions using the novel framework of copula
functions. There are some antecedents to this work, albeit they are based on US data.
Zimmer (2012) examines four US state-level house price indices (California, Arizona,
Nevada, Florida) using constant copulas and finds that models that can accommodate tail
dependence provide a superior fit to the data compared to the linear dependence case implied
by the Normal copula. Ho et al. (2016) replicate the study of Zimmer (2012) using an
updated dataset and a non-parametric copula specification and find that the key results
remain intact. Zimmer (2015) investigates the relationship between monthly house prices
(measured using Case-Shiller indices) in four US cities (New York, Miami, Los Angeles,
Phoenix). Unlike previous studies that assume that dependence is constant, Zimmer (2015)
demonstrates that the degree of covariation between house prices varies significantly across
time. Specifically, a time-varying Student’s t copula, which allows for symmetric tail
dependence is employed but no other copula specification is considered in the study. We
build on these earlier studies by employing a wider copula function collection. In particular,
in contrast to Zimmer (2012) and Ho et al. (2016), we relax the assumption of constant
dependence as we also include time-varying specifications in the analysis. Clearly, as our
empirical results show, allowing for time-varying dependence is very important. Moreover,
while the time-varying copulamodel of Zimmer (2015) imposes symmetric tail dependence,
in our specifications dependence is allowed to be both time-varying as well as asymmetric.
Indeed, we find that in many cases a failure to accommodate both of these features can lead
to an underestimation or an overestimation of crash risk that can be quantitatively large and
qualitatively important.

Our study provides some novel insights into the dependence structure between the
housing and stock markets in the UK. Previous studies based on linear models have
shown the existence of a positive association between the two markets (Sutton 2002;
Eichholtz and Hartzell 1996); our findings suggest that this positive association is
stronger when two markets are experiencing a substantial downturn. Our findings are in
line with Knight et al. (2005) that report stronger left tail dependence between UK real
estate securities and the aggregate stock market in their constant copula study. Further
to this, our paper shows that the dependence between the stock and national UK
housing market is both asymmetric and time-varying and that using a constant copula
can significantly underestimate tail risk.

Our regional analysis also provides important insights. Similar to Green (2002) and
Kapopoulos and Siokis (2005), we report that the relationship between house prices
and the stock market exhibits significant regional variation. Notably, in our study, we
find that the stronger left tail dependence observed at the national level is shared by
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only five of the 13 UK regions. The dependence structure of property prices of other
regions with London is also not uniform.When dependence is assumed to be constant, our
results resemble those of Zimmer (2012) andHo et al. (2016) for the US case. Specifically,
we find that, for most cases, dependence in both tails is stronger than that implied by the
Normal copula. However, similar to Zimmer (2015), we find that time-variation in the
dependence structure appears to be a salient feature for most regions (11 out of 12). In
terms of tail dependence characteristics, we find substantial variation in our data.

The remainder of the paper is organised as follows. The next section (Copula Func-
tions) provides a brief description of copula functions. The third section (Data) presents
the dataset. Our empirical results are presented and discussed in the fourth section (Results
and Analysis). The final section (Concluding Remarks) provides concluding remarks.

Copula Functions

To examine the dependence structure between the stock and housing markets, we attempt
to model their conditional joint distribution using copula theory. Copula functions are
multivariate cumulative distribution functions with marginals that follow a uniform
distribution from 0 to 1. Using Sklar's (1959) theorem, the joint probability density can
be decomposed into a product of the marginal densities and the density of the copula, so
that one can model the univariate dynamics separately and then apply a copula function to
construct a valid joint distribution. This enables us to empirically investigate whether the
relationship between the twomarkets exhibits nonlinear characteristics, including different
levels of dependence in the right and left tails of the distribution.

We apply the conditional copula model introduced by Patton (2006) to
capture the dynamic behaviour of the marginal distributions to gain further
insights into the dependence structure between the housing and stock markets.
For a bivariate case, let Ft(x) and Gt(y) denote the conditional cumulative
distributions of two variables, and Kt(x, y) denote their joint distribution func-
tion.2 The corresponding conditional probability densities are denoted
as ft(x), gt(y) and kt(x, y). The conditional copula decomposition implies the
following representation for the conditional joint distribution and corresponding
density function,

Kt x; yð Þ ¼ Ct Ft xð Þ;Gt yð Þð Þ ð1Þ

kt x; yð Þ ¼ ct Ft xð Þ;Gt yð Þð Þ: f t xð Þ:gt yð Þ; ð2Þ

2 Following Patton (2006), the term “conditional distribution”means that these distributions are “conditioned”
on some common information set that contains the variables needed to estimate the models. In our application,
the (time t) information set includes all past observations of the house and share price series, as well as past
interest rate and real income data (which enter as explanatory variables in the conditional mean equations).
Using this conditioning set, we can estimate the conditional mean and conditional variance equations, and
hence the (time t) conditional distribution of each margin. Similarly, the same information set can be used to
estimate the conditional copula model, presented in equations (3)–(5).
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where Ct and ct are, respectively, the conditional cumulative distribution and probabil-
ity density functions3 of the copula.

There are different types of copulas, each representing a different dependence
structure. For example, symmetric copulas, such as Gaussian or Student’s t, exhibit
equal dependence in the tails. On the other hand, the asymmetric copulas display
greater dependence in one of the tails. For instance, the Clayton copula exhibits greater
dependence in the left tail than in the right tail. The Gumbel copula, contrarily, displays
greater dependence in the right tail as compared to the left tail.

Following the standard practice in the literature (Creal et al. 2013; Patton 2013), we
will first estimate copula models that assume that the dependence structure between the
two markets is constant over time and subsequently consider specifications that allow
the dependence structure to be time-varying.4 In the latter case, we allow the degree of
dependence to evolve over time using the Generalized Autoregressive Score (GAS)
copula dynamics introduced in Creal et al. (2013) and recommended by Patton (2013)
among others. In this class of models, the parameter θt of a given copula is evolving
according to a constant, the lagged dependence parameter, and a ‘forcing variable’
related to the standardized score s*t of the copula’s log-likelihood. Denoting m(.) as the
function that ensures that the estimated copula parameter lies within the appropriate
boundaries, the time-varying GAS(1,1) copula model is given by:

θt ¼ m f *t
� � ð3Þ

f *tþ1 ¼ ωþ β f *t þ αI*−0:5t s*t ð4Þ

I*t ≡Et−1 s*t s
*0
t

h i
ð5Þ

where E[⋅ ] is the expectation operator, s*t ≡ ∂
∂θt logct ut; vt; θtð Þ; ut = Ft(x) and vt =Gt(y).

Models for Marginals

Following the literature, we adopt a fully parametric approach in estimating the
marginals. More specifically, following studies such as Bollerslev (1987), Patton
(2006) and Ning (2010), we use the generalised autoregressive conditional
heteroscedasticity (GARCH) model to estimate the univariate distributions. In partic-
ular, to model the quarterly dynamics between the stock and housing markets, we use
GARCH models with the following general specification:

3 The subscript t indicates that the marginal distributions, as well as their dependence are time-varying. For the
special case of static marginal distributions and/or copula, the corresponding subscripts can be dropped.
4 Comparisons between the various copula models are based on the Schwarz Information Criterion (SIC), i.e.,
our preferred model has the lowest SIC statistic.
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rt ¼ μþ ∑
4

n¼1
βSP
n rSPt−n þ ∑

4

n¼1
βHP
n rHPt−n þ ∑

4

n¼1
βGDP
n rGDPt−n þ ∑

4

n¼1
βI
nr

I
t−n þ ∑

4

n¼1
βL
nr

L
t−n þ et ð6Þ

et ¼
ffiffiffiffi
ht

p
zt; zt∼i:i:d:DIS ð7Þ

ht ¼ eωþ eαe2t−1 þ IDt−1fα*e2t−1 þ eβht−1 ð8Þ

where rt denotes the logarithmic change in either real house or share prices, rSPt denotes
the logarithmic change in real share prices, rHPt denotes the logarithmic change in real
house prices, rGDPt denotes the logarithmic change in real income, rIt denotes the change in
interest rates and rLt when the investigation is conducted for London or the national level.
The choice of variables is guided by previous studies such as Sutton (2002) and we will
estimate parsimonious versions of Eq. 6 based on the statistical significance of variables.
For the conditional variance equation, we consider both the symmetric GARCH(1,1) as
well as the asymmetric GJR-GARCH(1,1) specification of Glosten et al. (1993). The latter
model can capture asymmetric volatility responses to past squared returns through the
additional fα* parameter and the indicator function IDt that takes the value of one if et < 0
and zero otherwise.6 As with all GARCH models, the standardised residuals zt follow a
distribution that has zero mean and unit variance. In our paper, this distribution, denoted as
DIS, is either the standard Normal, the standardised Student’s t, or the skewed t distribu-
tion of Hansen (1994). So, in total, we estimate six alternative GARCH models
(GARCH(1,1) or GJR-GARCH(1,1) with either Normal, Student’s t, or skewed t distri-
bution for the standardised residuals) for each series. Model selection is based on the
Schwarz Information Criterion (SIC), where the preferred model is the one attaining the
lowest SIC value.

Before proceeding with the implementation of a conditional copula model for the joint
distribution, it is essential that we test whether the standardised residuals from each
marginal model are consistent with a series of probability integral transforms that are
i.i.d. uniform from 0 to 1. If the marginal distributions are not correctly specified, the
copula density, and indeed the entire joint distribution, will become invalid. Towards this
end, we perform several misspecification tests on the models for the marginals. In
particular, we use (i) the test of Diebold et al. (1998) to test for zero autocorrelation in
the first four moments of the standardised residuals, (ii) the Kolmogorov-Smirnov test to
examine the adequacy of the uniformity assumption; (iii) the likelihood ratio test of
Berkowitz (2001) to test jointly for uniformity and independence; and (iv) ‘Hit’ regression
tests to examine whether the conditional distributions are well specified, not only for the
entire distribution but also for different segments of the density. In particular, we use the
‘Hit’ regression tests of Patton (2006) to test for any misspecifications in the left, centre,
and right tails of the distribution.

5 In Eq. (8), the GARCH(1,1) model is simply obtained by excluding the expression IDt−1fα*e2t−1.
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Data

We use quarterly data from 1973Q4 to 2016Q3. The starting date is determined by the
house price data, which is obtained from the website of Nationwide.7 In addition to the
national house prices, the prices of the following regions, which make up the UK are
also considered: North (N), Yorkshire and Humberside (YH), North West (NW), East
Midlands (EM), West Midlands (WM), East Anglia (EA), Outer South East (OSE),
Outer Metropolitan (OM), London (L), South West (SW), Scotland (SC), Northern
Ireland (NI) and Wales (WA). Data on share prices, total income, interest rates and the
overall price level are obtained from Datastream. The FTSE All Share price index (SP)
represents the stock market activity in the UK; Gross Domestic Product (GDP) is used
as a measure of total income and the three-month Treasury Bill rate (I) is used as the
representative interest rate. The GDP deflator represents the overall price level and is
used to convert nominal variables into real variables. Apart from the interest rate, all
variables are in seasonally adjusted form.

Results and Analysis

Estimation of Marginals

Estimation of marginals is based on Eqs. 6, 7 and 8. Parsimonious versions of Eq. 6 for
share prices, UK national house prices, and all the different regional house prices are
obtained by examining the statistical significance of the independent variables. As
noted earlier, we estimate six versions of the GARCH model and use SIC values to
choose the best specification.8 The SIC values for all the estimated GARCHmodels are
displayed in Table 1, where the best models are highlighted. For share prices, EA and
SW, a GARCH with Student’s t-distribution provides the best fit to the data. For NW,
WM and SC, our empirical results indicate that the GJR-GARCH model with a Normal
disribution is the more appropriate specification. In particular, the positive values of the
estimated parameter fα* for these regions (displayed in Table 2) imply that their
volatility processes exhibit asymmetric responses to past price innovations, with large
price drops leading to stronger volatility increases compared to large price apprecia-
tions. For the other dependent variables, a standard GARCH with a Normal distribution
is the preferred specification. The explanatory variables appearing in the mean
equations were also considered for the corresponding variance equations but,
since none of them was significant, they have been dropped from the final
models.9 The resulting specifications for each of the dependent variables are
given in Table 2; the numbers in parentheses are t-statistics.

6 http://www.nationwide.co.uk/about/house-price-index/download-data#xtab:regional-quarterly-series-all-
properties-data-available-from-1973-onwards
7 We have also investigated versions of the GARCH and GARCH-GJR models that do not include the

persistence parameter eβ in Eq. (8). These are essentially the “ARCH” versions of these models. Our results
indicate that only for the OSE and WM regions we needed to drop the persistence parameter from the final
models.
8 The application of conditional copula theory requires that we condition both the mean and variance of each
series on the same information. Any insignificant variables can be subsequently omitted.
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As mentioned earlier, the validity of the copula function depends on the correct
specification of the marginals. Along these lines, we perform a number of
misspecification tests, as described earlier; their p-values are reported in Table 3. Panel
A displays the results of the Lagrange-Multiplier tests of Diebold et al. (1998) for serial
correlation, using 1 and 4 lags, in the first four moments of univariate residuals for
house prices and share prices. Panel B reports the results of the Kolmogorov-Smirnov
test and the likelihood ratio test of Berkowitz (2001). The former tests for uniformity
whereas the latter tests jointly for uniformity and independence. Panel C reports the
results from the ‘Hit’ regression tests of Patton (2006) which check for the correct
specification of the density in different regions. The left tail (R1) corresponds to
observations below the 25th quantile, the centre region (R2) is between the 25th and
75th quantiles, and the right tail (R3) corresponds to the observations above the 75th
quantile. The p-values associated with the tests, presented in the three panels of Table 3,
are, in the overwhelming majority of cases, well above 0.05, indicating that the
marginals are correctly specified.

Constant Copulas

As discussed earlier, different copulas imply different dependence structures. For the
models that assume that the dependence between the stock and housing markets is
constant over time, we consider seven different copulas: four asymmetric copulas
(Clayton, rotated Gumbel, rotated Clayton, Gumbel) and three symmetric copulas
(Normal, Frank, Student’s t). The Clayton and rotated Gumbel copulas are suitable
for variables that exhibit greater dependence in the left tail as compared to the right tail,

Table. 1 GARCH selection

G(1,1)-N GJR(1,1)-N G(1,1)-t GJR(1,1)-t G(1,1)-skewed t GJR(1,1)-skewed t

N −751.42 −746.48 −746.56 −741.55 −741.46 −736.44
YH −785.83 −781.17 −781.72 −777.26 −776.67 −772.30
NW −849.14 −849.22 −849.01 −847.41 −844.48 −843.00
EM −807.41 −802.34 −805.73 −800.70 −805.63 −800.86
WM −810.08 −811.07 −810.92 −808.65 −808.66 −806.34
EA −767.87 −762.87 −771.64 −766.58 −769.96 −764.89
OSE −840.84 −839.10 −839.15 −837.74 −837.07 −835.06
OM −856.36 −852.32 −851.26 −847.20 −846.64 −842.37
L −775.42 −770.34 −770.66 −765.59 −766.88 −761.77
SW −823.28 −818.36 −827.83 −823.65 −822.95 −818.70
SC −794.71 −795.51 −791.68 −791.13 −787.35 −786.69
NI −678.41 −674.08 −676.18 −671.26 −671.11 −666.19
WA −739.86 −735.77 −736.70 −732.03 −731.88 −727.25
UK −906.53 −901.67 −904.20 −899.41 −900.55 −895.85
SP −367.26 −362.37 −372.31 −367.18 −369.09 −363.99

Note: Estimated Schwarz Information Criterion (SIC) values for various GARCH (denoted as G) and
GARCH-GJR (denoted as GJR) specifications. The best model for each region is highlighted
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while the Gumbel and rotated Clayton copulas are suitable for variables that exhibit
stronger right tail dependence. The Normal, Frank and Student’s t copulas represent a
symmetric dependence structure, either with zero (Normal, Frank) or positive (Stu-
dent’s t) tail dependence.

We start by looking at the estimation results for the dependence structure between
the stock and housing markets at the national level as well as at the regional level. The
constant copula parameter theta (θ), the dependence measures Kendall’s tau (τ) and
Spearman’s rho (ρ)10, as well as three measures of fit, namely the (negative) log-
likelihood (LL), the Akaike Information Criterion (AIC) and the SIC, are reported in
Table 4. The models for the UK and all the regions show that θ, τ, and ρ are always
positive, indicating a positive association between house prices and share prices. Using
the measures of fit (LL, AIC and SIC), we can assess which copula best describes the
data in each case. The lower the value of these statistics, the better the fit of the model.
All the measures of fit are in agreement in identifying the best copula in each case.

For the national UK housing market, the rotated Gumbel copula ranks first. Such a
result implies that the housing and stock markets are more likely to crash, rather than
boom, together. In other words, if one of the markets is performing badly over a given
quarter, the other market is also likely to experience a significant decline over the same
period. This finding mirrors the empirical results of Knight et al. (2005) who report that
the relationship between real estate indices and the aggregate stock market is
characterised by stronger left tail dependence. Moreover, our study provides novel
insights into the literature that has reported a positive association between the housing
and stock markets (Sutton 2002, and Eichholtz and Hartzell 1996). In particular, our
results show that their dependence is stronger during market downturns which will
further exacerbate any contagion effects.

To illustrate the results of our copula estimations, we follow Zimmer (2012) and Ho
et al. (2016) and we graphically represent the relationship between the national housing
market and stock market using conditional probabilities, defined as:

CP−
t kð Þ ¼ Pr zHP;t < kj zSP;t < k

� � ¼
bCt bFt kð Þ; bGt kð Þ;bθt
� �

bGt kð Þ
ð9Þ

CPþ
t kð Þ ¼ Pr zHP;t > k

� ��zSP;t > k
�
¼

1−bFt kð Þ−bGt kð Þ þ bCt bFt kð Þ; bGt kð Þ;bθt
� �

1−bGt kð Þ
ð10Þ

CP−
t is the probability that the filtered house price return, represented by the standard-

ized residual zHP,t of the relevant GARCH model, will be lower than a reference level k,
given that the standardized residual zSP,t, corresponding to the filtered stock price index
return, is lower than k. Similarly, CPþ

t is the probability that the filtered house price
return will exceed k, conditional on the filtered stock price index return being higher
than k. It is worth noting that calculating conditional probabilities by evaluating the

9 Unlike the popular (Pearson’s) linear correlation coefficient, Kendall’s τ and Spearman’s ρ are robust
measures of association when the underlying dependence is nonlinear.
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distributions of the standardized residuals at fixed levels of k is a very convenient
representation. In particular, this implies that CP−

t (CP
þ
t ) shows the probability that the

housing price return will be lower (higher) than k standard deviations away from its
mean, given that the stock market return is lower (higher) than k standard deviations

Table. 3 p-values of misspecification tests

Panel A: Moment independence tests.

House prices conditional on FTSE (1 lag)

N YH NW EM WM EA OSE OM L SW SC NI WA UK

1st 0.17 0.56 0.28 0.65 0.64 0.84 0.85 0.72 0.80 0.59 0.15 0.84 0.76 0.33

2nd 0.68 0.13 0.32 0.48 0.34 0.34 0.94 0.81 0.78 0.93 0.33 0.39 0.87 0.56

3rd 0.24 0.19 0.11 0.52 0.31 0.89 0.62 0.97 0.71 0.29 0.70 0.66 0.72 0.16

4th 0.70 0.07 0.49 0.46 0.27 0.52 0.70 0.79 0.74 0.94 0.50 0.37 0.38 0.39

FTSE conditional on house prices (1 lag)

N YH NW EM WM EA OSE OM L SW SC NI WA UK

1st 0.71 0.52 0.71 0.68 0.63 0.63 0.45 0.42 0.26 0.58 0.71 0.24 0.63 0.48

2nd 0.49 0.98 0.85 1.00 0.81 0.87 0.29 0.89 0.92 0.82 0.11 0.61 0.99 0.42

3rd 0.89 0.62 0.91 0.78 0.86 0.99 0.93 0.91 0.57 0.93 0.98 0.15 0.92 0.99

4th 0.21 0.98 0.68 0.93 0.69 0.84 0.78 0.99 0.61 0.99 0.01 0.33 0.76 0.81

House prices conditional on FTSE (4 lags)

N YH NW EM WM EA OSE OM L SW SC NI WA UK

1st 0.05 0.08 0.87 0.32 0.75 0.32 0.15 0.21 0.87 0.12 0.08 0.02 0.83 0.38

2nd 0.97 0.25 0.75 0.90 0.52 0.46 0.28 0.91 0.12 0.60 0.77 0.83 0.66 0.20

3rd 0.04 0.08 0.74 0.11 0.66 0.69 0.11 0.30 0.86 0.38 0.52 0.05 0.59 0.22

4th 0.90 0.27 0.79 0.96 0.64 0.45 0.45 0.86 0.03 0.94 0.84 0.61 0.49 0.48

FTSE conditional on house prices (4 lags)

N YH NW EM WM EA OSE OM L SW SC NI WA UK

1st 0.63 0.27 0.60 0.62 0.51 0.59 0.33 0.28 0.25 0.51 0.60 0.29 0.46 0.53

2nd 0.51 0.84 0.80 0.74 0.48 0.23 0.52 0.65 0.73 0.90 0.41 0.72 0.64 0.72

3rd 0.45 0.08 0.45 0.54 0.54 0.32 0.57 0.31 0.45 0.47 0.43 0.13 0.39 0.60

4th 0.37 0.83 0.70 0.58 0.41 0.68 0.75 0.78 0.50 0.87 0.20 0.64 0.37 0.73

Panel B. Kolmogorov-Smirnov (KS) and Berkowitz (BK) tests

N YH NW EM WM EA OSE OM L SW SC NI WA UK SP

KS 0.56 1.00 0.66 0.75 0.82 0.97 0.54 1.00 0.84 0.73 0.63 0.98 0.84 0.96 0.98

BK 0.85 0.96 0.99 0.75 0.91 0.88 0.97 0.96 0.99 0.92 0.73 0.99 0.96 0.66 0.89

Panel C. ‘Hit’ regression tests

N YH NW EM WM EA OSE OM L SW SC NI WA UK SP

R1 0.23 0.54 0.46 0.12 0.43 0.97 0.91 0.99 0.71 0.44 0.16 0.63 0.26 0.78 0.54

R2 0.31 0.88 0.22 0.23 0.36 0.69 0.79 0.63 0.65 0.55 0.89 0.88 0.20 0.38 0.30

R3 0.94 0.14 0.73 0.91 0.99 0.87 0.60 0.30 0.75 0.95 0.23 0.63 0.96 0.68 0.92
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away from its mean. Simply put, if we assume that the stock market will experience a
crash (boom) in the next quarter, these conditional probabilities show the likelihood
that in the same period the housing market will also experience a crash (boom) of a
similar magnitude11.

Figure 1 displays the conditional probabilities implied by the best fitting copula
specification at the national level, the rotated Gumbel, against those of the Normal
copula which exhibits no tail dependence and serves as a benchmark. As Fig. 1 shows,
while the likelihood of joint booms, displayed on the right side of the graph, in the two
markets is fairly similar in both models, the Normal copula severely underestimates the
probability of joint extreme crashes which is displayed on the left side of the graph. For
policymakers and financial institutions that are particularly worried about the linkages
between the housing and equity markets during periods of financial turmoil, this result
highlights the risk of using an inappropriate model.

The empirical results for the regional analysis largely resemble those at the national level.
Specifically, for nine of the 13 regions (YH, NW, EM, WM, OM, L, SC, NI, WA) the
Clayton copula, which also exhibits left tail dependence, provides the best fit to the data. For
these regions, as the conditional probabilities in Fig. 2 depict, the benchmark Normal copula
always underestimates the risk of joint crashes, often by a widemargin. On the other hand, it
overestimates the likelihood of joint price booms but, in the majority of cases, only by a
rather narrow margin.

For EA and SW, the dependence between the stock and housing markets is best
captured by the Student’s t copula which has symmetric tail dependence, indicating that
joint crashes and booms are equally likely. This is illustrated by the conditional
probabilities in Fig. 3 which show that the probabilities of joint crashes and joint
booms are higher than those implied by the benchmark Normal copula.

For N and OSE, the Frank copula provides the best fit of their relationship with the
stock market, implying that there is no tail dependence. This is also portrayed by the
conditional probabilities in Fig. 4.

Time-Varying Copulas

In the previous section, the dependence between the housing and stockmarkets was assumed
to be constant over time. In this section, we allow the degree of dependence to be time-
varying following the GAS copula dynamics introduced in Creal et al. (2013), as presented
earlier. For this part, we focus on three conditional copula models with distinct dependence
characteristics: the Gumbel copula (right tail dependence), the Normal copula (symmetric
with no tail dependence) and the rotatedGumbel copula (left tail dependence). The estimated
parameters, together with the LL, AIC, and SIC statistics are displayed in Table 5.

From these empirical results, a key finding of our study emerges. The dependence
between the housing market at the national level and the stock market is both asymmetric
and time-varying. Using, for example, SIC as a measure of fit, we find that the time-varying
rotated Gumbel copula model, which implies stronger left tail dependence that varies across
time, ranks favourably against any other, constant or time-varying, copula model. We also

10 It is important to clarify these joint crash/boom probabilities are contemporaneous, i.e. they correspond to
price changes over the same period. As such, they are not driven by lead-lag effects between the two variables,
which have already been taken into account when the marginal distributions were modelled.
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note that the null hypothesis of constant dependence is rejected at the 5% level. In particular,
given that the best constant copula model (rotated Gumbel) is nested in the time-varying
specification, a standard likelihood ratio test reveals that the constant copula model is
rejected with a p value of 4%.

Our regional analysis provides additional interesting insights. For all regions, when the
SIC statistics of the best constant and time-varying copula models are compared, time-
varying specifications always rank higher than the constant ones. This widespread
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Fig. 1 Conditional probabilities at the aggregate level
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Fig. 2 Conditional probabilities for regions that exhibit stronger left tail dependence
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consistency in these findings reinforces the belief that the relationship between the stock
market and the housing market evolves over time. Within the class of time-varying
copula models, we find that most regions are compatible with a Gaussian dependence
paradigm. In particular, for eight regions (YH, NW, EM, WM, EA, OSE, L, WA) the
preferred model is the time-varying Normal copula. The remaining five regions (N, OM,
SW, SC, NI) share the same dynamics as those of the national housing market, as their
dependence with the equity market is time-varying, asymmetric and best described by
the time-varying rotated Gumbel copula.

Further Insights into our Findings

Our findings raise important questions for both policymakers and market participants.
How much should one be concerned if the wrong model is used? To this end, we
attempt to obtain better insights with respect to the practical implications of our
findings by once again looking at conditional probabilities. In the case of the constant
copulas, the conditional probability figures represented the behaviour of the model for
the whole sample over various values of k. In the case of time-varying copulas, the
conditional probabilities will evolve with time. As an illustration, in Fig. 5, we show
how the best performing model at the national level, the time-varying rotated Gumbel
copula, compares against some benchmark models for k = 2. We have selected k = 2 as
a reference point for joint crashes/booms, as observations beyond this level are more
relevant for studying significant price swings. To better understand the risk ramifica-
tions, one has to approach this question by examining various factors that influence the
dependence structure between the two markets. The benchmark models we use reflect
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Fig. 3 Conditional probabilities for regions that exhibit Student’s t copula (symmetric) tail dependence
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Fig. 4 Conditional probabilities for regions that exhibit Frank copula (symmetric) tail dependence
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the potential omission of important defining characteristics in the dependence structure.
The benchmark models are: (i) the constant Normal copula model, (ii) the best constant
copula model, which in this case is the rotated Gumbel copula and (iii) the time-varying
Normal copula model. Given that the best model at the national level is a time-varying
asymmetric copula, using a constant Normal copula would imply that tail dependence and
time-variation are being ignored. Using the best constant copula implies that time-variation
is being ignored, while using the time-varying Normal copula implies that tail dependence
is being ignored. Panel A of Fig. 5 shows the conditional probabilities for joint crashes
(CP−), while those corresponding to joint booms (CP+) are displayed in Panel B.

Starting with Panel A, with reference to the conditional probabilities of the best model,
the time-varying rotated Gumbel copula, we can see that both the constant and the time-
varying Normal copula significantly underestimate the conditional probabilities of joint
crashes. The negative consequences of incorrectly relying on the constant rotated Gumbel
copula appear more benign. We can quantify the divergence between the models by
finding the difference in the mean conditional probabilities of the best model and the
alternative model. The conditional probability difference with the constant Normal copula
model is 12.6% on average, implying that ignoring time-variation and tail dependence
leads to the likelihood of a joint crash being substantially underestimated. Ignoring tail

.00

.04

.08

.12

.16

.20

.24

1975 1980 1985 1990 1995 2000 2005 2010 2015

Normal Rot. Gumbel TV Normal TV Rot. Gumbel

.02

.03

.04

.05

.06

.07

.08

1975 1980 1985 1990 1995 2000 2005 2010 2015

Normal Rot. Gumbel TV Normal TV Rot. Gumbel

a

b

Fig. 5 Conditional probabilities for joint booms and crashes. Panel a: Conditional probabilities for joint
crashes. Panel b: Conditional probabilities for joint booms

Investigating the Links between UK House Prices and Share Prices... 445



dependence by using the time-varying Normal copula leads to an underestimation of risk
by 12.43% on average. The difference between the best copula model and the best
constant copula model is relatively modest; more specifically, ignoring time-variation in
the dependence structure while taking tail dependence into account would lead to an
underestimation of the risk of a joint crash by 0.99% on average. This underscores a key
finding of our empirical study about the relationship between the national housing and
stock markets, namely that accommodating left tail dependence is of the essence for
properly measuring joint crash risk.

For the case of joint booms in the two markets, the implications of relying on the wrong
copula model are much more innocuous. As shown in Panel B of Fig. 5, the Normal copula
models exaggerate the probabilities of joint booms, although they are not very far from those
implied by the optimal model. The mean conditional probability differences between the
optimal copula and the constant and time-varying Normal copulas are −1.12% and− 1.28%
respectively. The negative signs indicate that the probabilities of joint booms are
overestimated by the Normal copula models. The difference in the conditional probabilities
between the optimal model and the best constant copula model is 0.16% on average.

For our discussion on the regional level findings, we will continue using the
difference in conditional probabilities based on benchmark models which reflect poten-
tial omissions of important defining characteristics in the dependence structure. The best
models in each case, and the difference in conditional probabilities, are provided in
Panels A and B of Table 6 for joint crashes and booms respectively. The first row in the
panels of the table lists the optimal model for each region. The subsequent rows provide
the average of the difference in conditional probabilities between the optimal model and
(i) the constant Normal copula, (ii) the best constant copula and (iii) the time-varying
Normal copula respectively. Numbers closer to zero indicate a minimal difference
between the best model and the alternative model. In some cases the difference will
be zero; this happens when the best model is the same as the alternative model. Positive
numbers indicate that the likelihood of an extreme event (either joint crash or joint
boom) is being underestimated, while negative numbers indicate that the likelihood of
an extreme event is being overestimated. A number of interesting findings emerge from
these tables, many of which reinforce our results at the national level.

(i) Using the wrong model leads to either an overestimation or an underestimation of the
probabilities of joint crashes and booms, which, in some cases, is quite high and can
potentially have severe consequences for policymakers and market participants alike. For
instance, for the regionNorth in Panel A, the differences in the conditional probabilities with
the three alternative models are 12.31%, 13.27% and 11.65% on average. In all the three
alternative scenarios the probability of a joint crash is severely underestimated. An example
of overestimating joint crash risk is provided by London in Panel A. The appropriate model
is a time-varying Normal copula but if the Clayton copula is used, the risk of a joint crash
with the stock market would be overestimated by 6.9% on average.

(ii) In cases where the optimal model is a time-varying version of the best constant
copula, the difference between the conditional probabilities tend to be relatively small.
In Panel A, for example, the best model for YH is the time-varying Normal copula but
if instead a constant Normal copula was used, the underestimation of a joint crash
would be 0.8% on average. This is in sharp contrast to, for instance, OM where the best
model is a time-varying rotated Gumbel, but if a constant Normal copula was used
instead, joint crash risk would be underestimated by 10.96% on average.
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(iii) We find that generally if the wrong model is used, the differences in the conditional
probabilities are larger for joint crashes as compared to joint booms. This reflects the fact that
left tail dependence is more prevalent in the data compared to right tail dependence.

(iv) Even if the same copula model is appropriate for two regions, and the same
incorrect assumption is employed for both cases, the errors can be markedly different.
For example, both EM and OSE have the time-varying Normal copula as the best
model but if the constant Normal copula model was used for these regions, joint crash
risk would be underestimated on average by 3.43% and 0.33%, respectively. In other
words, ignoring time-variation has a different impact on each of these cases. This
simply reflects the fact that the degree of dependence, captured by the parameter of the
time-varying Normal copula, evolves differently across time for each of these regions.

Overall, these results add support to the growing literature that highlights the
importance of the regional analysis of housing markets. We can clearly see from these
results that the characteristics of the UK regions are different to those of the national
level and therefore any policies, targeting the housing market, devised at the national
level will not necessarily have the desired effect across all regions.

Dependence Structure between London Prices and Other Regions

The models that best capture the dependence structure between London and
other regions, and the difference in conditional probabilities with the benchmark
models, are provided in Table 7. Except for YH, all other regions are
characterised by time-varying dependence based on SIC value comparisons.
Thus, by and large, our results are in line with those of Zimmer (2015) which
show that time-variation is an important feature in modelling the dependence
structure between regional house prices. A Student’s t copula, which has
symmetric tail dependence, is found to adequately describe the dependence
structure between YH and London. The dependence structures between London
and N, SC and WA are best described by the time-varying rotated Gumbel
copula, indicating left tail dependence. This implies that house prices in N, SC
andWA are more likely to experience a joint crash with London prices. For EA, we find
evidence of right tail dependence as indicated by the fit of the time-varying Gumbel
copula which implies that London and EA prices are more likely to boom, rather than
crash, together. The remaining regions (NW, EM, WM, OSE, OM, SW, NI) do not
display tail dependence with London, but they exhibit a time-varying relationship that is
best described by a Normal copula.

In terms of the difference in conditional probabilities, a number of the observations
made in the preceding discussions also hold here. As shown in Table 7 using the wrong
model can lead to a severe overestimation or underestimation of the probability of
joint crashes or booms. The comparison of conditional probabilities also reveals
that there are widespread differences in the dependence between London and
other regions. For example, if one incorrectly uses the constant Normal copula,
the crash risk would be substantially underestimated for N, SC and WA (by
17.7%, 17.8% and 19.2% on average, respectively) but significantly
overestimated for EA (by 6.6% on average). These results also reinforce the
earlier finding that significant regional differences exist in the behaviour of the
housing market. While earlier studies have primarily used linear models to
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study the linkages between property prices in London and other parts of the
UK, our analysis shows that these linkages are predominantly time-varying and
the nature of dependence varies greatly from region to region.

Concluding Remarks

In this paper, we attempt to gain further insights into the relationship between the UK
housing and stock markets. In particular, we employ copula functions which allow us to
examine nonlinear associations between the two markets, including increased depen-
dence in the tails. Our empirical analysis is conducted at both the national and regional
levels. We also investigate how closely house prices in different parts of the UK are
linked to those in London given that earlier studies have suggested that the latter tend to
influence UK regional prices.

Previous UK studies have shown that the housing and stock markets share a positive
relationship at the national level and may exhibit left tail dependence. We also find evidence
supporting these results. Further to these, our findings suggest that the stock and housing
markets exhibit left tail dependence which is time-varying. The left tail dependence signifies
that the two markets are more likely to crash together. Therefore, any severe instability in one
market is likely to coincidewith turmoil in the other.We also show that using thewrongmodel
can lead to a severe underestimation or overestimation of the likelihood of joint crashes or
booms. These findings have important implications for investors, financial institutions, and
policymakers alike. Our results suggest that the increased contagion in down markets will
erode diversification benefits when they are needed themost since during periods of economic
turmoil neither the stock nor the housing market will provide refuge. For institutions and
investors that have significant exposures to both the stock and real estate markets, our study
highlights the challenges of remaining financially sound during the downturns of the economic
cycle and the danger of under-predicting risk if nonlinear dependence is ignored.

Our analysis at the regional level provides further insights into the relationship
between house prices and the stock market in the UK. Only five of the 13 regions
share a similar dependence structure to the national level. These findings suggest that
any national-level policy aimed at influencing the housing market in the UK will not
necessarily have the desired effect across all regions. The dependence structure be-
tween property prices in London and other parts of the UK also show widespread
regional differences. Similar to the findings at the national level, time-variation is a
salient feature of the dependence structure at the regional level.

Overall, our results are of direct relevance to policymakers in the UK and world-
wide. Specifically, as our study clearly demonstrates, the stock and housing markets
have complex and intricate links with each other that must be taken into account before
any regulatory or fiscal intervention is designed. Ignoring these, even well-intended
policies can result in destabilising results.

Acknowledgments We would like to thank the anonymous referees whose comments have helped us
improve the paper.

R. K. Bissoondeeal, L. Tsiaras450



Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the
article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aye, G., Balcilar, M., & Gupta, R. (2013). Long-and short-run relationships between house and stock prices in
South Africa: A nonparametric approach. Journal of Housing Research, 22, 203–219.

Berkowitz, J. (2001). Testing density forecasts with applications to risk management. Journal of Business and
Economic Statistics, 19, 465–474.

Bissoondeeal, R.K. (2021). The links between regional house prices and share prices in the UK. Regional
Studies, 55, 256-268.

Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates of
return. The Review of Economics and Statistics, 69, 542–547.

Creal, D. D., Koopman, S. J., & Lucas, A. (2013). Generalized autoregressive score models with applications.
Journal of Applied Econometrics, 28, 777–795.

Diebold, F. X., Gunther, T. G., & Tsay, A. S. (1998). Evaluating density forecasts, with applications to
financial risk management. International Economic Review, 39, 863–883.

Ding, H., Ching, T. T., & Park, S. Y. (2014). Nonlinear dependence between stock and real estate markets in
China. Economics Letters, 124, 526–529.

Eichholtz, P., & Hartzell, D. (1996). Property shares, appraisals and the stock market: An international
perspective. Journal of Real Estate Finance and Economics, 12, 163–178.

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the
volatility of the nominal excess return on stocks. The Journal of Finance, 48, 1779–1801.

Green, R. K. (2002). Stock prices and house prices in California: New evidence of a wealth effect? Regional
Science and Urban Economics, 32, 775–783.

Hansen, B. E. (1994). Autoregressive conditional density estimation. International Economic Review, 35,
705–730.

Ho, A. T. Y., Kim, P. H., & David, T. J. C. (2016). Flexible estimation of copulas: An application to the US
housing crisis. Journal of Applied Econometrics, 31, 603–610.

Holly, S., Pesaran, M. H., & Yamagata, T. (2011). The spatial and temporal diffusion of house prices in the
UK. Journal of Urban Economics, 69, 2–23.

Kakes, J., & Van Den End, J. W. (2004). Do stock prices affect house prices? Evidence from the Netherlands.
Applied Economics Letters, 11, 741–744.

Kapopoulos, P., & Siokis, F. (2005). Stock and real estate prices in Greece: Wealth versus ‘credit-price’ effect.
Applied Economics Letters, 12, 125–128.

Knight, J., Lizieri, C., & Satchell, S. (2005). Diversification when it hurts? The joint distributions of real estate
and equity markets. Journal of Property Research, 22, 309–323.

Lean, H. H., & Smyth, R. (2014). Dynamic interaction between house prices and stock prices in Malaysia.
International Journal of Strategic Property Management, 18, 163–177.

MacDonald, R., & Taylor, M. P. (1993). Regional house prices in Britain: Long-run relationships and short-
run dynamics. Scottish Journal of Political Economy, 40, 43–55.

Ning, C. (2010). Dependence structure between the equity market and the foreign exchange market –A copula
approach. Journal of International Money and Finance, 29, 743–759.

Okunev, J., Wilson, P., & Zurbruegg, R. (2000). The causal relationship between real estate and stock markets.
Journal of Real Estate Finance and Economics, 21, 251–261.

Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International Economic Review, 47,
527–556.

Patton, A. J. (2013). Copula methods for forecasting multivariate time Ssries. In Handbook of economic
forecasting, volume 2. Verlag: Springer.

Investigating the Links between UK House Prices and Share Prices... 451

http://creativecommons.org/licenses/by/4.0/


Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Paris Publications de l'Institut de
Statistique de l'Université de Paris, 8, 229–231.

Sutton, G. D. (2002). Explaining changes in house prices. BIS Quarterly Review (September), 46–55.
Zimmer, D. M. (2012). The role of copulas in the housing crisis. Review of Economics and Statistics, 94, 607–

620.
Zimmer, D. M. (2015). Time-varying correlation in housing prices. The Journal of Real Estate Finance and

Economics, 51, 86–100.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

R. K. Bissoondeeal, L. Tsiaras452


	Investigating the Links between UK House Prices and Share Prices with Copulas
	Abstract
	Introduction
	Copula Functions
	Models for Marginals

	Data
	Results and Analysis
	Estimation of Marginals
	Constant Copulas
	Time-Varying Copulas
	Further Insights into our Findings

	Dependence Structure between London Prices and Other Regions

	Concluding Remarks
	References




