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Abstract
Accurate and unbiased property value estimates are essential to credit risk management.
Along with loan amount, they determine a mortgage’s loan-to-value ratio, which
captures the degree of homeowner equity and is a key determinant of borrower credit
risk. For home purchases, lenders generally require an independent appraisal, which, in
addition to a home’s sales price, is used to calculate a value for the underlying
collateral. A number of empirical studies have shown that property appraisals tend to
be biased upwards, and over 90 percent of the time, either confirm or exceed the
associated contract price. Our data suggest that appraisal bias is particularly pervasive
in rural areas where over 25 percent of rural properties are appraised at more than five
percent above contract price. Given this significant upward bias, we examine a host of
alternate valuation techniques to more accurately estimate rural property values.
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Introduction

Accurate property value estimates are an essential component of the mortgage under-
writing process. Along with the loan amount, they determine a mortgage’s loan-to-
value (LTV) ratio, which captures the degree of homeowner equity and the credit risk of
a loan. For home purchases, lenders generally require an independent appraisal, which,
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in addition to a home’s sales price, is used to determine a value for the underlying collateral.
A number of empirical studies have shown that property appraisals tend to be biased
upwards, and over 90% of the time, either confirm or exceed the associated contract price.1

This upward appraisal bias is often particularly pronounced in rural areas where there are
fewer comparable sales andmore heterogeneity across homes. In fact, our data suggest that
more than 25% of rural appraisals exceed the associated contract price by more than 5%.
Given the extent and ubiquity of appraisal bias in rural areas, we create a series of alternate
automated property value estimates, using a number of machine learning algorithms, to
more accurately value the collateral underlying rural purchase-money mortgages.

Appraisals are performed by experts with specialized knowledge about local hous-
ing markets, but they can face pressures—either apparent or perceived—to arrive at a
value estimate at or above the contract price to ensure that a sale goes through. Since
the Great Recession, the majority of single-family conforming loans have been sold to
or securitized by the government sponsored enterprises (GSEs). For purchase money
loans, the GSEs require that a borrower’s LTV ratio be calculated as the loan amount
over the lesser of the contract price and an independent appraisal estimate. If the
appraisal estimate is less than the contract price, a borrower may need to increase his
or her down payment to stay at their desired LTV range and not incur a higher interest
rate on the loan. Alternatively, the contract price could be renegotiated. In either case,
additional difficulties may arise for the borrower or seller and thus appraised values that
are “too low” may increase the chance that the sale could fall through.2

Property appraisals are most often estimated based upon the recent sales prices of
three to five comparable properties.3 This leads to a certain degree of subjectivity.
Appraisers have a number of different options in terms of what comparable sales they
select as reference transactions. Because properties can resemble each other along
many different dimensions, the appraiser has some latitude in terms of what comparable
properties he or she chooses. Further, when a comparable property has characteristics
that differ from the subject property (e.g., condition, square footage, number of
bedrooms), appraisers will manually make adjustments to a comparable sales price to
reflect these differences. Finally, appraisers can assign different weights to each
comparable based upon the degree of applicability to the subject property. In each of
these stages, there is opportunity to push up appraised values so that they either confirm
or exceed the contract price. Eriksen et al. (2016) find evidence of significant upward
bias at each of these three stages of the appraisal process.

Lang and Nakamura (1993), Blackburn and Vermilyea (2007), and Ding (2014) find
that appraisal bias is amplified in rural areas, which are often characterized by fewer
comparable sales and more heterogeneity across homes. We find a similar result using
appraisal data for Fannie Mae and Freddie Mac acquisitions from 2012 through 2016.

1 Cho and Megbolugbe (1996), Horne and Rosenblatt (1996), and Calem et al. (2017) find that between 90 to
95% of appraisals come in at or above contract price. See Yiu et al. (2006) for a detailed review of the
literature. Consistent with existing literature, we define appraisal bias as the percentage deviation of the
appraised value from the contract price. For an individual appraisal, it is possible that the appraised value
exceeding the contract price is in fact an accurate estimate of the real house value. However, it is highly
unlikely to observe such a systematically skewed relationship without at least some level of bias.
2 Fout and Yao (2016) find that about 32% of negative appraisals result in the transaction falling through.
3 Dotzour (1990) finds that the sales comparison approach tends to provide a more accurate measure of value
than the cost approach.
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As illustrated in Fig. 1a and 1b, both urban and rural areas are subject to appraisal bias,
but such bias is exacerbated in rural areas. Specifically, we find that approximately 25%
of properties in rural areas compared to 12.7% in urban areas are appraised at more than
5% above contract price.

Given observed appraisal bias, several researchers have considered including auto-
mated property value estimates as an alternate, and potentially unbiased, measure of the
underlying value of the collateral when calculating credit risk (LaCour-Little and
Malpezzi 2003; Kelly 2007; Agarwal et al. 2015; and Calem et al. 2017). We explore
a similar question, but concentrate our attention on rural areas.4 Specifically, we
estimate a series of AVMs5 and examine their computational burden and out-of-
sample predictive accuracy in rural areas. In an effort to explore a wide array of
specifications, we include two tree-based approaches to help capture non-linear
relationships.6

The paper is structured as follows. In section two, we discuss the data used to
estimate a series of AVMs. In section three, we evaluate several different AVM models
and select a preferred specification based upon both computation time and out-of-
sample predictive ability. We conclude in section four.

Data

Our analysis draws on the Uniform Appraisal Dataset (UAD) from Q4 2012 to Q1
2016. It contains every active appraisal record associated with loan applications
submitted to Fannie Mae and Freddie Mac during the study period. The UAD provides
us with information on structural characteristics, neighborhood attributes, and historical
sales prices for rural homes.

We define rural in the same manner as the Appraisal Institute.7 Specifically, it is
defined as “Pertaining to the country as opposed to urban or suburban; land under an
agricultural use; areas that exhibit relatively slow growth with less than 25% develop-
ment” (The Dictionary of Real Estate Appraisal – 4th Edition). Appraisers use this
definition to determine the neighborhood characteristics of a subject property when
filling out a Uniform Residential Appraisal Report.

The Enterprises agreed to adopt the Home Valuation Code of Conduct (HVCC),
which became effective in May 2009. This strengthened requirements for submitting
each appraisal associated with a loan application to the Enterprises. In the Uniform
Residential Appraisal Report, appraisers are required to document property attributes
for subject and comparable properties as well as appraisal approaches adopted. Starting
in 2012, the data captured by lenders’ appraisal reports conform to the UAD, and are
digitized, compiled, and submitted to the Enterprises to support loans lenders wish to

4 Compared to AVM estimates in urban areas, AVM estimates in rural areas may face additional scrutiny due
to lack of data.
5 We do not seek to use contemporaneous data and make real-time AVM predictions in this research. Instead,
our work is focused on highlighting the pros and cons of machine learning algorithms and comparing their
performance with more traditional methodologies.
6 Many other researchers, for example Pace and Hayunga (2018) and Villupuram and Johnson (2018), have
also explored machine learning algorithms in property valuations.
7 This definition is consistent with the Enterprises’ guidance.
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sell to the Enterprises. The data consists of about 18 million unique appraisal records
for subject properties and 2.1 million for purchase-money mortgages.8 Of the 2.1
million appraisals for purchase-money mortgages, 420,3709 are associated with rural
properties, and hence form the full sample in our analysis.

8 The same appraisal is often submitted to both Fannie Mae and Freddie Mac.
9 We apply a series of standard data filters, which include censoring observations associated with extreme/
implausible values for several structural attributes (i.e., number bedrooms, number of bathrooms, square
footage, and age). To further minimize the influence of outliers, we remove observations with sales prices in
the top and bottom 1% of the price distribution.

a

b

Fig. 1 a Distribution of Appraised Value Relative to Contract Price for Rural Areas. b Distribution of
Appraised Value Relative to Contract Price for Urban Areas
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For purposes of model development, We randomly split our full sample into two
subsamples – a training dataset and a test dataset. The training dataset contains 80% of
our observations and is used to estimate or parameterize each of our models. The test
dataset contains the remaining 20% of observations and is used to measure each
model’s out-of-sample performance.

Table 1 provides summary statistics for the full sample, and the training and test
samples. As detailed in Panel A, the average sales price for rural buyers in the full
sample is approximately $220,000.10 The average rural property has approximately 3
bedrooms, 2 bathrooms, and 1,870 square feet of living area. Although rural properties
may have different values for their land and amenities, their basic structural attributes
are qualitatively similar to those of the full purchase-money mortgage sample in the
UAD. The average rural property is approximately 32 years old11 with a 3.57 (out of 5)
appraiser-rated overall condition and a 2.99 (out of 5) quality of construction. Among
the purchase-money rural mortgages, properties in the following states have the largest
representation: MI (7.35%), TX (6.94%), OH (4.93%), GA (4.87%), and PA (4.77%).
As shown in Panels B and C, the average properties in the training and the test samples
are very similar to the representative property in the full sample.

AVM Techniques and their out-of-Sample Performance

Using the UAD, we begin our analysis by estimating and exploring the out-of-sample
performance of a series of AVMs. There are a number of different approaches to
estimating home values. We focus our attention on a subset of techniques that allow us
to more fully capture household heterogeneity by incorporating information on both
structural (e.g., number of bedrooms, number of bathrooms, square footage) and neigh-
borhood attributes (e.g., location, proximity to amenities, view). We begin our model12

selection process with a hedonic regression estimated using ordinary least squares (OLS).
This is one of the most commonly used techniques for price estimation and will serve as a
baseline as we evaluate five alternate and more involved estimation techniques.

As mentioned in Section 2, we use the training dataset to train each of our models
and estimate the parameters and use the test dataset to measure each model’s out-of-
sample performance. For each model, we focus our attention on two performance
metrics – the R2 and the root mean squared error (RMSE). The R2 statistic is a relative
measure of fit for calculating the proportion of variance in the dependent variable,
which is captured through the model. The RMSE is an absolute measure of fit, which
calculates the sample standard deviation of the residuals and provides an overall
measure of model accuracy.

Table 2 provides model fit statistics for each AVM technique. As detailed, a standard
hedonic results in an out-of-sample R2 value of 0.6803 and an RMSE of 0.3188. The R2

value indicates that a standard hedonic is able to explain approximately 68.03% of the
variation in log sales price for single-family homes in rural areas. These metrics serve
as a baseline as we explore a series of alternate estimators. While an overall RMSE and

10 This is about $55,000 lower than the average sales price across all purchase-money mortgages in the UAD.
11 This is about twice as old as the average property in the full purchase-money mortgage sample in the UAD.
12 In this paper, we use model and algorithm interchangeably to refer to each specific AVM technique.
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R2 are useful in describing average model fit, they fail to provide sufficient information
on the success (or lack thereof) of model fit in the tails of the price distribution. For
instance, a particular model may perform well when estimating the value of an average
priced home, but fail to explain sufficient variation for lower or higher priced units. To
explore how our model fits the tails of the price distribution, we calculate separate R2

values for the top and bottom quartiles of the sales price distribution.13

13 As detailed, R2 are actually higher in the tails of the price distribution. While this result may seem
counterintuitive, it is simply a reflection of the proportional nature of the statistic. Both the residual sum of
squares and total sum of squares increase as we move away from the middle of the price distribution, but the
total sum of squares increases at a faster rate. In other words, absolute fit (as captured by RMSE) is
deteriorating, but proportional fit (or the percentage of explained variation) is actually increasing.

Table 1 Summary Statistics for Rural Purchase-Money Mortgages

Variables Mean SD P25 P75

Panel A: Full Sample

Sales Price ($) 219,555 129,047 130,000 275,000

Number of Bathrooms 1.9027 0.6532 1.1 2.1

Number of Bedrooms 3.0330 0.7721 3 3

Square Footage 1,869.55 712.1829 1,360 2,239

Age of the House (Years) 32.2496 30.2857 11 44

Overall Condition (1-5) 3.5662 0.6140 3 4

Quality of Construction (1-5) 2.9921 0.8461 3 4

Number of Observations 420,370

Panel B: Training Sample (80%)

Sales Price ($) 219,428 128,909 130,000 275,000

Number of Bathrooms 1.9018 0.6537 1.1 2.1

Number of Bedrooms 3.0326 0.7724 3 3

Square Footage 1,869.165 712.2785 1,360 2,239

Age of the House (Years) 32.2350 30.2350 11 44

Overall Condition (1-5) 3.5665 0.6143 3 4

Quality of Construction (1-5) 2.9933 0.8450 3 4

Number of Observations 336,216

Panel C: Test Sample (20%)

Sales Price ($) 220,066 129,593 130,900 276,000

Number of Bathrooms 1.9062 0.6513 1.1 2.1

Number of Bedrooms 3.0346 0.7706 3 3

Square Footage 1,871.09 711.8031 1,363 2,240

Age of the House (Years) 32.3078 30.4878 11 44

Overall Condition (1-5) 3.5649 0.6126 3 4

Quality of Construction (1-5) 2.9873 0.8505 3 4

Number of Observations 84,154

This table reports the summary statistics of the attributes and conditions of the house and the transaction price.
Each observation corresponds to a single appraisal record in the sample. The top five states in our sample are
Michigan (7.35%), Texas (6.94%), Ohio (4.93%), Georgia (4.87%), and Pennsylvania (4.77%).
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Due to our relatively small sample size, we also explore a series of shrinkage
estimators, which introduce a degree of bias in exchange for a lower variance.
Specifically, shrinkage estimators incorporate a penalty function in the estimation
process which pushes (or shrinks) coefficients values towards zero. This bias-
variance tradeoff has been shown to lead to smaller mean squared errors when applied
to out-of-sample data.

Two of the more popular shrinkage estimators are ridge regression and lasso
(least absolute shrinkage and selection operator) regression. Ridge regression
includes a penalty function, which biases the value of model coefficients towards
zero. Lasso regression goes one step further and aides with variable selection by
eliminating certain covariates altogether (this is achieved by shrinking the associ-
ated coefficients all the way to zero). Consistent with other literature and for
model simplicity, we choose lambda.1se as the benchmark for all shrinkage
estimation models. Lambda.1se is the largest value of lambda such that the
cross-validated error is within one standard deviation of the minimum mean
cross-validated error, whereas lambda.min is the lambda that minimizes the mean
cross-validated error. With the latter, R2 and RMSE for shrinkage estimators
improve marginally at the cost of making models more complicated. As detailed
in the bottom row in Table 2, in our benchmark specification for shrinkage
estimators, the ridge regression performs marginally worse than our baseline
estimator with an out-of-sample R2 value of 0.6761 and an RMSE of 0.3209.
The additional flexibility garnered through variable selection improves model fit
statistics for the lasso regression, but increases in accuracy are relative minor. The

Table 2 AVM Out-of-Sample Performance Metrics: Model Fit Statistics

Specifications R2 RMSE

Baseline P25 P75 Baseline P25 P75

Tree-Based Estimators Random Forest 0.7224 0.7700 0.8193 0.2971 0.3749 0.3215

Boosting 0.6755 0.7273 0.7772 0.3212 0.4082 0.3569

Standard Hedonic OLS 0.6803 0.7452 0.7729 0.3188 0.3946 0.3603

Shrinkage Estimators lambda.1se Elastic Net 0.6788 0.7404 0.7699 0.3196 0.3983 0.3627

Lasso 0.6795 0.7422 0.7713 0.3192 0.3969 0.3616

Ridge 0.6761 0.7335 0.7654 0.3209 0.4036 0.3662

Shrinkage Estimators lambda.min Elastic Net 0.6803 0.7447 0.7727 0.3188 0.3950 0.3605

Lasso 0.6803 0.7448 0.7727 0.3188 0.3949 0.3605

Ridge 0.6765 0.7344 0.7660 0.3207 0.4029 0.3658

This table reports the out-of-sample performance (measured by R2 and RMSE) for different model
specifications employing all records (All) in the test dataset and the subsamples associated with the sales
price in the top (P75) and the bottom quartile (P25) of the sales price distribution. In terms of shrinkage
estimators, for model simplicity, we choose by default lambda.1se, the largest value of lambda such that the
cross-validated error is within one standard deviation of the minimum mean cross-validated error. Alterna-
tively, if lambda.min—the lambda that minimize the mean cross-validated error—is chosen, R2 and RMSE
for shrinkage estimators improve marginally (for example, from 0.6688 to 0.6700 for Elastic Net) and the
model fit for Lasso and Elastic Net become equally good as for OLS and Boosting.
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lasso regression is associated with an out-of-sample R2 value of 0.6795 and an
RMSE of 0.3192 (the fifth bottom row in Table 2).14 While these fit statistics are
marginally better than our baseline hedonic model, the added accuracy may not be
worth the increase in model complexity.

Next, we test elastic net, which is a hybrid estimator that combines features of both
the ridge and lasso regressions. Specifically, elastic net combines the ridge and lasso
penalties into a single function and has been shown to outperform both precursor
models on data with highly correlated predictors. However, as detailed in Table 2, we
find the performance of elastic net lies between those of lasso and ridge, evidenced by
both R2 and RMSE.

While our linear estimators have yet to significantly improve upon a standard
hedonic, machine learning tree-based models may provide more “value-added” by
mapping non-linear relationships. The first tree-based model we test is random forest.
Random forest involves building a number of decision trees on a series of bootstrapped
training samples. In an effort to decorrelate the individual trees, whenever a split is
considered, potential candidate variables are drawn from a random sample of m
predictors where m < p and p is the full set of predictors.15 This ultimately results in
a composite estimate characterized by low variance because it is based upon the
average of many uncorrelated decision trees. As detailed in Table 2, random forest
significantly improves upon our baseline estimator with an out-of-sample R2 value of
0.7224 and an RMSE of 0.2971.

Though the random forest estimator increases explanatory power by approxi-
mately 6.1% relative to our baseline model, this improved model fit comes at the
cost of significant computational time. Required CPU time is over 48 hours versus
the minutes it takes to re-estimate a standard hedonic regression. The processing
time is calculated including both the time for training and for out-of-sample
estimation with the following specifics: 1) as shown in Table 1, our training
dataset contains 336,216 observations and our test dataset contains 84,154 obser-
vations; 2) each model contains 115 explanatory variables except that for random
forest we further break down the data by state (to increase efficiency) and estimate
for each state the same specification netting out the 49 state FEs; 3) processing
time for all algorithms are based on the same dual-core CPU @ 2.6GHz with 8GB
memory and 1600 Max RAM speed. For most algorithms, training takes up over
90% of the time. To the extent that one has a more powerful CPU, the processing
time will reduce accordingly.

Another drawback of random forest is that it may suffer from significant overfitting.
We show the baseline out-of-sample and in-sample fitting in Table 3. In-sample R2 is
calculated using the training dataset. Without surprise, random forest suffers greatly
from overfitting while other algorithms do not.

We next explore a second tree-based model called boosting. Boosting involves
sequentially growing a set of decision trees. The first tree is fitted to the outcome
variable, which results in a set of residuals. The second tree is fitted to these first-stage

residuals and then added back into the initially fitted function, f̂ . This new function
produces an updated set of residuals and the process repeats. With each iteration, the

14 If using lambda.min, then the out-of-sample R2 value is 0.6803 and the RMSE is 0.3188.
15 Oftentimes, m is set equal to the square root of p.
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boosting approach slowly improves f̂ in high variance areas. A shrinkage parameter, λ,
controls the rate at which the boosting approach learns, while the degree of model
complexity is controlled by d, which determines the number of splits in each tree.
Interestingly, the boosting approach does not improve upon the random forest results,
evidenced by a lower R2. The boosting model results in an out-of-sample R2 value of
0.6755 and an RMSE of 0.3212 (see Table 2). These fit statistics are virtually the same
as our standard hedonic, which suggests that boosting may not be worth its added
computational burden (approximately 24 hours of CPU time), at least when it comes to
home price valuation in rural areas.

After obtaining a baseline OLS fit and examining the initial performance of
several alternative algorithms, we explore additional ways of improving the accu-
racy of our estimates. One of the most straightforward ways to improve accuracy is
to increase the sample size of the training dataset. However, adding more rural data
does not seem to be a viable option here due to data scarcity. Therefore, as an
alternative, we add a sample of urban data to the existing rural training sample with
a one-to-one or one-to-two ratio of number of observations. Table 4 shows the
results. In addition to the baseline model specification, the models employing two
mixed samples always include an additional rural dummy, which has a significant
negative impact on the sales price.

For random forest, we expect the additional data to help overcome our
overfitting problem since a larger sample will lead to smaller distinctions between
individual trees within the forest. Not surprisingly, results show that random forest
outperforms other algorithms with an even bigger gap. In other words, though the
urban data introduces some bias, random forest does not seem to be sensitive to
such bias and its out-of-sample fit improves significantly, as detailed in Table 4
comparing the baseline R2 to the one in the adjacent column. At some point

Table 3 AVM In-sample vs Out-of-sample performance metrics

Specifications Baseline

R2 RMSE

Out-of-sample In-sample Out-of-sample In-sample

Tree-Based Estimators Random Forest 0.7224 0.9436 0.2971 0.1337

Boosting 0.6755 0.6749 0.3212 0.3211

Standard Hedonic OLS 0.6803 0.6801 0.3188 0.3185

Shrinkage Estimators
lambda.1se (Benchmark)

Elastic Net 0.6788 0.6786 0.3196 0.3192

Lasso 0.6795 0.6793 0.3192 0.3189

Ridge 0.6761 0.6759 0.3209 0.3206

Shrinkage Estimators lambda.min Elastic Net 0.6803 0.6801 0.3188 0.3185

Lasso 0.6803 0.6801 0.3188 0.3185

Ridge 0.6765 0.6763 0.3207 0.3204

This table reports the in-sample performance (measured by R2 and RMSE) in comparison to the out-of-sample
performance. In-sample and out-of-sample statistics are calculated employing the training and the test dataset
respectively. Random Forest, though outperforming other, suffers from overfitting.
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however, the trade-off between bias and variance reaches a point where the cost of
additional bias from including more urban sales outweighs the benefit of lower
variance due to the increased sample size. Hence, the out-of-sample performance
for mixing with a one-to-one ratio is not significantly better than with a two-to-
one ratio.

While this effort helps with random forest, it does not help with any other algorithms
we explore in this paper. One possible explanation is that our estimations from other
algorithms are already quite precise, so the marginal cost of additional bias outweighs
the marginal benefit of increased sample size when we mix rural and urban samples
with a two-to-one ratio. However, some may argue that it is not a fair comparison since
random forest automatically considers the interactions between the urban variable and
other existing variables while others algorithms do not once the urban data is added.
Therefore, we add two-way interaction terms of the urban dummy with every other
existing variable in the OLS regression. Though this is not a full approximation of
random forest since it does not consider multi-way interactions, it still gives us an idea
of to what degree this effort improves the OLS performance. Comparing the fourth and
the third rows in Table 4, we conclude that though it helps a little to include the
additional interaction terms, this effort does not get us anywhere close to the perfor-
mance of random forest.

A caveat that is worth mentioning lies in the uniqueness and the richness of our
appraisal data. Consider the public records data where many property attributes
are not available, results derived employing the appraisal data, where such attri-
butes are nicely populated, may not be easily generalized. To proxy the public

Table 4 AVM Out-of-Sample Performance Metrics: Baseline vs Mixed samples

Specifications R2 RMSE

Baseline 1:0.5 1:1 Baseline 1:0.5 1:1

Tree-Based Estimators Random Forest 0.7224 0.8992 0.8971 0.2971 0.1790 0.1808

Boosting 0.6755 0.6519 0.6436 0.3212 0.3327 0.3366

Standard Hedonic OLS 0.6803 0.6677 0.6539 0.3188 0.3250 0.3317

Standard Hedonic OLS w/ interactions 0.6803 0.6762 0.6717 0.3188 0.3208 0.3231

Shrinkage Estimators
lambda.1se (Benchmark)

Elastic Net 0.6788 0.6667 0.6531 0.3196 0.3255 0.3321

Lasso 0.6795 0.6661 0.6525 0.3192 0.3258 0.3324

Ridge 0.6761 0.6613 0.6481 0.3209 0.3281 0.3345

Shrinkage Estimators
lambda.min

Elastic Net 0.6803 0.6676 0.6539 0.3188 0.3251 0.3317

Lasso 0.6803 0.6676 0.6539 0.3188 0.3251 0.3317

Ridge 0.6765 0.6624 0.6486 0.3207 0.3276 0.3342

This table reports the out-of-sample performance (measured by R2 and RMSE) for different model
specifications employing all records (All) in the test dataset. The ratios (1:0.5 and 1:1) illustrate how the
sample is constructed. For example, ratio 1:0.5 means that for two rural records in the training dataset we mix
one urban record in the sample. In addition to baseline model specification, the models employing two mixed
samples always include an additional rural dummy, which has a significant negative impact on the sales price.
Both R2 and RMSE are calculated only for the records in the baseline test dataset so that all columns are easily
comparable.
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records data, we limit our variables to basic house characteristics only—number of
bedrooms and bathrooms, age of the house, number of stories, state, and year of
the most recent sale. Results are shown in the rightmost columns in the R2 and the
RMSE sections in Table 5. When limiting the number of the explanatory variables,
while the performance rank maintains, the gap almost closes between random
forest and other algorithms. In general, the richness of the data has the largest
beneficial impact on the random forest algorithm. In addition, we employ a
different sample—the urban sample—with the same specification as the baseline
to test whether our results are robust to the uniqueness of the rural sample (Table 5
Columns “Urban”). We find that the performance rank maintains while the gap
between random forest and others prevails, which suggests that our results hold in
general. However, given that random forest may perform even better with other
samples, it is still encouraged to consider the trade-off between algorithms based
on the specific sample employed.

As a summary, Fig. 2 illustrates our baseline result comparing actual versus predict-
ed values for each of the aforementioned models. As illustrated, all but random forest
result in similar out-of-sample fits. It is important to note that these results may not
extrapolate to urban samples where neighborhoods are much more compact and there
are more similarities among nearby properties.

While random forest has the best out-of-sample predictive accuracy, it is computa-
tionally burdensome and may not be replicable without access to a powerful server. In
addition, it can potentially suffer from significant overfitting. Therefore, we would
encourage researchers to consider a standard hedonic estimator in credit modeling amid
those concerns.

Table 5 AVM Out-of-Sample Performance Metrics: Generalization

Specifications R2 RMSE

Baseline Urban Fewer
Variables

Baseline Urban Fewer
Variables

Tree-Based Estimators Random Forest 0.7224 0.8921 0.4865 0.2971 0.1887 0.4041

Boosting 0.6755 0.6373 0.4699 0.3212 0.3459 0.4106

Standard Hedonic OLS 0.6803 0.6381 0.4714 0.3188 0.3456 0.4100

Shrinkage Estimators
lambda.1se (Benchmark)

Elastic Net 0.6788 0.6366 0.4696 0.3196 0.3463 0.4106

Lasso 0.6795 0.6374 0.4695 0.3192 0.3459 0.4107

Ridge 0.6761 0.6311 0.4686 0.3209 0.3489 0.4111

Shrinkage Estimators
lambda.min

Elastic Net 0.6803 0.6380 0.4714 0.3188 0.3456 0.4100

Lasso 0.6803 0.6380 0.4714 0.3188 0.3456 0.4100

Ridge 0.6765 0.6326 0.4703 0.3207 0.3482 0.4104

This table reports the out-of-sample performance (measured by R2 and RMSE) separately employing the rural
and the urban sample. Columns “Fewer Variables” present results estimated from models with basic house
characteristics only—number of bedrooms and bathrooms, age of the house, number of stories, state and year
of the most recent sale. Columns “Urban” contain results estimated using the urban sample with the baseline
specification. All R2 and RMSE are calculated only for the records in the baseline test dataset and the urban
test dataset with the same number of observations so that all columns are easily comparable.
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Conclusion

A number of empirical studies have shown that property appraisals tend to be biased
upwards, and may overstate the true value of the underlying collateral.16 This upward
bias is often exacerbated in rural areas where there are fewer comparable sales and
more heterogeneity across homes. Based on our data, approximately 25% of rural
appraisals exceed the associated contract price by 5% or more. Given the extent of
upward bias in rural appraisals, we explore a wide array of AVM techniques in search
of an estimator, potentially unbiased, to more accurately value the collateral underlying
rural purchase-money mortgages. Our tree-based random forest estimator performs the
best in terms of out-of-sample fit, but is also the most computationally burdensome. In
the face of computing constraints or lack of a powerful server, we believe that a
standard hedonic offers an excellent alternative.

16 Valuation bias is not unique to the real estate industry. Michaely and Womack (1999), White (2010), and
Bolton et al. (2007) have examined similar market pressures and their varied impact on other financial sectors.

Fig. 2 AVM Out-of-Sample Performance Metrics: Predicted vs. Actual
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