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Abstract The repeat sales model is commonly used to construct reliable
house price indices in absence of individual characteristics of the real estate.
Several adaptations of the original model by Bailey et al. (J Am Stat Assoc
58:933-942, 1963) are proposed in literature. They all have in common using a
dummy variable approach for measuring price indices. In order to reduce the
impact of transaction price noise on the estimates of price indices, Goetzmann
(J Real Estate Finance Econ 5:5-53, 1992) used a random walk with drift
process for the log price levels instead of the dummy variable approach. The
model that is proposed in this article can be interpreted as a generalization of
the Goetzmann methodology. We replace the random walk with drift model
by a structural time series model, in particular by a local linear trend model in
which both the level and the drift parameter can vary over time. An additional
variable—the reciprocal of the time between sales—is included in the repeat
sales model to deal with the effect of the time between sales on the estimated
returns. This approach is robust can be applied in thin markets where relatively
few selling prices are available. Contrary to the dummy variable approach,
the structural time series model enables prediction of the price level based
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on preceding and subsequent information, implying that even for particular
time periods where no observations are available an estimate of the price level
can be provided. Conditional on the variance parameters, an estimate of the
price level can be obtained by applying regression in the general linear model
with a prior for the price level, generated by the local linear trend model. The
variance parameters can be estimated by maximum likelihood. The model
is applied to several subsets of selling prices in the Netherlands. Results are
compared to standard repeat sales models, including the Goetzmann model.

Keywords House prices - Kalman filter - Signal-extraction - Smoothing -
State-space models

Introduction

The value of the housing stock is a significant portion of the national wealth.
The total value of the private real estate market in the Netherlands was
approximately €1,239 billion in 2007, corresponding to 436% of the real
disposable household income in 2007, see CPB (2009). For that reason, many
organizations and individuals, such as financial institutions or house owners,
are interested in house price movements. A frequently used method to model
house price movements is the repeat sales approach. For example, the House
Price Index of the Kadaster (the Dutch Land Registry) is an application of the
repeat sales model for the Netherlands, see Jansen et al. (2008).

Individual house characteristics, like house size, plot size, age, etc., can be
omitted from the repeat sales model. This is one of the main advantages of
the repeat sales model in absence of individual house characteristics. On a
negative side, only selling prices of houses sold more than once can be used
in a repeat sales model: all single-sales are not used in the estimation. A more
general problem that the sold houses are a non-random selection of the entire
housing stock (sample selection bias) is addressed by Gatzlaff and Haurin
(1997) and Hwang and Quigley (2004), based on a procedure proposed by
Heckman (1979). In this article, however, we do not address the problem of
sample selection bias.

Implicit assumption in the repeat sales model is that the house characteris-
tics and their impact on house prices do not change over time. This assumption
does not obviously hold true for the age of the house in different selling years.
In the repeat sales model the effect of age is embedded into the model’s
estimates of the time effect, see Cannaday et al. (2005).

In this article we focus on the specification of the time effect in the repeat
sales model by specifying it as a structural time series model. A structural
time series model is a model in which the trend, seasonal and error terms,
plus other relevant components, are modeled explicitly. In particular, we focus
on the estimation of price trends in thin markets where the number of repeat
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sales is relatively low and, hence, the impact of transaction price noise on the
estimation of the price trends is high.

Structural time series models have already been used in real estate applica-
tions. For example Schwann (1998) estimates a hedonic price index for a thin
market, where the periodic returns follow a stationary autoregressive process.
Francke and De Vos (2000) estimate hedonic price indices by a hierarchical
trend model, in which different trends are simultaneously estimated for differ-
ent market segments. Both models have the format (in logs): observed series =
trend + regression effects + irregular, where some structure for the trend
component is assumed. To our knowledge, structural time series models have
not previously been used in order to estimate repeat sales price indices.

In the structural time series repeat sales model, the trend component is
modeled explicitly using a local linear trend (LLT) model. The LLT model
depends on two variance parameters, which are estimated by maximizing the
appropriate likelihood function. Small values of these parameters result in
smooth price indices. The approach of Goetzmann (1992) is a special case of
the LLT repeat sales model. In this paper, we provide an alternative to his
two-step estimation procedure.

In the next step, we examine the effect of the time between repeat sales on
the estimation of the price level. Empirical evidence shows that large profits
are made when the time between sales is relatively short, for example within
first 6 months. This can be the result of “flipping houses”, that is buying and
selling houses for profit in a short period of time or house improvements
(about the latter, see Goetzmann and Spiegel 1995). A simple solution would
be to drop these sales out of the sample. In this article, we include a variable
containing the reciprocal of the time between repeat sales, as an alternative
solution to dropping sales within first 6 months.

This article is structured as follows. Section “Repeat Sales Models and Small
Samples” discusses existing methods for reducing the impact of transaction
price noise on repeat sales price indices in small samples. Section “A Local
Linear Trend Repeat Sales Model” describes the local linear trend repeat sales
model, which also includes a term for the time between repeat sales, as an
alternative solution to the approach given by Goetzmann (1992). The same
section provides some background on structural time series models, its relation
to the non-parametric methods, and references to real estate applications.
Section “Estimation” explains the estimation approach of the LLT repeat
sales model. Section “Application” begins with a description of the Kadaster
database, containing all selling prices of houses in the Netherlands in the
period from January 1993 to May 2009. It continues with a comparison of price
indices from the LLT repeat sales model to indices based on the frequently
used models of Case and Shiller (1987) and Goetzmann (1992). Price indices
are compared for different subsets, varying from all residential selling prices
in the Netherlands to a small subset in a specific area code. Finally, the
impact of revision in repeat sales price indices is examined for both models.
Section “Conclusions” concludes.
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Repeat Sales Models and Small Samples
General Specification

The repeat sales model is introduced by Bailey et al. (1963) and a number
of adaptations of this original model is given in the real estate literature. A
general specification is provided by (see also Kuo 1997)

Vi=mi+ Ui —Dyo+p+apt+es, t=1,...,T, (1)
Uirr1 = P + i, i=1,.... M, (2)

where y;, is the natural logarithm of the selling price of house i at time ¢ (in
months), u; is the ith house specific time invariant effect, and g, is the log
time index at time ¢. For identification purposes, it is assumed that §; = 0. T
is the number of months and M is the number of houses. The total number of
observations is N = Zf‘i | hi, where n; is the number of sales of house i, and
n; > 1., 1s a house specific time trend, specified as a first order autoregressive
process. A usual assumption is that «; follows a random walk, implying that
p =11in Eq. 2. The transaction price noise ¢ and the transition noise 7 are
assumed to be independent, and are distributed as & ~ N(0,5%I) and n ~
N(, qnazl), respectively. /;, denotes the number of times house i is sold up
to time ¢, and y, is the time-independent return associated with each sale.
Goetzmann and Spiegel (1995) argue that y, in a repeat sales model captures
fix-ups immediately after purchase. Shiller (1993, p. 139-140) argues that y,
should not be used in the presence of heterogeneity across space. He presents
evidence that in the presence of heterogeneity across space y; is too large and
the slope of the index too small. The same type of reasoning is followed by
Clapp and Giaccotto (1999), therefore they exclude all sales within one or two
years.
It is a common practice to rewrite Eq. 1 in ‘first differences’, giving

Vie — Yis = Yo + (ti — ) ' y1 + B — Bs + e — eis, (3)

where ; > s; and e;; = o + €3, canceling out the M (fixed effect) levels u;.

Instead of simply excluding sales within a short time period or including a
constant, an additional term (; — s;) "'y, is introduced in Eq. 3, which makes
the model more flexible. For s; close to ¢; the term (f; — s;)~! is large, and for s;
far from ¢; the term (¢; — s;)~! approaches zero. Section “Application” provides
empirical evidence that the average periodic return is a decreasing function of
time between sales, which can be approximated well by the functional form
(t; — s;)"'y1. Hence, large profits are made when this period is relatively short.
Reasons for these high periodic returns are speculation and/or fix-ups. In the
Netherlands there is an additional reason due to the transfer tax reduction
for resales within 6 months, see Section “Application”. In our applications we
explore several variants of Eq. 3, with and without y, and y;.

Table 1 provides several versions of repeat sales models which are proposed
in literature. All of them are special cases of the general model (2)—(3). For
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Table 1 Restrictions on parameters in repeat sales models (2)—(3)

Model Y0 Vi b oy o B

Bailey et al. (1963) 0 0 0 0 Fixed

Case and Shiller (1987, 1989) 0 0 1 Fixed

Hill et al. (1997) 0 0 0 Fixed

Webb (1988) 0 0 1 0 Fixed

Goetzmann and Spiegel (1995) #0 0 0 Fixed

Goetzmann (1992) 0 0 0 Random walk with drift

example, in the Case and Shiller (1987) model it is assumed that in Eq. 2 p=1
and in Eq. 3 9=y, =0. The model reduces to «; .+1 =, + n;; and y;; — yis= B —
Bs+ai+ei—ais—eis. In the Bailey et al. (1963) model it is assumed that in Eq. 3
yw=y1=0and in Eq. 2 p=0,=0, so «;,;+1 =0. The model reduces to y; —yi;=
B:— Bs+eir—eis. For comparison purposes, the repeat sales model which is used
by Clapp and Giaccotto (1992a) does not fit within this framework. Instead of
using the time-variant covariance structure «;;, they allow for time-invariant
covariances Cov(gj, &;;) = po > for s #t.

Small Samples

In the repeat sales models, the specification of the time effect is simply a
dummy variable approach with fixed parameters 3,. Conditional on u; and
ajs, the estimate of B, is the average selling price at time ¢. This means that
the estimate of B, does not depend on preceding and subsequent periods.
However, the estimate of f; is sensitive to transaction price noise, in particular
in small samples when the number of transactions per period is low. This
happens, for example, with local price indices, short time periods, and/or in
case of severe outliers, when the transaction price differs from its true market
value by a large amount. The resulting price indices may then become very
volatile.

In order to reduce the impact of transaction price noise on the estimate of
B, different methods have been proposed. A first group of methods consists
of a two-step procedure. In the first step, the log price indices (or periodic
returns) are estimated from a version of the repeat sales given by Egs. 2-3.
Let B, denote the estimated log price indices. In the second step, these B
estimates are inputted into a smoothing algorithm like, for example, a locally
weighted regression. Examples in the literature are provided by Cleveland
(1979) and Wand and Jones (1995, Chapter 5), who introduce a more general,
local polynomial kernel estimators. In comparison, in order to construct local
house price indices, Clapp (2004) apply local polynomial regression in a space-
time model.

The main drawback of this two-step procedure is that it does not take
into account the uncertainty in the estimates of g;. Therefore, it disregards
the precision of parameter ﬁ,, and the covariance matrix, COV(BS, ,é,). The
precision differs over time because the number of observations differs from
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one period to another, especially in small samples. Another concern is the
behavior of the kernel at the boundaries, i.e. at the beginning and the end
of the time period, because the kernel window at the boundaries is devoid of
data.

A more recent approach in order to handle small datasets in repeat sales
models is provided by Baroni et al. (2007). They propose a principal com-
ponents analysis (PCA) factor repeat sales index, which exploits the relation
between the house price indices and other economic and financial explanatory
variables. One drawback of this approach is that the estimated price indices
depend on the included set of explanatory variables.

A third way to manage a small number of observations is to replace dummy
variables by a smooth (continuous) deterministic trend function, for example,
a cubic spline. A slightly more flexible and equally easy to implement is the
Fourier form approach, which depends on only few parameters. For more
details, see McMillen and Dombrow (2001) and McMillen and McDonald
(2004). This method has also been applied in a hedonic price model literature,
see for example Thorsnes and Reifel (2007).

An early and successful signal-extraction approach is provided by
Goetzmann (1992), who uses a stochastic trend specification. This is a Bayesian
approach, based on the work by Lindley and Smith (1972), in which a prior
distribution is specified for the periodic returns A 1 =p11— B, given by
ABii1~ Nk, of). This is equivalent to expressing S;;; as a random walk with
drift,

Bir1 = B+ K+, (NN(O,GZC];), 4)
where o is the variance of ¢; in Eq. 1 and g, is the signal-to-noise ratio.
The resulting estimates of the periodic returns and the price indices are less
sensitive to transaction noise.

The structural time series approach which is applied in this article can be
interpreted as a generalization of the Goetzmann (1992) approach. Firstly,
structural time series models allow for a more general model specifications
of the prior than the Goetzmann’s approach. In the random walk with drift
model specification, the a priori assumption is that the drift term («) is constant
over time. However, in successive periods of appreciation and depreciation of
the price levels, this assumption is not valid. A more appropriate specification
would be to allow « in Eq. 4 to change over time. An example of such a model
is the local linear trend model, which is explored in more detail in Section “A
Local Linear Trend Repeat Sales Model”.

The second generalization concerns the estimation of the signal-to-noise
ratio, given by ¢,. In Goetzmann’s approach, the variances o2 and g.o? are
estimated in an initial step, which sometimes leads to biased estimates of the
variances. The resulting signal-to-noise ratio is plugged into the second step of
the Bayesian procedure. However, as it is shown in Section “Estimation”, it is
possible to compute the concentrated loglikelihood and to estimate the signal-
to-noise ratio parameters directly by maximization. This can be applied in the
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Bayesian procedure as well as in the structural time series approach, avoiding
the somewhat ad hoc two-step procedure.

In contrast to the dummy variable approach, the structural time series model
enables the prediction of the price level based on preceding and subsequent
information. This means that even for particular time periods where no
observations are available, an estimate of the price level can be provided.
The use of a structural time series model results in a more stable price index
and (partly) reduces systematic downward revisions found in the repeat sales
indices, see for example Clapp and Giaccotto (1999) and Clapham et al. (2006).
Another advantage of these models is that price indices are provided even in
continuous time models, avoiding the problem of temporal aggregation, for an
example see Englund et al. (1999).

A Local Linear Trend Repeat Sales Model
Model Specification

In the repeat sales model it is typically assumed that the §,’s are fixed unknown
parameters. In this article, it is assumed that S, is a scalar stochastic trend
process in the form of a local linear trend model, in which both the level and
slope can vary over time. The local linear trend model is given by

Brv1 = B+ ki + &1, &~ N(0,g.07%), (5)
Kivt = ke + &, gi ~ N (0,g:07). (6)

The local linear trend model includes several specific models. If =& =0,
then k1 =k, =« and B,,1 =B + kK =tk (when By =0), hence the trend is exactly
linear. If g; =0, then the local linear trend model reduces to a random walk
with drift, 8.4+ =6;+«+¢, equivalent to the prior proposed by Goetzmann
(1992). If we further assume that x = 0, the stochastic trend is simply a random
walk B, 1 =B:+¢. On the other hand, if q;az — 00, NO time structure is
imposed, and the §,’s can be regarded as fixed unknown parameters, similar
to the standard repeat sales model. The signal-to-noise ratios (¢, and gz) are
estimated by maximum likelihood, see Section “Estimation”.

The local linear trend repeat sales model is provided by Eqgs. 2, 3, 5 and 6.
The initial value of « is an unknown parameter, say «;. Similar to the standard
repeat sales model, we assume for the purpose of identification that 8; = 0.

In order to interpret 8, as the common trend we have to imply that the
sum of the individual house trends is zero, i.e. Zf\;’] oy =0fort=1,...,T.
A simpler, equivalent approach is to define the common trend d, as the sum
of the common trend B, and the average individual house trend «;, such
that d, = B, + & SN ay. If 0 = oo, then Y, @y = 0 for all £. Note that for
the standard repeat sales model, for which g = oo or g, = oo, it holds that
Zf‘;’ , @ = 0. In practice the term M~! Zf\;’ | & is negligible.
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Structural Time Series Models

The local linear trend repeat sales model is an example of a structural time
series model, in which the trend, seasonal and error terms, plus other relevant
components, are all modeled explicitly. This is in contrast with the Box-
Jenkins approach where trend and seasonal effect components are removed
by differencing prior to the detailed analysis. The basic univariate structural
time series model is

Yvi=pB+3+e,

where B; is a slowly varying component called the trend, §, is a periodic
component or fixed period called the seasonal, and ¢, is an irregular component
called error or disturbance. In this article we do not include the seasonal
component and we focus on the specification of the trend component instead.
For a detailed description, we refer the reader to Harvey (1989), West and
Harrisson (1997), and Durbin and Koopman (2001), who discuss these models
as examples of the more general class of state-space or dynamic linear models.

In the state-space form, the unobserved components can be estimated by
the Kalman filter algorithm. The Kalman filter also produces the likelihood
function, which enables the estimation of the variance parameters. The Ox
package SsfPack contains ready-to-use estimation procedures for estimating
the state-space models. It can be downloaded for free in order to be used for
academic research and teaching purposes, see Koopman et al. (1999). In this
article for the reason of experience and practice, the statistical program Gauss
is used for the estimation of the local linear trend repeat sales model.

Harvey and Koopman (1999) and Koopman and Harvey (2003) examine the
weighting patterns for signal-extraction implied by unobserved components
models. These weighting patterns may be compared to the kernels used in non-
parametric time series trend estimation. The signal-to-noise ratio in structural
time series models has the same role as the bandwidth in a non-parametric
approach. Harvey and Koopman summarize the following advantages of using
the structural time series models in comparison to non-parametric methods:

— Different models can be compared by likelihood based criteria;

— Inference about the parameters, including the signal-to-noise ratio, can be
based on the likelihood;

— Appropriate weights are implicitly provided. The weights depend on
the position of the observations (begin, middle, or end of series) and
magnitude of outlying observations. However, they are not necessarily
symmetric.

— Root mean square errors can be computed for the estimated trend;

— The models can be made robust to outliers by specifying ¢t-distributions;

— By formulating a model in continuous time, the optimal weighting for
irregularly spaced observations is automatically carried out.

Figure 1 shows a simple example of weighting functions for a local linear
trend model. The dependent variable y;, is the average of log selling prices per
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L{=meeees average log selling price ,‘—Weighls for price level Janhary QOOI‘
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Fig.1 Weighting functions for a local linear trend model (a—d)

month from January 2003 to May 2009. A description of the data is provided in
Section “Data”. The model is given by y, = 8; 4+ & and Egs. 5-6. For simplicity
it is assumed that &, has constant variance o2. The model is formulated in
state-space form and estimated by the Kalman filter. Estimation results and
weighting functions are generated using the Structural Time Series Analyser,
Modeller and Predictor (STAMP) software; see Koopman et al. (2007). Panel
(a) in Fig. 1 shows the series of averages and the estimated level 8,. In panel
(b)-(d) some examples of weighting functions are given, depending on the
estimated values of the signal-to-noise ratios g, and g, and the position of the
observations in the series. Panel (b) provides an almost symmetric weighting
function, for the level in January 2001, in the middle of the series. Panel (c) and
(d) give asymmetric weighting functions for the levels at the end of the series,
February and May 2009 respectively. Note that for the estimation of the levels
B; it is not necessary to calculate the weighting functions; rather they can be
derived from the output of the Kalman filter.

Real Estate Applications of Structural Time Series Models

Structural time series models, or more generally state space models, have
already been used in real estate applications. Schwann (1998) estimates a
hedonic price index for a thin market using a Kalman filter, where the periodic
returns Ap, follow a stationary autoregressive process. Francke and De Vos
(2000) estimate a hierarchical trend model, in which different trends are simul-
taneously estimated for different market segments. The trend specification is

@ Springer



Repeat Sales Index for Thin Markets 33

decomposed into a common trend, a region specific trend, and a house type
specific trend. The region specific trend and the house type specific trend are
modeled in deviation from the common trend. These models are efficiently
estimated combining ordinary least squares and the Kalman filter, see also
Francke and Vos (2004) and Francke (2008). Schulz and Werwartz (2004)
provide a state-space model for house prices in Berlin. They include explana-
tory variables like inflation rates, mortgage rates, and building permissions in
order to model the common price movement. Hannonen (2005, 2008) uses a
structural time series model to analyze and predict urban land prices. To our
knowledge, state-space models and the Kalman filter have not previously been
used in order to estimate repeat sales price indices.

Estimation

A structural time series model can be put into a state-space format and effi-
ciently estimated by the Kalman filter, see for example Durbin and Koopman
(2001). In the local linear trend repeat sales model, the size of the state
vector, which is the number of unknown parameters apart from the variances,
becomes very large and is equal to M + T + 2, where M is the number of
houses and T the number of time periods (for y, and y;). In the application
provided in the next section the number of houses is approximately 500,000.
Including all these variables in the state vector is not feasible, as it would
require storage and inversion of 500,000 x 500,000 matrices.

As shown in the previous section an alternative to the repeat sales model
Eq. 1 is the specification in ‘first differences’ (3), canceling out the M levels ;.
Unfortunately, model (2), (3), (5), and (6) cannot (easily) be put into the state-
space format, because the data depend on the difference of the state vector
in two moments in time, with varying time spans. The state-space approach
assumes that the state vector is a Markov chain. Therefore we have to rely on
another estimation procedure.

One option is to use the Expectation Maximization (EM) algorithm for
the model in levels as given in Eq. 1. Conditional on u;, the Kalman filter
can straightforwardly be applied to estimate the log price index 8, and other
parameters. In an additional step, the parameters u; can be estimated by means
of the EM algorithm. This results in a recursive estimation procedure, where
it is guaranteed that the algorithm converges to at least a local optimum, see
Dempster et al. (1977). The EM algorithm is proposed by Shumway and Stoffer
(1982) and Watson and Engle (1983). The main advantage of this approach is
that more general time specifications including, for example, more complex
trend specifications and seasonal components, can easily be dealt with.

In this article a different approach for the estimation of the local linear trend
repeat sales model is put forward. The local linear trend repeat sales model ‘in
differences’ is estimated by an empirical Bayesian procedure. The model can
then be expressed as a linear regression model with a prior for 8, induced by
the local linear trend model (5)-(6). Conditional on the parameters p, g,. q.,
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and ¢, the posteriors for g and o easily follow. Estimates of p, g,, q., and g
are obtained by maximizing the likelihood of the ‘differenced’ data.
The repeat sales model (3) can be written as

yl-ziyo—{—pi_lyl—i-pilq—l-)?iﬂ +a=zi3 +¢, (7)
G =q+%~ N(0,0°%0)), ®)
fori=1,..., M, where y; is a n; — 1 vector of ‘differenced’ log selling prices,

i is a vector of ones, p; is a vector of the differences between the selling dates
of repeat sales of the same house i, with typical elements (;; —s;) for ¢ > s,
Xiis a (n; — 1) x (T — 1) matrix containing elements 0, —1 and 1, and g =
(Bas .., Br)'. n; — 1 is the number of transaction pairs of house i. In most cases
one only pair of repeat sales is available, hence n; — 1 equals 1. Note that 5,
is slightly redefined in the sense that in Eq. 6 it is now assumed that «; =0,
leading by repeated substitution in Egs. 5-6 to the term (#; — s;)«; in Eq. 7.

The (n;—1) x (n;—1) covariance matrix S~2,~(91) depends on the unknown
parameters 6, = (p, g,)’. If it is assumed that p =1, the covariance matrix S~2i(91)
has a typical form

- 2 —-10 ti—s; O 0
0?Q;i(0))=Var(g)+Var@)=o*| | =1 2 =1 |4+q,| 0 si—u 0 ,
0 -1 2 0 0 T, —Gi

where t; > s5; > 7; > ¢;. Appendix A provides an expression for Var(a;) when
|p| < 1. Note that Cov(e;, €;) = 0 for i # j.

The prior distribution for g comes from the local linear trend model. It
follows from (5)—(6) that the prior for AB is given by

N 2 2 00
ap~ N (0.0%c1+ o (o 4 ). (10)

where A; is defined below. Observing that A, + ...+ AB, =B — B1 = B¢
when g; = 0, the prior for B easily follows and is given by

B~ N(0,0°3(6)), (11)
£ = A (gl +0%q: (2 0 )) 4l (12)
2) — 2 C]c UQE 0141 2
where
| 10---0
12 2 11'
Alz . al’ldAZZ (13)
R D0
12...T-2 1.1
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No prior information for the parameters yy, y; and «; is available, hence

the precision matrix, which is the inverse of the variance matrix W for the
regression parameters § = (yo, ¥1, k1, B)’, is given by W~ = |:8 2:0 }

The posterior of § is provided by
8|3, Z,6,0% ~ N (8*, 02V (5")), (14)

-1
V((S*):(Z Zi+ ”) : (15)

M
8 =V@©E Y ZIG (16)
i=1

where 6 = (67, 6;)’.
Conditional on 6, the variance parameter o2 can be estimated analytically.
o2 can be concentrated out of the marginal likelihood function, leading to

M o~
Zz lyzQ yl_Zi:ly;'Qzl

(17)

The remaining parameters 6 can be estimated by maximizing the concen-
trated marginal likelihood function (with respect to ' and §), given by

—2log LY = m (log27 + log oy + 1)

M
+Zlog|§i|+logz 787 Zi+ v +10g 2], (18)

i=1 i=1
The estimation procedure can be summarized as follows:

1. Conditional on 6, an estimate of § and o2 is provided by Egs. 14-17. The
terms -, Vi Vi, S, Vi Zi, Yo, Zi Z,, and 3, log | can
be computed per house observation. The precision matrix W~! follows
from Eq. 12.

2. The parameters 6 can be estimated by maximizing the likelihood function
(18). All terms in the likelihood function are available from step 1.

3. Finally, the log price index and log return are given by (1—1)«{+p; and
ki +B;—B;, respectively. The corresponding variances (and covariances)
can be computed from Egs. 14-15 straightforwardly. The price indices
and returns are obtained by taking the antilog, and have a lognormal
distribution.
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Note that for g, = g = oo in Eq. 12, the precision matrix W = 0, hence it
assumes no prior information. Therefore, conditional on 6;, the estimation
results coincide with standard repeat sales models. When g = 0 in Eq. 12,
conditional on ¢, and q., the estimation results are equivalent to the approach
of Goetzmann (1992).

The main difference between the Goetzmann’s approach and the local
linear trend repeat sales model approach is the estimation of the parameters 6.
For example, in Goetzmann’s approach, o and g,o? are estimated in a two—
step procedure. In the local linear trend repeat sales model, they are estimated
in one step by maximum likelihood.

The slope parameters «; can be estimated in a similar fashion as the trend
parameters S;. The computation requires submatrices already computed in
step 1. More details can be found in Appendix B.

Application
Data

The Kadaster (Dutch Land Registry Office) is responsible for the registration
of real estate properties. The database covers all transactions within the
Netherlands. The number of selling prices of owner-occupied houses in the pe-
riod from January 1993 until May 2009 is more than 3.5 million. In the follow-
ing cases, the transactions are not used for the calculation of the price index:

— sales between relatives;

— transactions where the buyer is a legal entity;

— if the same lot is sold more than once in one transaction;
— no full ownership or long lease;

— more than one purchase price in one transaction;

— unlikely purchase price.

The remaining number of transactions of houses sold more than once is
approximately 1.5 million, covering 644 thousand different houses, which is
17% of the owner-occupied housing stock. The total number of houses by the
end of 2007 is slightly above 7 million, and 53.3% of the housing stock is owner-
occupied.

Some characteristics of these transactions are provided in Table 2. In Table 3
the number of observations of houses sold more than once are given, and in
Table 4 the number of observations per house type are provided.

Figure 2 shows the frequency of the time between repeat sales in the
Netherlands. The mode, the median, and the mean are 36, 52, and 58 months,
respectively. A sharp decline of the frequency after 6 months can be explained
by the fact that there is a large reduction in transfer tax if a house is re-sold
within first 6 months. In this case the transfer tax of 6% is only applied on the
(positive) difference between the second and the first transaction price, instead
of applying it on the transaction price itself. For example, when the house is
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Table 2 Overview of Description
transactions in the period Total number of selling prices 3,481,390
January 1993-May 2009 Total number of selling prices after 3,188,622
screening
Number of selling prices (at least 1,536,407
two sales of the same house)
Number of different houses 643,904
Municipalities 443
Zip code (4 digits) 3,804

first sold for €250,000 and within 6 months for €290,000, the first buyer has
to pay 6% of €250,000 = €15,000 in transfer tax, while the second buyer has
to pay only 6% of €40,000 = €2,400 in transfer tax. This tax system can have
considerable impact on selling prices. Note that a substantial part of the repeat
sales, 4%, are within 6 months.

The database is used by the Kadaster to construct a monthly weighted
repeat sales index, based on the method by Case and Shiller (1987). Indices
are provided on a national level as well as on regional and house type levels.
More details on the index construction method and the database can be found
in Jansen et al. (2008).

In 2008 the weighted repeat sales is replaced by a monthly Sales Price
Appraisal Ratio (SPAR) index. The index is published by the CBS (Statistics
Netherlands) in cooperation with the Kadaster. The appraisal value is the
WOZ-value (Waardering Onroerende Zaken), a yearly assessed value used
for property tax. The WOZ law requires that the determined appraisal value
is also used for other legal purposes, such as for the levy which the water
boards can raise, and income taxes levied by the central government. The
SPAR method has been applied in New Zealand since the early 1960s, see
Bourassa et al. (2006). A more general treatment of assessed value price
indices methods is provided by Clapp and Giaccotto (1992a, b). De Vries et al.
(2007) provides a detailed description of the application of the SPAR method
for the Netherlands.

Table 3 Number of sales Number of sales Number of observations

455,503
140,701
37,428
8,393
1,584
251
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Table 4 House types House type Number of observations
Apartments 511,943
Terraced houses and corner houses 737,754
Semi-detached houses 151,347
Detached houses 135,363

Comparison of Indices

In this section the results using four different price index methods are com-
pared. Price indices are constructed using

1.
2.
3.
4.

the Case and Shiller (1987) (CS) repeat sales model;
the Goetzmann (1992) repeat sales model;

the random walk with drift (RWD) repeat sales model;
the local linear trend (LLT) repeat sales model.

The only difference between the Goetzmann and the RWD repeat sales model
concerns the estimation of the variance parameters o> and 02q, in Eqgs. 5 and 7.
In the Goetzmann model, these variances are estimated in an initial step using

the

CaseShiller repeat sales model (the two-stage Bayesian variant). In the

RWD repeat sales model, the variances are estimated by maximization of the
likelihood function (18); the signal-to-noise ratio g¢ in Eq. 6 is equal to zero for

the

RWD model. Similarly to the CS and the Goetzmann models, it is assumed

that in the RWD and the LLT modelsin Eq.2 p = 1 andin Eq. 7 yp = y1 = 0.
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Fig. 2 Relative frequency of time between repeat sales
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Fig. 3 Log price indices f; for different subsets. The local linear trend repeat sales model is
provided by Egs. 5-8. It is assumed that in Eq. 7 yo = 1 = 0 and in Eq. 2 p = 1. The remaining
models are special cases of the local linear trend repeat sales model

The methods are compared using four different data sets, with varying
number of observations:

all selling prices in the Netherlands (846,439 observations);

the selling prices of semi-detached houses (70,471 observations);
the selling prices of a small city of Maarssen (2,234 observations);
the selling prices in a specific area code (991 observations).

o T

The time period ranges from January 1993 to May 2009. Price indices are
constructed on a monthly basis. The average number of observations per
month for the four data sets are 4297, 358, 11, and 5, respectively. Sales within
first 6 months are excluded.

Table 5 gives the estimation results for different data sets and models.
Figure 3 shows the log price level for the whole sample. In Fig. 3a the price
indices for the Netherlands, using the four models, almost coincide: the LLT
index is somewhat smoother than the other indices. This can also be seen
from the standard deviation of the estimated monthly returns A /§,: it is 0.0047,
0.0043, 0.0043, and 0.0039 for the CS, Goetzmann, RWD, and LLT models,
respectively.

In comparison, in Fig. 3d, the differences between the zip code area indices
are substantial. The LLT price index is smooth, and is virtually the same as the
RWD price index, while the CS index is very volatile, due to the small number
of observations. The standard deviations of A Bt for the CS, Goetzmann, RWD,
and LLT models are 0.0895, 0.0429, 0.0069, and 0.0043, respectively.
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For the semi-detached houses the differences between the indices are not
substantial, but the CS price index is slightly irregular, see Fig. 3b. As can be
seen from Fig. 3c, the city level price indices show the same pattern as the zip
code indices, however they are less extreme.

Note that in Fig. 3c, the RWD and LLT price index are above the CS and
Goetzmann index, and in Fig. 3d it is vice versa. This results from the fact that
the CS price index is much more sensitive to outliers than the RWD and LLT
index, particularly at the begin of the period, where the log price index value

Table 5 Estimation results from repeat sales models for different subsets

Case Shiller Goetzmann Random walk with drift ~ Local linear trend

The Netherlands
12k¢ 0.076 (18.95)  0.076 (18.47) 0.067 (4.08)
o 0.075 0.075 0.075 0.075
NI 0.015 0.015 0.015 0.015
NI 0.005 0.005 0.000
Jago 0.001
st. dev. AB, 0.0047  0.0043 0.0043 0.0039
Loglikelihood  389,010.0 389,766.3 389,766.3 389,854.7
N-M 846,439

Semi-Detached
12k1 0.077 (9.73) 0.077 (12.98) 0.166 (7.07)
o 0.076 0.076 0.076 0.076
Vo 0.015 0.015 0.015 0.015
Jaco 0.009 0.007 0.002
VAo 0.001
st. dev. AB, 0.0092 0.0057 0.0050 0.0041
Loglikelihood 33,150.0 33,156.8 33,190.5
N-M 80,162

Maarssen
12k 0.066 (2.22) 0.068 (7.10) 0.094 (3.96)
o 0.045 0.045 0.044 0.044
JIno 0.011 0.011 0.011 0.011
Jaco 0.035 0.011 0.009
Vo 0.000
st. dev. AB, 0.0345 0.0164 0.0054 0.0046
Loglikelihood — 1,644.4 2,024.2 2,065.6 2,068.8
N-M 2,511

Zip code 3076
12k1 0.085 (1.11) 0.081 (6.01) 0.126 (4.21)
o 0.063 0.063 0.071 0.072
Vo 0.014 0.014 0.013 0.013
VAo 0.090 0.015 0.009
Jago 0.001
st. dev. AB, 0.0895 0.0429 0.0069 0.0043
Loglikelihood — 280.4 484.9 546.5 549.6
N-M 991

The local linear trend repeat sales model is provided by Egs. 5-8. It is assumed that in Eq. 7
o = y1 = 0 and in Eq. 2 p = 1. The remaining models are special cases of the local linear trend
repeat sales model. t-values are provided between the brackets
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is assumed to be zero. This also holds for the Goetzmann index, although to
a lesser extent. In the CS repeat sales model the outliers are absorbed by the
initial price levels.

Other results provided by Table 5 are as follows. The standard deviation
o 1is approximately 7.5%, except for the city Maarssen where the standard
deviation is only 4.4%. Note that this is a standard deviation of an individual
house transaction, hence it should not to be larger for smaller numbers
of observations. The standard deviations for the individual house random
walks, ,/q,0, approximately 1.5%, are relatively constant over the models and
analysed samples.

The estimated values of /g;o are identical for the Goetzmann and RWD
models in the national Dutch data set. For the zip code area data, the estimates
are very different: 0.090 (Goetzmann) versus 0.015 (RWD). This is also
reflected in the standard deviations of Af;: 0.0429 (Goetzmann) versus 0.0069
(RWD). Note that for the RWD and LLT models, the standard deviation of
AB, is not very sensitive to the sample size, whereas for the CS and Goetzmann
model the standard deviation decreases with the number of observations:
in the CS (Goetzmann) model it varies between 0.0047 (0.0043) for the
Netherlands and 0.0895 (0.0429) for the area code level. The high standard de-
viations imply that the CS and Goetzmann model cannot be used to construct
detailed price indices and returns. The monthly standard deviations in the CS
and Goetzmann model are respectively more than 13 and 6 times as large as
the average monthly returns, where the average yearly return is in the order
of 0.08. For the RWD and the LLT models, these figures are more reasonable:
the monthly standard deviation at the area code level is respectively 1.0 and
0.6 times the average monthly return.

In all samples, the local linear trend model has a higher loglikelihood at the
cost of only one additional parameter g;, as compared to the Goetzmann and
the RWD models. The loglikelihood for the Goetzmann and the RWD models
are identical for the national Dutch data set. At the city and area code levels,
the RWD model has a substantially higher loglikelihood than the Goetzmann
model: the two-step procedure results in suboptimal estimates of o and g,,. The
suboptimal estimates result in more volatile log price indices, in comparison to
the RWD price indices, for which the maximum likelihood estimates of the
parameters have been used.

Figure 4 focuses on the log price levels from January 2008 to May 2009 in
order to track turning points. A turning point can be defined as a change from a
positive (negative) to a negative (positive) value of A B;. From Fig. 4a it can be
concluded that prices in the Netherlands began to decline from August 2008:
the price decrease starting from August 2008 until May 2009 is only slightly
more than 2% points. The local linear trend repeat price index is lagging one
month compared to other indices. For the semi-detached houses in Fig. 4b,
the picture is less clear. All indices, except for the LLT index, have a dip in
September 2008, followed by a price increases in October and November. The
LLT index reports a fall in prices from October 2008, hence it is leading the
other indices by one month. For the more detailed price indices, the differences
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Fig. 4 Log price indices f, from 2008 for different subsets. The local linear trend repeat sales
model is provided by Egs. 5-8. It is assumed that in Eq. 7 p = y; = 0 and in Eq. 2 p = 1. The
remaining models are special cases of the local linear trend repeat sales model

between the indices are substantial. However, it is difficult to conclude from
these small samples that prices are falling.

A nice feature of the LLT repeat sales model is that estimates of the
slope parameter «;,, t =1..., T — 1 are available. The estimation procedure
is closely related to the estimation of B, and is given in Appendix B. In the
Goetzmann and the RWD models, the drift parameter (k) is assumed to be
constant over time. The annualized estimates «; x 12 are also provided in
Table 5. Figure 5 provides the annualized slope parameter estimates «; x 12
and the corresponding 95% confidence bounds for the LLT model. It can be
concluded that for the Netherlands (Fig. 5a) and the semi-detached houses
(Fig. 5b) the assumption of a constant drift, similar to the Goetzmann’s
approach, is not valid: for example, the difference in the slope parameter in
1994 and 1999 is significant. For the more detailed indices in Fig. Sc and 5d, the
assumption of constant drift cannot be rejected.

The estimates of the slope parameters «; can also be used for tracking
turning points. For the LLT model, a turning point can alternatively be defined
as a change from a positive (negative) slope parameter to a negative (positive)
value. Following this definition, the turning points for the Netherlands and the
semi-detached houses are September 2008.

Above examples suggest that in case of many observations the log price level
estimates coincide for the four methods. When only a few observations per
time period are available, the CS price index is extremely volatile and sensitive
to transaction price noise, while the LLT price index remains stable. In general,

@ Springer



Repeat Sales Index for Thin Markets 43

The Netherlands 0.2 A Semi—Detached

e e

—_ [
=TT

>

o
=

annualized log price change

1 1

995 2000 2005 7995 2000 2005

0.15 0.20
20 N —\ City Maarssen \\ Zipcode 3076
s [ 0.15
S 0.10
g E
= 0.10
= [
o [
S 0.05
5 t 0.05
Q
N r
£ 0.00 0.00
g [ ‘ —— Slope  —— 95% confidence bounds‘ \\
n 1 n n n n 1 n n n n 1 n n n n n 1 n n n n 1 n n n n 1 n
1995 2000 2005 1995 2000 2005

Fig. 5 Slope &, for semi-detached houses in the local linear trend repeat sales model. The local
linear trend repeat sales model is provided by Eqs. 5-8. It is assumed thatin Eq. 7 yp = y; = 0 and
in Eq. 2 p = 1. Estimates of the slope parameters «; are provided by Eqs. 24-26

the results from the RWD model are close to the LLT model. However, the
LLT model has a better model fit, as measured by the loglikelihood. In case
of many observations, the Goetzmann and the RWD approaches produce
the same results. When the number of observations is small, the two-step
Goetzmann estimation procedure leads to suboptimal estimates of the the
variances o and g.o%. The resulting indices are more volatile than the RWD
estimates. This is in line with the findings of Goetzmann (1992), who states that
the two-stage Bayes procedure leads to an overestimation of g, .

Time Between Repeat Sales

In this subsection, the impact of the time between repeat sales on price
indices is examined, using the LLT repeat sales model. Figure 6 shows the
averages of the residuals per time between sales (¢t — s), measured in months.
The residuals e;; — e;; are calculated from Egs. 7-8 for the LLT model. The
model is estimated on the repeat sales for the Netherlands, excluding the sales
within one month. The difference between the minimum and maximum value
is approximately 0.20. Note that for large values of (¢ — s), only a few number
of observations is available (see Fig. 2). From Fig. 6, it can be concluded that
the between sales averages of the residuals per time can be approximated
reasonably well by the function (t — s)~'y,.

Two different semi-detached houses datasets are used in order to examine
the inclusion of the non-temporal component y, and the time between sales
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Fig. 6 Averages of residuals per time between sales in the local linear trend repeat sales model for
the Netherlands. The local linear trend repeat sales model is provided by Eqs. 5-8. It is assumed
thatinEq. 7y =y =0andinEq.2p =1

component (¢t —s)"'y;. In the first dataset, all sales within six months are
excluded, while in the second dataset, only the sales within one month are
excluded, resulting in 1,843 additional observations.

Based on the first dataset, two different LLT models are estimated: (a)
without an intercept (yp = 0) and (b) with an intercept (3, # 0). In both models
the time between sales component is absent (y; = 0). Based on the second
dataset, another two LLT models are estimated: (c¢) without an intercept
(yo = 0), and (d) with an intercept (yy # 0). In both models the time between
sales component (y; # 0) is included.

Table 6 Estimation results from local linear trend repeat sales model for semi-detached houses

Coefficient vo=y1=0 vo=0,y1 #0 Yo #0, 71 #0 wW#0,n=0
Yo 0.032 (28.44) 0.037 (37.58)
" 0.1871 (39.47) 0.097 (17.32)

o 0.076 0.076 0.074 0.071

NTIY 0.015 0.015 0.016 0.016

Jaco 0.002 0.002 0.002 0.002

Jaso 0.001 0.001 0.001 0.001

N-M 80,162 82,005 82,005 80,162
Loglikelihood 33,190.5 34,874.6 35,269.3 33,867.3

The local linear trend repeat sales model is provided by Egs. 5-8. It is assumed that p = 1 in Eq. 2.
t-values are provided between the brackets
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Table 6 provides the estimation results. All estimates of the constant term
(y0) and the time between sales component (y;) are highly significant (¢-values
are provided between the brackets). The constant term is around 0.03 to
0.04. The time between sales component y; almost doubles (from 0.097 to
0.1871), depending on the fact whether y; is included in the model or not.
The coefficient 0.1871 is in line with the difference between the maximum and
the minimum value of the averages of the residuals per time between sales in
Fig. 6.

Figure 7 gives the estimated price indices. The impact of the constant in the
model is large. In the model including a constant term, the slope of the index
is smaller compared to the model excluding a constant term. The difference
in log index value on May 2009 is around 0.10. The differences between the
models excluding and including the time between sales component are very
small. The price indices are virtually the same for both models, including and
excluding a constant term.

It can be concluded that the inclusion of a constant term has a large
downward impact on the estimated price indeces. These results are in accord
with the findings of, for example, Shiller (1993) and Clapp and Giaccotto
(1999). We conclude that a feasible alternative is to keep all sales in the dataset
and explicitly model them, rather than delete all within—short—period repeat
sales and, therefore, ignore information in the data.
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Fig. 7 Log price indices f, for semi-detached houses in the local linear trend repeat sales model.
The local linear trend repeat sales model is provided by Eqs. 5-8. It is assumed thatin Eq. 2 p = 1
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Fig.8 Revision effects for the log price indices f; in the repeat sales model for Maarssen. The local
linear trend repeat sales model is provided by Eqs. 5-8. It is assumed thatin Eq. 7 yp = y; = 0 and
in Eq. 2 p = 1. The remaining models are special cases of the local linear trend repeat sales model

Revision

In this subsection the impact of revision for the four different repeat sales
models is examined. The repeat sales models are estimated on the full sample
of the sales in the city Maarssen and on a subsample, where the last 17 months
are left out. The repeat sales within first 6 months are omitted. In all models,
the parameters y, and y, in Eq. 7 are restricted to be zero. Figure 8a—d show
the full sample and the subsample log price levels for the CS, Goetzman, RWD
and LLT models, respectively, from January 2005. For all models it holds that
the revision effect is not large in this relatively small sample. Table 7 provides
summary statistics of the revision effect for the whole sample, defined as the
absolute value of the differences in $, between the full sample and subsample
log price index. For the LLT model the revision effect is the smallest: the
average effect is 0.0021 and the maximum effect is 0.0101. The revision effect
is the largest for the CS model: the average effect is 0.0035 and the maximum
effect is 0.0239. For larger samples, the revision effect for all models is much
smaller than this.

Table 7 Average and maximum revision effects in the repeat sales model for the city Maarssen

CS Goetzmann RWD LLT
Average 0.0035 0.0024 0.0027 0.0021
Maximum 0.0239 0.0195 0.0133 0.0101

The revision effect is defined as the absolute value of the differences in 8, between the full sample
and subsample log price index
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Prediction

To illustrate the meaning of the estimated standard deviations in Table 6, we
provide an example on the dataset for the semi-detached houses. We take the
model in the final column of Table 6 (yy # 0, y; = 0) as a base model for the
calculations. Let us assume that a house i is sold for €100,000 in May 2004.
We want to answer the question what the value of this house will be in May
2007. To be more precise, we want to answer what is the expectation and the
standard deviation of the value in 2007. The components that influence the
value of the house are the price trend (5, and «;), the individual house trend o;,
and the transaction price noise ¢;. The estimated price increase (B, and «;) is
0.136 (14.5%). The random walk has zero expectation, hence the expectation
of the value in May 2007 equals €114,500. The standard deviation consists of
three independent parts, (1) the standard deviation of the measurement error
(0.071), (2) the standard deviation of the random walk of an individual house
(0.016), and (3) the standard deviation of the price movements between May
2003 and 2007. The last one can be calculated from Eq. 15 and equals 0.0038.
The total standard deviation is v/2 x 0.0712 + 36 x 0.0162 + 0.00382 = 0.139,
approximately 14.79%.

Conclusions

In this paper we estimate the local linear trend repeat sales model, as an
alternative to repeat sales models in which the log price levels are fixed
unknown parameters. For large samples, the differences between the different
models are small. It does not matter whether a priori a structure is imposed
(random walk with drift and local linear trend model) or not (Case and Shiller
model); the estimation results do entirely depend on the data, and not on the
a priori structure. However, the local linear trend repeat sales model can also
be used to construct price indices in thin markets, with only a small number
of repeat sales, and for short time intervals. The impact of transaction price
noise on the estimation of the house price trends is considerably reduced using
the local linear trend repeat sales model. As a result of the underlying trend
model, the estimated price indices are stable.

The local linear trend repeat sales model can be interpreted as a modifi-
cation of the Goetzmann (1992) approach. The ‘constant’ appreciation rate
assumption (random walk with drift) is replaced by a more realistic ‘time
varying’ appreciation rate (local linear trend model). A second modification
is the estimation of the signal-to-noise ratios by maximizing the concentrated
likelihood function, thus avoiding the somewhat ad hoc two-step procedure
that results in overestimation of the signal-to-noise ratio, and hence in more
volatile return series.

In the local linear trend and the random walk with drift repeat sales
model, both estimated by maximum likelihood, the standard deviation of the
estimated monthly returns is almost insensitive to the sample size: for the
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local linear trend model it varies between 0.0039 (for n = 846, 439) and 0.0046
(n=2,511). This is about 0.6-0.7 times the average monthly return. In the
Case and Shiller and Goetzmann models, the standard deviation decreases
with the number of observations: for the Goetzmann model it varies between
0.0043 and 0.0429 and for the Case and Shiller it varies between 0.0047 and
0.0895. In these models, the monthly standard deviation is 6 to 13 times as large
as the average monthly return. This implies that the Case and Shiller and the
two-stage Bayes variant of the Goetzmann models cannot be used to construct
reliable detailed price indices and returns.

In addition, the local linear trend repeat sales model allow us to examine
the effect of the time between repeat sales on the estimation of the price
level. Empirical evidence shows that large profits are made when the time
between sales is relatively short, say within first 6 months. For that reason, a
new variable is included in the repeat sales model, containing the reciprocal of
the time between sales, providing a satisfactorily description of the empirical
evidence.

The structural time series approach that is used in this article allows for more
generalizations, such as the inclusion of seasonal effects and specifications of
hierarchical trends (see Francke and De Vos 2000) or common factors for
different market segments. The impact of outliers can also be reduced by
assuming the transaction price noise to have a ¢-distribution. As part of future
research, these generalizations can also be dealt with within the state-space
framework.
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Appendix A: Covariance Matrix

The covariance matrix of @ depends on the unknown parameters o and
0y = (p,qy). For |p| <1, covariance stationarity is assumed, hence «; ~
N(O, q,,oz /(1 — p?)). For p = 1, the process (2) starts at an unknown level, say
a;) = ;. Note that in the ‘differenced’ data the parameter v; cancels out. The
covariance matrices for @; for |p| < 1 have the typical form

o2

Var(a;) = 1q"

2

2_2pt73’ _1+ptfs_ptfr _'_psfr’ ptf'r_psfr _ ,0t7§+,0S7§
X 2_2,0371:’ _1+ps71: _psfg +,0r75 ,
2-2p""¢

(19)
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where 1> 5> 1 > ¢, see for example Hwang and Quigley (2004). By noting that

-1
1—p" _ 2iso P
1—p? p+1
the covariance matrix Var(;) can equivalently be expressed as

2 | 28, s) St t)—=S(t,5)=S(@s, 1) S5, 1)+SE, 5)—St, 1)=S,(5, ¢)

40 25(s, 7) S(s, <) — S(s, 1) — S(z, <) :
I+ 25(z. ¢)
(20)
where S(m, n) = I‘Z’g "1 bi. Note that for p = 1 the diagonal elements of

Var(a;) are q,0° (t —s,s — 7, T — ¢) and the off-diagonal elements are 0.
Equation 20 is well defined and finite for —1 < p < 1. Contrary to the profile
likelihood of (1)—(2), the likelihood of the ‘differenced data’ (7) is well defined
in the unit root. For a detailed discussion of the properties of the marginal
likelihood and the likelihood of the ‘differenced data’ in the regression model
with first order autoregressive disturbances, see Francke and De Vos (2007).

Appendix B: Estimation of the Slope Parameters

The slope parameters «i, ..., kr—; from the local linear trend repeat sales
model can be estimated in a similar way as the trend parameters f§; in
Section “Estimation”. The prior for 8 = (8,,..., 8r)" conditional on « =
(k2, ..., k7_1)" can be expressed as

pie=(§)e+c 1)

where ¢ ~ N(0, A;),and A, is defined in Eq. 13, see Egs. 5-6. Equation 21 can
be substituted in Eq. 7, leading to

Vi=ipo+p v APk + Xk + Xt +€ =727+ Xio +¢, (22)

0
1
submatrix of Z;: the only missing column is the column corresponding to $;
in Z i

The prior for k is given by

Kk ~ N0, 0%g: Ay). (23)

where )?i* = )N(L-< ), and X = (y, y1, k1, k). Note that the matrix Z[ is a

No prior information for the parameters yy, y1 and «; is available, hence
the precision matrix which is the inverse of the variance matrix ¥*, for all
. . 0 0
regression parameters 8 = (¥, 1, k1, k')’ is given by ¢*~! = .
g p (VO Y1 1 ) g y |:O (Q§A1) 1]
The posterior of A is provided by

MY, Z7,0,0% ~ N (3%, 0>V(RH), (24)
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-1

M M M
venH=(>(Z ' ZH-> (Z7 e X o™! Z(}?{Q;‘ Z‘)Jrq/**l ,
i=1 i=1 i=1

(25)

M M
* = V(O 77 7 1v) - 7 'X)o ! X' o'y
w=ven (L (27 e ) - (20 er R o L (Re) ).
(26)

where Q=(q. A1) '+3 Y, ()?{Qi_l)?i). We used the fact that the inverse of
the covariance matrix of X¢+¢in Eq. 22 is given by

(Xq A X +0) =@ -2 X (g A '+ X2 'X) " X2 (1)

The slope parameters for ¢t > 1 are given by x| + «;".

Note that the data dependent matrices YV, (Zi_ ’9;12; ),
SM(Z7e7' X, YM (Z7 279, and M, (X273, are submatrices
from their counterparts in Eqs. 14-16. They do not have to be evaluated
separately.
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