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Abstract
The reduction of the dibromodicyanoaurate(III) ion by hexacyanoferrate(II)tri-
hydrate was studied in an acidic medium. The reaction was first order in both 
Au(CN)2Br2

− and Fe(CN)6
4− and a second order rate constant of  k2 = 255 ± 5  M−1  s−1 

at  [H+] = 2.041 ×  10−4 M, an ionic strength of 0.51 M (NaBr) and 20.0 ± 0.1 °C was 
found for the reaction. The reaction rate decreases with increasing  [H+] in the region 
0.0004 ≤  [H+] ≤ 0.065  M. An equilibrium constant of  Ka = (3.00 ± 0.01) ×  10−3  M 
 (pKa = 2.52) at 20.0 ± 0.1 °C was found for the deprotonation of  H2Fe(CN)6

2−. Acti-
vation parameters of ∆H# = 47.8 ± 0.9  kJ   mol−1 and ∆S# = −37 ± 3  J   K−1   mol−1 
have been obtained by a least squares fit of temperature data directly to the Eyring 
equation.
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Introduction

Kinetic studies of the reduction of gold(III) ions by one-electron reducing agents 
such as thiosulfate [1], iodide [2, 3], alkyl sulfides [4], thiocyanate [5], hydroxyl 
amine [6], l-histidine [7], hydrazoic acid [8], sulfite and hydrogen sulfite [9] and 
oxalic acid [10] have been reported and provide evidence for a common inter-
molecular reaction mechanism [4]. The rate determining step was suggested to 
be the attack of the nucleophile on the coordinated ligand followed by a bridged 
electron transfer to the metal centre [4].

In contrast to the information available regarding the substitution kinetics of 
 d8 species, of which Au(III) is a member, the two-electron reduction of gold(III) 
complexes is much lesser known. Redox studies show first order kinetics in both 
the Au(III) and the reducing agent concentration, except for oxalic acid reduction 
where a fractional order in oxalic acid was observed [10]. In all of the mentioned 
studies the hydrogen ion concentration in the reaction mixture has a decreasing 
effect on the reaction rate with increasing  [H+].

The reduction of  AuCl4
− with metal ions and metal ion complexes as reduc-

ing agents have also been reported [11–13]. The rate of the  AuCl4
−/Fe2+ reac-

tion show an increasing trend in the rate with increasing  [Cl−] in the reac-
tion mixture [11]. In the oxidation of Pt(CN)4

2− by  AuCl4
− [12] three reactive 

Au(III) species have been identified due to the  [Cl−] in the reaction mixture. For 
 [Cl−] < 2 ×  10−4  M and pH 0, the neutral Au(III) and  AuCl3(H2O) are the pre-
dominant Au(III) species. A relative high  [Cl−] suppress hydrolysis of  AuCl4

− 
and therefore with  [Cl−] ≥ 0.20  M and pH 0, the exclusive oxidant species is 
 AuCl4

− [12].
The interpretation of a reaction mechanism by which two-electron oxidizing 

agents such as  AuCl4
− reacts is simplified when it reacts with stable one-electron 

reducing agents. The reduction of  AuCl4
− by the cyano complexes Fe(CN)6

4−, 
W(CN)8

4− and Mo(CN)8
4− as reducing agents have been reported [13]. These 

reactions show a decrease in reaction rate with an increase in  [H+] in the reaction 
mixture. The reactions of Fe(CN)6

4− and W(CN)8
4− are independent of  [Cl−] in 

the reaction mixture for  [Cl−] ≥ 0.20 M but the reaction between Mo(CN)8
4− and 

 AuCl4
− shows a decreasing effect in the reaction rate with an increase in  [Cl−] in 

the reaction mixture.
The reduction of dicyanodibromoaurate(III) and dicyanodichloroaurate(III) by 

sulfite and hydrogen sulfite has also been reported [9]. For both the reactions the 
rate of the reactions decreases with an increase in  [H+] of the reaction mixture. 
The reduction of trans-Au(CN)2Br2

− is independent of  [Br−] and that of trans-
Au(CN)2Cl2

− is independent of  [Cl−] in the reaction mixture.
In contrast to the wealth of kinetic information available on the reduc-

tion of  AuCl4
−, almost no kinetic information is available on the reduction of 

Au(CN)2Br2
−. We present with this paper results of a kinetic study of the 
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two-electron reduction of Au(CN)2Br2
− by the one-electron reductant Fe(CN)6

4−. 
This choice of reductant followed from the advantageous of mechanistic clarifica-
tions offered by enforcing one-electron transfer steps in the reaction mechanism.

Experimental

Trans-KAu(CN)2Br2⋅3H2O was synthesized by the oxidation of KAu(CN)2 as previ-
ously described [14] and were standardized with an iodometric process [15] and EDTA 
[16]. Fresh solutions of  K4Fe(CN)6⋅3H2O (Merk pro analise) were prepared frequently 
as this complex is unstable towards oxidation [17]. Solutions of  FeII(CN)6

4− were 
standardized as previously described [18, 19] directly before use. Double distilled water 
was used throughout.

The reaction was monitored by measuring the formation of  [FeIII(CN)6
3−] (λ420{Fe

III(CN)6
3−} = 1000  M−1  cm−1) at 420 nm and 20 °C on a Durrum D110 stopped-flow 

spectrophotometer connected to a Tektronix 5103 N oscilloscope. The  FeII(CN)6
4− 

and the  AuIII(CN)2Br2
−, as well as the reaction product of the latter compound, do not 

contribute to the absorbance at this wavelength. The reaction was performed with the 
 [AuIII(CN)2Br2

−] in excess of between 4 and 11 fold over the  [FeII(CN)6
4−]. These con-

ditions were deemed sufficient for pseudo first order conditions as Lente explanied in 
his book [20], that an excess of fourfold is sufficient for a flooding (pseudo first order) 
process in chemical kinetics. This minimum concentration requirement for pseudo first 
order conditions has previously been tested and confirmed as valid [13, 21–23].

The temperature of the reaction mixtures were controlled to within 0.1 °C with a 
Fryka-Kaltetechnic KB 300 waterbath with a Thermomix 1440 thermostat, connected 
to the Durrum D110 stopped-flow spectrophotometer.

The stoichiometry of the reaction has been determined volumetrically by titrating 
the formed  FeIII(CN)6

3− with ascorbic acid in the presence of  CdCl2 using variamine 
blue B hydrochloride (CI = 37,255) as indicator. The result was consistent with that of 
the  FeII(CN)6

4−/AuIIICl4− reaction as determined by Zakharov et. al [24] and the stoi-
chiometric equation can be written as

Results and discussion

The oxidation of  FeII(CN)6
4− by dicyanodibromoaurate(III), Au(CN)2Br2

−, was per-
formed under pseudo first order conditions [20] with [Au(CN)2Br2

−] in a 4 to 11 fold 
excess over the limiting reagent  [FeII(CN)6

4−]. A non-linear least squares fit [25] of the 
data of the  FeII(CN)6

4−/Au(CN)2Br2
− reaction traces (Fig. 1) to the exponential first 

order rate expression, Eqs. (2) or (3) [26],

(1)2 FeII(CN)4−
6

+ AuIII(CN)2Br
−
2
→ 2 FeIII(CN)3−

6
+ AuI(CN)−

2
+ 2 Br−

(2)

{[

FeIII(CN)3−
6

]

∞
−
[

FeIII(CN)3−
6

]

t

}

=
{[

FeIII(CN)3−
6

]

∞
−
[

FeIII(CN)3−
6

]

o

}

e(−kobsd.t)
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or here

indicate that the reaction is first-order in  FeII(CN)6
4−. Rate constants for the reac-

tions are summarized in Table  S1 (Supplementary Information). Since first order 
rate constant units are independent of concentration terms, concentration terms in 
Eq. (2) may be replaced by any quantity that is directly proportional to concentra-
tion. We substituted it with “volts”, the quantity measured on the oscilloscope.

Variation of the [Au(CN)2Br2
−] in the reaction mixture where [Au(CN)2Br2

−] is 4 
to 11 fold in excess of the limiting reagent,  FeII(CN)6

4− (Table S1 entries 7 to 12 and 
Fig. 2) indicate the rate law shown in Eq. (4), with  k2 the 2nd order pH-dependent 
rate constant of 255 ± 5  M−1s−1 at an ionic strength (µ) of 0.51 M.

(3)(V∞−Vt) = (V∞−Vo}e
(−kobsd.t)

Fig. 1  A trace of the reaction between Fe(CN)6
4− and Au(CN)2(Br)2

− (entry 6, Table  S1).  V∞ = volts 
measured at time infinity on the oscilloscope,  Vt = volts measured at time t. The difference  V∞−Vt was 
then measured in cm on the oscilloscope. [Fe(CN)6

4−] = 6.14 ×  10−4 M; [Au(CN)2(Br)2
− = 2.35 ×  10−3 M; 

 [H+] = 2.04 ×  10−4 M; [NaBr] = 0.50 M; µ = 0.51 M; T = 20.0 ± 0.1 °C

Fig. 2  Plot of  kobsd versus 
 [AuIII(CN)2Br2

−] for the 
variation of  [AuIII(CN)2Br2

−] 
in reaction mixtures. 
 [FeII(CN)6

4−] = 5.11 ×  10−4 M, 
 [H+] = 2.04 ×  10−4 M, 
 [Br−] = 0.50 M, 
µ(NaBr) = 0.51 M, 
T = 20.0 ± 0.1 °C
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In studying the influence of reaction products and liberated  Br−, it was first 
noted that addition of  FeIII(CN)6

3− (entries 13–17, Table  S1) and  AuI(CN)2
− 

(entries 18–23, Table S1) to the reaction mixture has no influence on the rate of 
 FeII(CN)6

4− oxidation. The rate data of the reaction shows a slight decrease in the 
reaction rate with an increase in  [Br−] in the reaction mixture (Table S1 entries 
24 to 29) at µ = 0.51 M (NaCl). This is indicative of an equilibrium step in the 
reaction mechanism, but the halide exchange reaction (5)

may also play a role. The most notable inhibiting effect by bromide is noted at high 
 [Br−], but at low  [Br−] and high  [Cl−] (entries 24 and 25, Table S1), the mixed hal-
ogenated complex may form in noticeable quantities. The observed reaction rate 
acceleration at high  [Cl−] is coherent with the known fact that  Cl2 is a better oxi-
dizing agent than  Br2, which also means that  Br− is a stronger reductant than  Cl−. 
Therefore, replacement of a bromide ligand with a chloride ligand to form a mixed 
halide gold (III) complex may well increase the oxidizing power of this Au(III) com-
plex and contribute to the faster reaction rates observed at low  [Br−] but high  [Cl−] 
in entries 24 and 25.

A theory for the influence of the ionic strength (I) of the reaction medium on 
the reaction rate was formulated by Brønsted and Bjerrum [27]. Application of 
this theory indicates that in water, if a plot of log k versus 

(

I
1∕2

1+I
1∕2

)

 has a positive 
slope, the charges,  ZA and  ZB of reacting ions A and B are the same (i.e. both 
positive or both negative) and that the value of the slope should be approximately 
the product  ZAZB [13, 21, 23]. The data for varying the ionic strength of the reac-
tion mixture for the  FeII(CN)6

4−/AuIII(CN)2Br2
− redox reaction (Table S1 entries 

30 to 37) show an increase in the reaction rate with an increase in ionic strength. 
The increasing effect (positive gradient) is also shown in Fig. 3 and is consistent 
with two negatively charge species reacting in the rate determining step of the 
reaction mechanism. Nothing can be read into the value of the slope (1.27), pos-
sibly because the Brønsted–Bjerrum theory is inaccurate at high ionic strength.

Alkali metal ion catalysis was significant in previous redox studies of some 
cyano complex ions in both alkaline [28, 29] and acid medium [13]. The highly 
negative charged  FeII(CN)6

4− suggest alkali metal cation association. Relative 
high association constants for alkali metal cation association with  FeII(CN)6

4− 
have been reported [30]. This led to an investigation of alkali metal ion catalysis 
by varying the  Cs+ ion concentration in the reaction mixture. Variation of the 
 [Cs+] in the reaction mixture (Table S2 entries 61 to 66) (Supplementary Infor-
mation) show no effect on the reaction rate.

Oxidation studies of  FeII(CN)6
4− in acidic reaction medium [31–34] have 

reported the involvement of the species  H2FeII(CN)6
2−, pKa = 2.22 [35] and 

 HFeII(CN)6
3−, pKa = 2.72 [35] at µ = 1.0 M. Since the oxidation of  FeII(CN)6

4− by 

(4)−d
[

FeII(CN)4−
6

]

∕dt = k2
[

FeII(CN)4−
6

][

AuIII(CN)2Br
−
2

]

(5)AuIII(CN)2Br
−
2
+ Cl− → AuIII(CN)2BrCl

− + Br−
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 AuIII(CN)2  Br2
− was studied in an acidic medium of 0.00012 ≤  [H+] ≤ 0.2004 M, 

protonated species of  FeII(CN)6
4− should be involved and equilibrium 6 must 

form part of the reaction mechanism.

The influence of  [H+] on the reaction rate is indicated by the variation of  [H+] in the 
reaction mixture (Table S2 entries 38–60). A sigmoid plot (S shaped plot) of  kobsd ver-
sus pH (Fig. 4, pH calculated from −log[H+]) indicate a  pKa in the experimental acidic 
range used. A  Ka value of (3.0 ± 0.1) ×  10−3 M  (pKa = 2.52) at µ = 0.51 M was obtained 
from a non-linear least squares fit [25] of the kinetic data in Table S2 to Eq. (7) [36–38].

This kinetically determined  Ka for the equilibrium in Eq. (6) correspond well with 
the potentiometric determined literature  pKa value of  pKa = 2.22 [35] at µ = 1.0 M. 
Figure 4 showing kinetic data fitted to Eq. (7) also indicates that the  H2FeII(CN)6

2− 
species is not a strong enough reducing agent to reduce  AuIII(CN)2Br2

− as 
 kobsd =  kHA = 0.0015 ± 0.0004  s−1 strived asymptotically to zero at low pH. Likewise, 
neat  HFeII(CN)6

3− reduces  AuIII(CN)2Br2
− with  kobsd =  kA = 0.57 ± 0.01   s−1 under 

the conditions listed in Table S2.
Based on the arguments above we propose the mechanism for the oxidation of 

 FeII(CN)6
4− by  AuIII(CN)2Br2

− in acidic medium, to be:

(6)H2Fe
II(CN)2−

6

Ka

⇌ HFeII(CN)3−
6

+ H+
(

Ka = 0.0060 M; pKa = 2.22
)

(7)kobsd =
kHA

[

H+
]

+ kAKa

[H+] + Ka

Fig. 3  Brønsted-Bjerrum plot of Log  kobsd vs. I
1∕2

1+I1∕2
 for varying the ionic strength (I, NaBr) of the reac-

tion medium.  [FeII(CN)6
4−] = 5.11 ×  10−4  M,  [AuIII(CN)2Br2

−] = 2.35 ×  10−3  M,  [H+] = 2.054 ×  10−4  M, 
T = 20.0 ± 0.1 °C
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The above mechanism is mutually consistent with the mechanism proposed for 
the reactions between  AuCl4− and Fe(CN)6

4−, W(CN)8
4− and Mo(CN)8

4− [13]. 
Equation  (9) is a reversible reaction with  k1 >>  k−1 and the forward  k1 reaction 
being the rate determining step. Application of a steady state approximation to the 
Au(II) intermediate,  AuII(CN)2Br−, yield the theoretical rate law 11 for the oxidation 
of  HFeII(CN)6

3− by  AuIII(CN)2Br2
−.

Experimentally it was shown above that the oxidation of  HFeII(CN)6
3− by 

 AuIII(CN)2Br2
− is first-order in both reactants, and independent of the product con-

centration in the reaction mixtures. This is consistent with the proposed theoretical 
rate law 11 if  k2 >>  k−1 implying the  k−1[Br−][HFeIII(CN)6

2−] term becomes negli-
gible. This simplification implies Eq. (9) is for all practical purposes almost irrevers-
ible, that the retarding effect of  Br− is very limited which means Eq. (5) does play 
a role at high  [Cl−], and leads to the experimental rate law shown in Eq. (12) where 
 2k1 is a 2nd order pH dependent rate constant.

(8)H2Fe
II(CN)2−

6

Fast

⇌
Ka

HFeII(CN)3−
6

+ H+

(9)HFeII(CN)3−
6

+ AuIII(CN)2Br
−
2

k1
⇌
k−1

AuII(CN)2Br
− + HFeIII(CN)2−

6
+ Br−

(10)HFeII(CN)3−
6

+ AuII(CN)2Br
−

k2
⟶AuI(CN)−

2
+ HFeIII(CN)2−

6
+ Br−

(11)
d[HFeIII(CN)2−

6
]

dt
=

2k1k2
[

HFeII(CN)3−
6

]2[

AuIII(CN)2Br
−
2

]

k−1[Br
−]
[

HFeIII(CN)2−
6

]

+ k2
[

HFeII(CN)3−
6

]

(12)
d[HFeIII(CN)2−

6
]

dt
= 2k1

[

HFeII(CN)3−
6

][

AuIII(CN)2Br
−
2

]

Fig. 4  Observed pseudo first 
order rate constant  (kobsd) 
vs. pH for the oxidation of 
 FeII(CN)6

4− by  AuIII(CN)2Br2
−. 

[Fe(CN)6
4−] = 7.42 ×  10−4 M; 

[Au(CN)2Br2
−] = 3.67 ×  10−4 M; 

µ = 0.51 M (NaBr); 
T = 20.0 ± 0.1 °C (Data from 
Table S2)
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A hydrogen ion dependency was observed for the reaction (Table S2 and Fig. 4), 
which indicate that equilibrium 6 is significant for the reaction. From Eq. (8)

and

Substitution of Eq. (14) into Eq. (13) and simplification gives

Substitution of Eq.  (15) into Eq.  (12) and simplification yield the rate law 
Eq. (16)

and

Equation  (16) is consistent with the experimentally observed decrease in reac-
tion rate with an increase in the  [H+] in the reaction mixture (Table S2) and Eq. (17) 
is mutually consistent with the experimentally determined Eq.  (7) if  kHA = 0   s−1. 
A non-linear least squares fit [25] of the  [H+] variation data for the oxidation of 
 HFeII(CN)6

3− by  AuIII(CN)2Br2
− (Table  S2) to Eq.  (17) yield the theoretical val-

ues  2k1 = 2(0.290 ± 0.004) = 0.580 ± 0.008   M−1s−1  (ka was determined to be 
0.57 ± 0.01 in Eq. (7)) and  Ka = (2.7 ± 0.1) ×  10−3 M  (pKa1 = 2.57). The value of  Ka 
obtained this way is similar to the experimentally determined value described above 
 (Ka = (3.0 ± 0.1) ×  10−3 M,  pKa = 2.52 at µ = 0.51 M) and also to the literature value 
[35],  pKa = 2.22 M at µ = 1.0 M.

Activation parameters for the reaction were calculated from the observed tem-
perature variation data in Table S2 (entries 67–73) and Fig. 5 utilizing least squares 
mathematical fittings [25] applied directly to the Eyring equation [13, 21, 39, 40]. 
Values of ∆H# = 47.8 ± 0.9 kJ  mol−1 and ∆S# = −37 ± 3 J  K−1  mol−1 were obtained. 
Adherence to Eq. (18) proved the expected direct proportionality between the exper-
imental errors of activation enthalpy, σ∆H#, and activation entropy, σ∆S# [39]; 
details of applying data to this equation may be found elsewhere [23, 41].

(13)
[

FeII(CN)4−
6

]

T
=
[

H2Fe
II(CN)2−

6

]

+
[

HFeII(CN)3−
6

]

(14)Ka =

[

H+
][

HFeII(CN)3−
6

]

[

H2Fe
II(CN)2−

6

]
so that

[

H2Fe
II(CN)2−

6

]

=

[

H+
][

HFeII(CN)3−
6

]

Ka

[

FeII(CN)4−
6

]

T
=
[

HFeII(CN)3−
6

]

[

[H+] + Ka

Ka

]

(15)
[

HFeII(CN)3−
6

]

=
Ka[Fe

II(CN)4-
6
]T

[H+] + Ka

(16)
d[FeII(CN)4−

n
]T

dt
=

2k1 Ka

[H+] + Ka

[

FeII(CN)4−
6

]

T

[

AuIII(CN)2Br
−
2

]

(17)kobsd =
2k1 Ka

[H+] + Ka
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In Eq.  (18),  Tav is the average temperature where experiments have been 
performed.

Conclusion

The reduction of the dibromodicyanoaurate(III) ion by hexacyanoferrate(II)trihy-
drate ions occur stoichiometrically in the ratio  FeII(CN)6

4−: Au(CN)2Br2
− = 2:1 and 

the reaction is first order in both reactants. The reactive form of  FeII(CN)6
4− in the 

reaction in the acidic range 1.2 ×  10−4 M to 0.2004 M is  HFeII(CN)6
3−. Variation of 

the  [H+] of the reaction mixtures yield a sigmoid relation and an acid dissociation 
constant of  Ka = (3.0 ± 0.1) ×  10−3 M  (pKa = 2.52) at µ = 0.51 M and 20.0 ± 0.1 °C for 
the equilibrium.

This value is mutually consistent with the value obtained from the kinetic 
study of the oxidation of the hexacyanoferrate(II) ion by the  AuIIICl4− ion [13] 
 (Ka = 9.1 ×  10−3 M;  pKa = 2.04) at µ = 1.2 M).

No specific ion effect was observed as the reaction rate was independent of 
 [Cs+], but under low  [Br−] and high  [Cl−] conditions, it was found that the mixed 
halide species  AuIII(CN)2BrCl− does form and is slightly more reactive than 
 AuIII(CN)2Br2

−.

(18)�ΔS# =
1

Tav

�ΔH#

(19)H2Fe
II(CN)2−

6

Ka

⇌ HFeII(CN)3−
6

+ H+

Fig. 5  A non-linear least squares fit of the second order rate constant  (M−1  s−1) and temperature (K) data 
to the exponential Eyring equation.  [FeII(CN)6

4−] = 5.11 ×  10−4  M,  [AuIII(CN)2Br2
−] = 2.35 ×  10−3  M, 

 [Br−] = 0.50 M,  [H+] = 2.054 ×  10−4 M, µ(NaBr) = 0.51 M
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