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Abstract
Two approximate analytical expressions based on third degree polynomial and 
Akbari–Ganji’s method (AGM) were derived for the reaction/diffusion controlled 
kinetics of an immobilized enzyme ( IE ) systems. The approximation methods pre-
dict substrate concentration profile and effectiveness factor ( � ) in a porous spheri-
cal particle. The reaction is assumed to follow reverse Michaelis–Menten ( rMM ) 
kinetics. The approximate methods predictions were comparable to that of numeri-
cal solution (using the Matlab finite difference function, bvp4c ) at wide range of �2 
and yo especially at low �2 and high yo (polynomial equation) and low �2 and low yo 
(AGM equation). Although the approximate solution was derived for rMM kinetics, 
the results can be used to describe other important enzymatic reaction kinetics such 
as simple Michaelis–Menten ( MM) kinetics and MM with competitive product inhi-
bition kinetics. A necessary design equation should be satisfied when using polyno-
mial or AGM approximation for different enzyme kinetic equations. In this work, 
two examples of enzymatic reactions of industrial interest were studied, namely 
glucose-fructose isomerization follows rMM kinetics and hydrolysis of lactose fol-
lows Michaelis–Menten ( MM ) equation with competitive product (galactose) inhibi-
tion. Predictions of the developed third degree polynomial and AGM approxima-
tion equations agree with that of numerical solution, the percentage relative error for 
the effectiveness factor was less than 11 in comparison with the numerical solution. 
Good agreement between approximate and numerical estimations demonstrates the 
validity of these approximation methods.
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List of symbols
a
0
 , a1, a2, a3, b, c	� Constants given in Eqs. (3.1–3.7)

De [m2/s]	� Effective diffusivity
k
′ [h−1]	� Reaction rate constant for pseudo first order reaction ( Vs / ks)
ke [–]	� Equilibrium constant
kp [mol/l]	� MM Constant for product
ks [mol/l]	� MM Constant for substrate
P [mol/l]	� Concentration of product
R [m]	� Radius of particle
r [m]	� Radial length of particle
S [mol/l]	� Substrate concentration
So [mol/l]	� Substrate concentration outside the particle
Se [mol/l]	� Substrate concentration at equilibrium
V  [mol/l h]	� Rate of reaction
Vs [mol/l h]	� The max. reaction rate for substrate
Vp [mol/l h]	� The max. reaction rate for product
yo [–]	� Substrate concentration outside the particle in dimensionless 

form ( So/ks)
y [–]	� Substrate concentration in dimensionless form ( S/ks)

Greek symbols
� [–]	� Effectiveness factor
� [–]	� � = ks/kp
� [–]	� So/kp=yo �
ρ [–]	� r∕R
� [–]	� Thiele modulus � =

R

3

√

Vs

ksDe

 (Thiele modulus for MM , rMM 
kinetics and MM with product competitive inhibition). 
�
1
=

R

3

√

k�

De

  (Thiele modulus for first order kinetics)

Abbreviations
HFCS	� High fructose corn syrup
IE	� Immobilized enzyme
GI	� Glucose isomerase
MM	� Michalis–Menten
rMM	� Reverse Michaelis–Menten

Introduction

Several advantages are achieved by enzyme immobilization compared to enzymes 
in suspension such as the enzyme reuse and improved catalytic activity. The 
kinetics of immobilized enzyme ( IE ) is different from enzyme in suspension due 
to mass transfer (external and internal) limitations. Increasing the level of agita-
tion in reactor reduces the external mass transfer resistance. For porous particle, 
the internal diffusional resistance is more important and is difficult to eliminate. 
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Conducting substrate material balance on spherical particle at steady state 
resulted in a differential equation of second order (nonlinear) and two boundary 
conditions. Analytical solution is not available for these equations. The two-point 
boundary value problem is normally solved by numerical procedures such as 
finite difference, shooting method [1] and orthogonal collocation procedure [2]. 
The effectiveness factor (η) is used to determine the effect of inter-particle diffu-
sional limitation on the overall reaction.

In general, using numerical techniques for solving differential equations is not 
easy and slow and also may have stability problem or difficulty of adjusting the 
variable to match numerical data. Although there are many numerical methods 
used to solve nonlinear differential equations with boundary conditions, to find 
approximate analytical method is still a goal to determine the effect of various 
parameters on the system. In the literature, several approximate methods are used 
for solution of the system controlled by diffusion and reaction kinetics [3]. Some 
of the widely used analytical method are homotopy perturbation method [4], ado-
main decomposition method [5], green function method [6], Taylor series method 
[7] and Akbari–Ganji method [8].

In the last decade, several publications were devoted for solving the reac-
tion–diffusion problem for nonlinear kinetics such as: Babolian et  al. [9] who 
used Sinc-Galerkin method, Azimi and Azimi [10] used differential transfor-
mation method, Lee and Kim [11] used global approximation method, Rani 
and Rajendran [12] and Ananthaswamy et  al. [13] used Homotopy perturbation 
method, Praveen et al. [14] used modified Adomain decomposition method. Good 
agreements were found between approximate and numerical methods in all these 
approximation methods of solution. Also for solving the reaction–diffusion prob-
lem, Li et  al. [15] derived an approximate third order polynomial equation for 
an IE catalyst performing MM kinetic equation. Good agreement with numeri-
cal solution was achieved at high substrate concentration in the bulk and at low 
Thiele modulus.

An approximate analytical method based on modified Adomain decomposition 
was used by Meena et al. [16] for solution of non-linear reaction–diffusion process 
based on MM kinetics. Analytical results showed good agreement with the third 
order approximation methods used. Saadatmandi et  al. [17] solved the nonlinear 
boundary value problem using Chebyshev finite difference and differential transform 
method with Pad’e approximations. Results are compared with that reported using 
Homotopy analysis method. Rani et al. [12] developed analytical expression for the 
estimation of the � and substrate concentration for the nonlinear reaction–diffusion 
system. Using the new homotopy perturbation method, results showed good agree-
ment compared to simulation predictions. Shanthi et al. [18] used AGM method to 
approximate the mathematical model for steady state reaction of pH-based poten-
tiometric biosensor. Manimegalad et al. [19] used AGM method to approximate the 
diffusion and kinetics model of immobilized enzyme at different shapes of electrode. 
Good agreement was found between the analytical and numerical results, Also Mir-
golbabaee et al. [20] used AGM method to approximate the nonlinear equation of 
the circular sector oscillation system. Results agree with Rung-Kutta numerical 
method for different values of the system parameters.
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Most of the enzymatic reactions are capable of reversing (reversible) even the 
ones that are complete reactions. In the literature, most of the reported work on IE 
consider simple MM kinetics. Very little is published about complex enzyme reac-
tions such as kinetics described by rMM [21] or MM with product inhibition term 
[22, 23]. Many of the industrially important enzymes these days are represented by 
complex kinetics. Isomerization of glucose and hydrolysis of lactose are described 
respectively by rMM kinetics and MM with competitive product inhibition kinetics. 
Extension of the calculations of � besides the simple MM equation is necessary to 
have clear knowledge of these complex enzymatic systems. Our present work is an 
attempt to expand the η calculations to rMM kinetics and MM kinetics with product 
competitive inhibition. The aim of this paper is to derive two analytical approxi-
mate solution of the reaction–diffusion controlled kinetics of IE system in spherical 
porous particle considering rMM kinetics. The approximation equations are based 
on polynomial of third order and Akbari–Ganji’s methods. The approximation equa-
tion predictions were compared to that of numerical solution using the Matlab finite 
difference function “bvp4c” in terms of concentration of substrate variation in the 
solid particle and values of the effectiveness factor, �.

Theory

Approximation based on third degree polynomial

Assume an enzyme immobilized in a porous solid spherical particles (Radius = R ). 
The kinetics of the enzyme reaction is represented by rMM equation. Substrate bal-
ance at steady state resulted in the following nonlinear differential equation with 
boundary conditions.

The boundary conditions are given by:

In the derivation of the approximate equation, the assumptions below are 
assumed:

1.	 Negligible deactivation of enzyme.
2.	 Uniform activity of the enzyme within the particle.
3.	 The substrate internal particle diffusion is described by Fick’s first law.
4.	 Substrate and product have similar diffusion coefficients ( De).

(1)De

(

d2S

dr2
+

2

r

dS

dr

)

=
Vs

(

S −
P

Ke

)

Ks

(

1 +
P

Kp

)

+ S

(1.1)A t r = 0
dS

dr
= 0

(1.2)A t r = R S = So
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5.	 Uniform distribution of enzyme in the particle.
6.	 Negligible external mass transfer resistance, S=So at the surface.
7.	 Constant reactor temperature.
8.	 Unity partition coefficient.

Making use of dimensionless parameters, the three equations above reduced to:

The boundary conditions are given by:

The dimensionless variables are

The Eqs. 2, 2.1, 2.2 are usually solved by numerical methods [2, 24]; � describes the 
relation between reaction to diffusion rate in porous particle (Thiele modulus). High 
�  indicates diffusion controlled process, while low � indicates reaction controlled 
process.

In this method, derivation of analytical approximate equation for the reaction/diffu-
sion system assumed third degree polynomial for the profile of substrate concentration 
in the particles.

Substituting Eq.  3 into Eqs.  2, 2.1 and 2.2, the polynomial coefficients can be 
determined:

(2)d2y

d�2
+

2

�

dy

d�
= 9�2

y −
[

yo−y

ke

]

1 + �yo + (1 − � )y

(2.1)� = 0
dy

d�
= 0 B.C.1

(2.2)� = 1 y = yo B.C.2

y =
S

ks
, yo =

So

ks
, � =

r

R
, � =

ks

kp
, � =

R

3

√

Vs

ksDe

(3)� = ao + a1� + a2�
2 + a3�

3

(3.1)ao =
−b +

√

b2 − 4c

2
𝜁 < 1

(3.2)ao =
−b −

√

b2 − 4c

2
𝜁 > 1

(3.3.)a1 = 0
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here

The approximate equation is used also to determine the effectiveness factor, � that 
is defined as:

Considering dimensionless parameters, �  is given by the following equation:

Equation 5 is used to determine the approximate value of the effectiveness fac-
tor ( � ). In addition, the concentration of product can be determined by the equation, 
P = ks(yo − y).

Akbari–Ganji’s method (AGM)

AGM approximation method is a powerful, fast and efficient semi-analytical 
approach for solving nonlinear reaction diffusion equation resulted from material 
balance in immobilized enzyme system using porous spherical particle. This method 
was developed in 2014 by [25, 26]. It is simple and accurate technique that con-
verged fast and predict approximate solution in different fields of science and engi-
neering [5, 8, 18–20, 27, 28]. In this work, there is good agreement between AGM 
and numerical solution based on the Matlab finite deference function, bvp4c. AGM 
assume the solution of Eq. 2 in the form of the following hyperbolic equation:

here  Ao and Bo are constants that can be found from boundary conditions of Eq. 2 
( Bo = 0,Ao =

yo

coshb
).

(3.4)a2 = 2
(

yo − ao
)

−

3

2
�2yo

1 + �yo + (1 − � )yo

(3.5)a3 = yo − ao − a2

(3.6)b =
1

1 − �

[

1 + (2� − 1)yo +

3

4
�2yo(1 − � )

1 + �yo + (1 − �)yo
+

3

4
�2

(

ke + 1
)

ke

]

(3.7)c =
1

1 − �

[ 3

4
�2yo

(

1 + �yo
)

1 + �yo + (1 − � )yo
−

3

4
�2yo

ke
− yo

(

1 + �yo
)

]

(4)
�approx. =

3

R
De

dS

dr

|

|

|r=R

Vs

(

So−
Po

Ke

)

Ks

(

1+
Po

Kp

)

+So

(5)�poly.approx. =
1

3�2

yo + 1

yo

(

2a2 + 3a3
)

(6)y(�) = A0 cosh(b�) + B0 sinh(b�)
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Equation 6 reduced to the following equation, which satisfies the boundary condi-
tions (Eqs. 2.1 and 2.2).

This dimensionless substrate concentration equation represent a new approximate 
analytical expression at all values of �2 and yo . The value of b can be determined by 
inserting Eq. 7 into Eq. 2. The resulted equation for the case of  rMM equation is 
given by:

For the case of MM kinetics and  MM kinetics with competitive product inhibi-
tion the above equation reduced to:

Using AGM, the dimensionless effectiveness factor parameters, �  is given by the 
following equation:

This equation is reduced to the following

The accuracy of the AGM method is determined at different �2 and yo , by com-
paring the result of substrate concentration profile and effectiveness factor with that 
obtained from numerical solution method.

Numerical solution

Numerical solution of the above second order differential equation (Eq.  2) with 
boundary conditions (Eqs.  2.1 and 2.2) can be achieved using the commercially 
available Matlab function bvp4c [29]. The bvp4c solver uses finite difference. The 
solution starts with an initial guess that is provided. The “bvp4c” function syn-
tax command line is written in the form: sol = bvp4c (@odefun, @bcfun, solinit, 
options). Here odefun: a function that determines the differential equations. bcfun: a 
function determines the boundary conditions residual. solinit: containing the initial 
guess of the solution. Options: optional parameters that change the default integra-
tion properties. The Matlab function, bvp4c showed to be very efficient in solving 
second order differential equations with boundary conditions. Once the profile of 
substrate concentration is determined, η can be estimated numerically using Eq. 4 
that reduces to the following:

(7)y(�) = y0
cosh (b�)

cosh b

(8)b2 + 2b tanh b = 9�2 1

(1 + 1∕Ke) + yo

(9)b2 + 2b tanh b = 9�2 1

1 + yo

(10)�AGMapprox. =
1

3�2

yo + 1

yo

dy

dx

|

|

|

|�=1

(11)�AGMapprox =
1

3�2

(

yo + 1
)

(b tanh b)
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The developed approximation model is based on the rMM kinetics. This gen-
eral kinetic model is reduced to other simpler kinetic models at certain condi-
tions such as MM and MM with competitive product inhibition and first order 
reaction kinetics. Table 1 shows all these kinetic models. Substrate balance using 
dimensionless parameters for the kinetic equations are shown in Table 2. The last 
column in this table shows the conditions for reduction of rMM equation to other 
kinetic equations.

The dimensionless mass balance equations for the different kinetic equa-
tions are shown in Table 2. At ke → ∞ (i.e. 1/ke → 0), the rMM kinetic equation 
reduces to MM with competitive type product inhibition. At ks=kp or �=1, Eqs. 2, 
2.1 and 2.2 reduces to 1st—order reversible kinetics. The MM kinetic equation 
with competitive type product inhibition reduces to MM kinetics with no inhi-
bition by product (i.e. � = 0). At low concentration of substrate (i.e. y < < 1), 
the MM equation can be further simplified to 1st—order kinetics. Table  2 also 
shows the conditions to obtain the different kinetic models from the general rMM 
equation.

(12)�num. =
1

3�2

yo + 1

yo

dy

dx

|

|

|

|�=1

Table 1   Reaction rate equations

Kinetic model Rate equation

(1) Reverse Michaelis–Menten ( rMM)
V =

VskpS−VpksP

kskp+kpS+ksP
=

Vs(S−
P

ke
)

ks

(

1+
P

kp

)

+S

(2)  MM with competitive product inhibition V =
VsS

ks

(

1+
P

kp

)

+S

(3) MM V =
VsS

ks+S

(4) Reversible first order
V = k

�
(

S −
S
o

k
e
+1

)

= k
�(S − S

o
)

(5) Irreversible first order V = k
�
S

Table 2   Material balance equations for different kinetic models in dimensionless form

Kinetic equation Material balance equation Condition

(1) rMM d2y

d�2
+

2

�

dy

d�
= 9�2

y−[
yo−y

ke
]

1+�yo+(1−� )y

(2) MM with competitive product inhibi-
tion

d2y

d�2
+

2

�

dy

d�
= 9�2 y

1+�yo+(1−� )y

1

ke
= 0

(3) MM d2y

d�2
+

2

�

dy

d�
= 9�2 y

1+y

1

ke
= 0,� = 0

(4) Reversible first order d2y

d�2
+

2

�

dy

d�
= 9�2

1
(y − yo∕ke+1) � = 1

(5) Irreversible first order d2y

d�2
+

2

�

dy

d�
= 9�2

1
y

1

ke
= 0,� = 1
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Results and discussions

Profile of the dimensionless substrate concentration ( y ) in the spherical particle 
using approximation methods

It can be seen from the Eqs. 3–3.7 that the profile of dimensionless substrate con-
centration depends on: (i) The Thiele modulus, ϕ. (ii) The dimensionless concen-
tration of the bulk substrate,yo . (iii) � = ks/kp and iv) the equilibrium constant, ke . 
The substrate concentration profile is estimated using a third order polynomial 
approximation and is compared with the results of numerical solution (Matlab 
bvp4c function) at the same conditions. Fig. 1a presents the dimensionless sub-
strate concentration profile (y∕yo) vs the dimensionless particle radius distance 
( r∕R ) using polynomial approximation (dotted line) and numerical solution (solid 
line) at  �2 = 2 and using four values ofyo(2, 5, 10, 20).

Fig.  1b shows the same relation predicted by the AGM approximate method 
vs numerical solution method at the same conditions in Fig. 1a. It is clear from 
Fig. 1a, b ( �2 = 2) that for each yo , the substrate concentration reaches the max-
imum value at the surface of the particle while it reaches the minimum value 
at the center of the particle. The concentration of substrate drops rapidly at 
lowyo . (i.e. the substrate concentration in the center of the particle decrease with 
decreasing yo). Large yo indicates zero order, while yo → 0 indicate that the reac-
tion approached first order.

Fig. 2 below is similar to Fig. 1 using constant value of yo = 5 and using four 
different values of �2(0.2, 1, 2, 4). As shown in Fig. 2, The substrate concentra-
tion drops rapidly at high value of �2 (i.e. the substrate concentration in the center 
of the particle decrease with increasing �2 ). Large �2 indicates that the reaction 
is fast and the substrate is consumed near the exterior surface of the particle (dif-
fusion controlled) and not penetrates to the center. Small �2 indicates reaction 

Fig. 1   Plot of the dimensionless substrate concentration ( y∕yo ) versus the dimensionless distance ( r∕R ) 
in the spherical particle predicted by numerical method (solid line) for polynomial approximate solution 
(a) and AGM method (b) for yo = 2, 5, 10, 20,�2 = 2 (Michaelis–Menten kinetics, 1

ke
= 0 , � = 0)
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controlled process and a significant amount of substrate penetrate to the interior 
of the particle without being consumed.

It is clear from the figures above that there is good agreement between the pre-
diction of polynomial approximation and numerical solution especially at high yo 
(Fig. 1a) and low �2(Fig. 2a). Also there is good agreement between the predic-
tion of AGM approximation and numerical solution especially at high yo (Fig. 1b) 
and low �2(Fig. 2b).

To determine the percentage error using the approximate solution in compari-
son to numerical solution method, the percentage relative error was calculated:

Fig.  3 shows the percentage relative error ( %RE ) in substrate concentra-
tion across the spherical particle at different yo and �2 imported from using the 
approximate polynomial method (Fig. 3a) and the AGM method (Fig. 3b) com-
pared to numerical method using MM kinetics. It is clear from Fig. 3 that the two 
methods of solution agree at large range of yo and �2 values especially at low  �2 
and high yo (polynomial approximation) and at low  �2 and low yo (AGM approxi-
mation). Very large error was obtained at very high �2 and low yo (polynomial 
approximation) and at very high �2 and yo (AGM approximation). In these cases 
significant deviations from numerical solution were observed. It is also clear from 
Figs. 1 and 2 that the approximate polynomial solution predicted higher substrate 
conversion while the AGM approximate method predicted lower conversion com-
pared to the numerical solution.

(13)%relative error(%RE) = 100 (yapprox.−ynum.)∕ynum.

Fig. 2   Plot of the dimensionless substrate concentration ( y∕yo ) versus the dimensionless distance ( r∕R ) 
in the spherical particle predicted by numerical method (solid line) for polynomial approximate solution 
(a) and AGM method (b) for yo = 5 and �2 = 0.2, 1, 2, 4 (Michaelis–Menten kinetics, 1

ke
= 0 , � = 0)
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Conditions for the use of analytical polynomial approximate solution method

The constant ao in Eq. 3 should be equal to or larger than 0 ( yo = ao at ρ = 0). This 
resulted in (c ≤ 0 for � < 1 according to Eq. 3.1). Therefore, the following condi-
tion should be satisfied for � < 1:

ψ = (So/kp ) = yo � (product inhibition modulus). Equation 3.2 is used when  � > 1 
that leads to c ≥ 0. Equation 14 can be derived at this condition for the case � > 1 in 
addition to � < 1. Equations 2, 2.1 and 2.2 reduced to 1st—order rate equation with 
analytical solution for the case of � =1. Equation 14 is reduces to Eq. 15 for MM 
kinetics and MM with competitive product inhibition kinetics.

Using simple MM kinetics, Eq. 15 was obtained by Li et al. [15].

Effect of the degree of product inhibition

Fig. 4 shows the effect of degree of product inhibition represented by � on the sub-
strate concentration profile estimated by the polynomial approximation and numeri-
cal solution method at �2 = 2 , yo = 10 (Fig. 4a), yo = 5 (Fig. 4b). The case of � = 0, 
represents simple MM kinetics with no product inhibition. Increasing � increases the 

(14)yo ≥
3∕3�2(1 + Ψ)ke

3∕3�2 + ke(1 + Ψ)
− 1

(15)yo ≥
3∕3�

2 − 1

Fig. 3   The percentage relative error ( %RE ) in substrate concentration across the spherical particle at dif-
ferent yo and �2 imported from using the approximate polynomial method (b) and the AGM method (b) 
compared to numerical method ( MM kinetics, 1

ke
= 0 , � = 0)
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degree of product inhibition. It is seen in Fig. 4 that lower conversion is achieved 
at high � . The maximum conversion (The lowest concentration) is achieved at 
no product inhibition ( MM kinetics). As shown in Fig.  4, the two solution meth-
ods give almost the same results for MM kinetics (� = 0) . The difference between 
them increases with increasing the degree of product inhibition with the approxi-
mate equation gives more conversion compared to the numerical solution method. 
Comparison between Fig.  4a, b shows that decreases yo increases the substrate 
conversion.

Fig. 4   Substrate concentration profiles across the spherical particles as a function of the degree of prod-
uct inhibition ( � = 0, 0.5, 2) at yo = 10 and �2 = 2 (a) and at yo = 5 and �2 = 2 (b) using polynomial 
approximate method in comparison to numerical method ( MM kinetics with competitive product inhibi-
tion, 1

ke
= 0)

Fig. 5   Effect of the bulk substrate concentration,yo and Thiele modulus, �2 on the effectiveness factor (η) 
estimated by polynomial approximation and numerical method (a), AGM approximation and numerical 
method (b) ( MM kinetics, 1

ke
= 0 , � = 0)
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The effectiveness factor ( �)

Equations 5, 10 and 11 are used to determine the �  using the polynomial, AGM 
approximation and numerical solution method respectively. Fig. 5 shows the effect 
of the dimensionless bulk substrate concentration, yo and the square of ϕ (�2 ) on the 
effectiveness factor ( � ) using polynomial approximation and the numerical solution 
(Fig. 5a), the AGM approximation and numerical solution (Fig. 5b). From Fig. 5, it 
can be seen that effectiveness factor decreases with increasing �2 and decreasing yo . 
Deviation from numerical solution is higher for low yo in polynomial approxima-
tion (Fig.  5a) while the opposite was noticed in the AGM approximation method 
(Fig. 5b). This deviation is shown to be significant at high �2.

Fig.  6 shows the effect of yo , �2 on the effectiveness factor (η) estimated by 
numerical solution (Fig. 6a), polynomial approximation (Fig. 6b) and AGM approx-
imation (Fig. 6c) for the case of MM  kinetics.

First order kinetics

The Eqs. 2, 2.1 and 2.2 reduced to kinetics of reversible 1st—order when � =1 as 
shown in Eq. 4, Table 2. This equation is reduced to irreversible 1st—order when 1 
∕ke → 0 (Eq. 5 in Table 2). Analytical solution is available for first order kinetics as 
given by [30].

Here �1 is the first order Thiele modulus given by �1 =
R

3

√

k�

De

Using the definition of the effectiveness factor, analytical expression can be 
derived for � [30].

(16)y = yo
sinh 3�1�

� sinh 3�1

Fig. 6   Effect of the bulk substrate concentration, yo (dimensionless) and Thiele modulus ( �2 ) on the 
effectiveness factor (η) estimated by numerical solution (a) and polynomial approximation (b) and AGM 
approximation (c) ( MM kinetics, 1

ke
= 0 , � = 0)
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The effectiveness factor depends solely on �1.

Industrial practical examples

The approximate methods predictions were tested and compared with that of the 
numerical solution using the Matlab function, bvp4c for two examples of enzymatic 
reactions with practical interest.

Glucose isomerization

The conversion of glucose to fructose is carried out using glucose isomerase ( GI ) 
enzyme. This is the last step in the production of high fructose corn syrup (HFCS). 
Enzymatic glucose—fructose isomerization is the most important process in indus-
try. It is widely used process in food industry. Fructose is 75% sweeter than sucrose 
and absorbed slowly compared to glucose. Traditionally, this enzymatic reaction 
process used packed bed reactor with the immobilized enzymeGI . Usually the GI 
reactor operates at 60 °C [31].The concentration of glucose used is about 2.8 mol/L 
that is typical concentration of the product from the enzymatic saccharification and 
liquefaction of starch [32]. The kinetics of this enzymatic reaction usually described 
by rMM equation. Table 3 shows the GI reactor conditions from the literature [31, 
32]. The first case in this table is at temperature of 60  °C. Using the kinetic and 
operation conditions available in the literature at this temperature, the polynomial 
and AGM approximation methods predicted 0.94 and 0.97 for the effectiveness fac-
tor compared to 0.94 predicted using the numerical method. The second case in 
Table 3 is at temperature of 70 °C [33, 34]. At this temperature, ks=kp (i.e. �=1), 
the rMM kinetics reduced to 1st—order reversible reaction kinetics with available 
analytical solution as given by Eqs. 16 and 17 [30]. Using Eq. 17 an  � of 0.9215 
was obtained. As shown in Table 3, the values of � and  yo decline with temperature, 
the decline of yo is very small in low bulk concentration of glucose [35], therefore, 
the effectiveness factor can be considered constant at the temperature range from 60 
to 80 °C which is typical for practical operation of GI reactor. From above, one can 

(17)� =
1

�1

[

1

tanh 3�1

−
1

3�1

]

Table 3   Practical example 1: production of HFCS using the enzyme glucose isomerase (GI)

GI reactor pH So (mole/l) R
(cm)

�2 yo �
�

Numerical.
�

polynom.

 

% relative
error

�
AGM.

 

% relative
error

T = 60 °C 7.5 2.805 0.06 0.3748 3.889 1.5 0.94 23 0.9406
− 0.18

0.9742
3.38

T = 70 °C 7.5 2.805 0.06 0.4071 3.334 1.0 0.9478 0.9417
− 0.64

0.9684
2.17
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conclude that use of the approximate equations to estimate the effectiveness factor is 
reasonable with the %RE less than 10 in the temperature range of operation for GI 
reactor.

Lactose hydrolysis

Lactose is a disaccharide present in milk (2–8% of the solid in milk). Lactose 
hydrolysis to glucose and galactose is important for production of milk with low 
lactose that is suitable for people who suffers from lactose intolerance. Hydrolysis 
of milk or whey is necessary for physiological, nutritional, technological and envi-
ronmental purposes. The conversion step is important to prevent crystallization of 
lactose in the frozen dairy products such as ice cream. Lactose hydrolysis process is 
usually executed in packed bed reactor using the enzyme lactase (β –galactosidase). 
This enzymatic reaction is usually exhibited MM kinetics with competitive product 
(galactose) inhibition [22, 36, 37]. The kinetic constants and operating parameters 
for the hydrolysis of lactose by lactase is available in the literature [36]. Table  4 
shows an example from the literature for hydrolysis of lactose [38]. From the table, it 
is clear that the calculated � using the numerical Matlab function, bvp4c, polynomial 
approximation, AGM approximation and from experimental results decrease with 
an increase in solid particle radius. The polynomial and AGM approximate equa-
tion predictions are higher in comparison with that of numerical solution method. 
The %RE using the approximate equation in comparison with numerical method 
increases with an increase in the solid particle radius. It can be concluded that the 
two approximate solutions are more suitable for estimation of the effectiveness fac-
tor (η) for particle with small radius.

Conclusions

Two approximate analytical methods were used to solve reaction–diffusion con-
trolled problem in an immobilized enzyme reactor system using rMM kinetics. The 
analytical methods are based on the third degree polynomial equation and the AGM 
approximation. The developed approximation methods estimated the concentration 

Table 4   Practical example 2: hydrolysis of lactose using the enzyme β-galactosidase on silica-alumina

T = 40 °C; pH = 6.5; S
o
= 50 kg/m3

Lactose hydrolysis reactor �2

y
o

�
�

num.
�

polynom.

 

% relative
error

�
AGM.

 

% relative
error

�exper.

R(m)104 = 0.75 0.36 13.291 0.423 0.993 0.9956
0.262

0.9916
− 0.141

1.0

R(m)104 = 3.25 6.587 13.291 0.423 0.8735 0.9067
3.8

0.8475
− 2.976

0.95

R(m)104 = 6.5 26 13.291 0.423 0.6282 0.6989
11.25

0.5789
− 7.85

0.89
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of the substrate in the spherical particle and the effect of internal diffusion resist-
ance measured by the effectiveness factor, the results were compared with numerical 
solution determined by the Matlab finite difference function, bvp 4c . The following 
is a summary of specific conclusions drawn from the present work:

1.	 Predictions of the two analytical approximate methods agree well with that of the 
numerical solution for substrate concentration profile and effectiveness factor ( � ) 
at wide range of �2 and yo especially at low �2 and high yo (polynomial equation) 
and low �2 and low yo (AGM equation), where the approximation method has 
almost the same predictions as numerical solution.

2.	 Using a third-order polynomial approximation, Eqs. 14 and 15 should be satisfied 
for  rMM kinetics and MM kinetics with competitive product inhibition or simple 
MM kinetics respectively. While using AGM approximation, Eqs. 8 and 9 should 
be satisfied for rMM kinetics and MM kinetics with competitive product inhibition 
or simple MM kinetics respectively.

3.	 The third polynomial approximate method is not a good choice at high �2 and 
low yo , while the AGM approximation method is not a good choice at high �2 
and high yo . The percentage relative error compared with numerical solution can 
be very high.

4.	 Although the approximate equations were derived with the assumption of rMM 
kinetics, this equation describes other simpler kinetics such as simple MM and 
MM with competitive product inhibition kinetics.

5.	 The developed third degree polynomial and AGM approximation equations were 
used to estimate the concentration profile for substrate and the effectiveness fac-
tor for two industrially important enzymatic reactions (i.e. hydrolysis of lactose 
and isomerization of glucose). The percentage relative error for the effectiveness 
factor was less than 11 in comparison with that of numerical solution.
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