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Abstract
I analyze theoretically the spatio-temporal kinetics of reduction of oxidized metal 
nanoparticles by hydrogen (or methane). The focus is on the experimentally 
observed formation of metal and oxide domains separated partly by pores. The inter-
pretation of such multiphase processes in nanoparticles at the mean-field level is 
hardly possible primarily due to complex geometry, and accordingly I use the lattice 
Monte Carlo technique in order to tackle this problem. The main conclusions drawn 
from the corresponding generic simulations are as follows. (i) The patterns predicted 
are fairly sensitive to the metal-metal and metal-oxygen interactions. With decreas-
ing the former interaction and increasing the latter interaction, there is transition 
from the formation of metal aggregates and voids to the formation of a metal film 
around the oxide core. (ii) During the initial phase of these kinetics, the extent of 
reduction can roughly be described by using the power law, and the corresponding 
exponent is about 0.3. (iii) With decreasing the hydrogen (or methane) pressure and/
or increasing the oxide nanoparticle size, as expected, the kinetics are predicted to 
become longer. (iv) The dependence of the patterns on the presence of the support 
and/or Kirkendall void in an oxide nanoparticle is shown as well.

Keywords Metal · Oxide · Nanopartiles · Phase separation · Kinetics · Model · 
Monte Carlo simulations

Introduction

Metal nanopartiles (MNPs) have long been in the center of heterogeneous cataly-
sis [1] and are now in the center of nanoscience in general with numerous poten-
tial and already realized applications (reviewed e.g. in [2, 3]). In reality, MNPs 
tend to deteriorate. In catalysis under relatively high temperatures, it often occurs 
via sintering (reviewed in [4–6]). In other applications, at lower temperatures, the 
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deterioration of MNPs is frequently related to their oxidation, i.e., conversion to 
oxide NPs (ONPs; see e.g. recent reviews [7, 8], experiments [9–12], kinetic models 
[13, 14], and references therein). The metal properties of ONPs can be restored at 
least partly by reduction via reaction with hydrogen (or methane) as reviewed in 
[15] (for recent experiments, see also e.g. [16–19]). The available mean-field kinetic 
models of reduction of ONPs imply the formation of a core-shell NP structure (see 
e.g. [20–23]). In reality, this process can be more complex. For NiO NPs, for exam-
ple, the experiments indicate that the reduction is accompanied by the formation 
of metal and oxide domains separated partly by pores [15, 24]. The description of 
such processes at the mean-field level is hardly possible primarily due to complex 
geometry. The full-scale Monte Carlo (MC) simulations are also hardly possible due 
to the uncertainty with the choice of numerous parameter and large values of metal-
metal and metal-oxygen interactions, and the corresponding models are now lack-
ing. Herein, I present the first generic 2D lattice MC simulations illustrating the key 
features of phase separation during reduction of ONPs.

From the perspective of statistical physics, the process under consideration is a 
special case of phase separation under reactive conditions. Other examples of pro-
cesses belonging to this class are available in heterogeneous catalysis, and the cor-
responding models are generic as well (see e.g. MC simulations [25, 26]). The spe-
cifics of phase separation during reduction of ONPs and in heterogeneous catalytic 
reactions are, however, fairly different.

Model

The simulations are performed on a square L × L lattice. Each site can be occupied 
by one monomer, A (metal), B (oxygen), or C (mimic of hydrogen), or be vacant. 
An ONP is represented at t = 0 by a square c(2 × 2 ) l × l A-B array (see, e.g., 
Fig. 1). The other sites are initially (at t = 0 ) assumed to be vacant or occupied by C 
with probability p < 1 (this parameter is related to hydrogen pressure). The analysis 

Fig. 1  Central 160 × 130 frag-
ment of the 200 × 200 lattice 
showing a typical initial c(2 × 2 ) 
100 × 100 distribution of A 
(filled circles representing metal 
atoms) and B (open circles 
representing oxygen atoms)
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includes diffusion of A, B, and C via jumps to nearest-neighbour (nn) vacant sites. 
These jumps are schematically represented as

where R is A, B, or C, and Z is a nn vacant site. In addition, there is irreversible 
reaction between reactants located in nn sites,

The driving force for the oxide formation is described by introducing the attractive 
nn interaction, 𝜖AB < 0 , between nn A and B. The tendency of metal atoms to aggre-
gate is reflected by introducing the attractive nn A-A interaction, 𝜖AA < 0 . The other 
interactions ( �AC , �BB , �BC , and �CC ) are neglected.

In the framework of the transition state theory, the rate constant of a monomer 
jump to a nn vacant site is determined by the pre-exponential factor and the activa-
tion energy identified as usual with the difference of the monomer energies in the 
activated state, i.e., at the saddle points of the potential barriers, and in the ground 
state, i.e., near the bottom of potential wells [27] (for the other dynamics, see e.g. 
[28]). A monomer performing a jump interacts laterally (in the 2D case) with neigh-
bours, which are in the ground state. Depending on the location of a jumping mono-
mer, there are lateral interactions in the ground and activated states, �X,i and �∗

X,i
 , 

where X is the subscript characterizing the monomer type ( X ≡ A , B, or C), and i is 
the subscript characterizing the arrangement of neighbours. The difference of these 
energies determines the contribution of lateral interactions to the jump activation 
energy. To reduce the number of parameters, the lateral interaction in the activated 
states are here neglected, i.e., �∗

X,i
= 0 . The lateral interaction in the ground state is 

reduced to the nn interactions as described above. With this specification, the rate 
constants of a A, B, or C jump in one of the directions are represented as

where k◦
A
 , k◦

B
 , and k◦

C
 are the maximal values of the rate constants, and n and m are 

the numbers of neighbours corresponding to a jumping A or B monomer and given 
i.

For MC simulations, one needs dimensionless probabilities ( pi ≤ 1 ) of possible 
events. To get such probabilities, the rate constants are usually normalized to a prop-
erly chosen rate constant which is larger than or equal to the rate constants of all the 
possible events. After such normalization, expressions (3) can be replaced by

(1)R + Z → Z + R,

(2)B + C → ∅.

(3)
kA,i = k◦A exp[(n�AA + m�AB)∕kBT],
kB,i = k◦B exp(m�AB)∕kBT),
kC,i = k◦C,

(4)

pA,i = p◦
A
exp[(n�AA + m�AB)∕kBT],

pB,i = p◦
B
exp(m�AB∕kBT),

pC,i = p◦
C
,
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where p◦
A
≤ 1 , p◦

B
≤ 1 , and p◦

C
≤ 1 are the jump probabilities in the absence of 

neighbours.
Reaction (2) is considered to be fast, i.e., to occur just after a diffusion jump of B (or 

C) if it has one or more nn C (or B). If after a diffusion jump of B (or C) it has more 
than one nn C (or B), the second reactant is chosen at random.

On the lattice boundary, the no-flux boundary condition are employed for A and B, 
i.e., the jumps of these monomers out of the lattice are not allowed. The C supply to 
the lattice is mimicked by using for this species the grand canonical distribution with 
the prescribed average C population, p (as at t = 0 ), on the border sites during trials of 
C jumps from the boundary sites to the interior of the lattice or from the interior to the 
boundary.

Algorithm of simulations

With the specification above, the algorithm of MC simulations is as follows: 

(i) A site is chosen at random.
(ii) If the site chosen is vacant, a trial ends.
(iii) If the site chosen is occupied, a monomer located in this site tries to diffuse [step 

(1)]. In particular, a nn site is randomly selected, and if the latter site is vacant, 
the monomer jumps to it with probability pA,i , pB,i , or p◦

C
 [Eq. (4)].

(iv) After a B (or C) jump, the nn sites are inspected and if these sites contain at least 
one C (or B), B (or C) reacts [step (2)] with randomly selected C (or B).

(v) After each MC trial, the dimensionless time is incremented by Δt = | ln(�)|∕L2 , 
where 0 < 𝜌 ≤ 1 is a random number.

The jumps near and at the boundary sites are simulated with the specification described 
in the end of Sec. 2.

On average, Δt = 1 corresponds to L2 MC trials. In the simulations presented, as 
usual, Δt = 1 is identified with one MC step (MCS). To convert t into real time, it 
should be divided by the rate constant which was used for normalization of the jump 
rate constants. The simulations are, however, focused on the patterns arising during 
reduction of ONPs, and from this perspective the time units are not important. For this 
reason, the time is below given in MCS.

MC runs were performed on a lattice with L = 200 up to t = 107 MCS. The size of 
the A+B array at t = 0 was l = 100 or 70. The kinetics observed were characterized by 
calculating the extent of reduction,

where nB(t) and nB(0) ≡ l2∕2 are the current and initial B populations.

(5)�(t) = 1 − nB(t)∕nB(0),
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Results of simulations

In the model presented, the jump probabilities defined by (4) depend on p◦
A
 , p◦

B
 , p◦

C
 , 

and the ratios 𝜖AA∕kBT < 0 and 𝜖AB∕kBT < 0 . In reality, the absolute values of these 
ratios are large ( ≫ 1 ), and with their realistic values MC simulations are too slow. 
For this reason, the use of relatively small absolute values of these ratios is usually 
inevitable. With this reservation, the bulk of the MC simulations shown below was 
performed with �AA∕kBT = −4 and �AB∕kBT = −3 . To make the simulations faster, 
the diffusion jumps were run with p◦

A
= p◦

B
= p◦

C
= 1.

To illustrate the predicted reduction kinetics and the corresponding patterns, I 
present 6 MC runs with different sets of parameters or initial conditions. Run 1 was 
performed with L = 200 , l = 100 , p = 0.1 , �AA∕kBT = −4 , and �AB∕kBT = −3 . Ini-
tially, the A-B array was located in the center (Fig. 1). In Runs 2-6, one or two of 
these parameters or the initial conditions are changed in order to show the sensi-
tivity of the results with respect to such changes. In particular, the initial arrange-
ments were without vacant sites inside (as in Fig. 1) in Runs 1-5 and with an array 
of vacant sites in Run 6.

The reduction kinetics corresponding to Runs 1-5 are exhibited in Fig. 2. During 
the initial phase of these kinetics, the extent of reduction defined by (5) can roughly 
be described by using the power law,

with � ≃ 0.3 . This exponent is close to the Lifshitz-Slyozov exponent, �LS = 1∕3 , 
for Ostwald ripening (see e.g. [29, 30]). This coincidence is natural because the 
reduction occurs in parallel and is influenced by the growth of A aggregates. More 
specifically, the analysis of the kinetics shown in Fig. 2 indicates that � = 0.32 for 
Run 1, 0.21 for Run 2, 0.51 for Run 3, 0.31 for Run 4, and 0.33 for Run 5. The 

(6)�(t) ∝ t� ,

Fig. 2  Extent of conversion [Eq. (5)] of the initial distribution of A and B as a function of time (in the 
logarithmic coordinates) during five MC runs predicted by the model under various conditions
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deviations of � from 0.3 are seen to be maximal in the cases of Runs 2 and 3. The 
related remarks are given below together with the discussion of the corresponding 
patterns.

Typical patterns observed during MC simulations with the first set of the 
parameters (Run 1) are shown in Fig. 3. The A aggregates and voids are seen to 
be rather small up to t = 104 MCS [Fig. 3a]. With increasing time, the A aggre-
gates and voids grow and at t = 107 MCS [Fig. 3d] their size becomes to be com-
parable with the initial size of the A-B array.

Regarding the variation of parameters, it is of interest to notice that the 
results of the simulations are fairly sensitive to the values of the ratios �AA∕kBT  
and �AB∕kBT  . This is illustrated by using the second set of the parameters with 
�AA∕kBT = −3 and �AB∕kBT = −4 (Run 2, Fig.  4). With decreasing |�AA∕kBT| 
and increasing |�AB∕kBT| (compared to that in the first set of the parameters), the 
driving force for the A segregation becomes weaker, i.e., the relative stability of 
the A-B phase increases, and the model predicts formation of the A layer around 
the A-B core (Fig. 4), and the whole kinetics becomes slower compared to that 

Fig. 3  Central 160 × 130 fragment of the 200 × 200 lattice during Run 1 (Fig. 2) with L = 200 , l = 100 , 
p = 0.1 , �

AA
∕k

B
T = −4 , and �

AB
∕k

B
T = −3 , at t = 104 (a), 105 (b), 106 (c), and 107 MCS (d). A (metal) 

and B (oxygen) monomers are shown by filled and open circles, respectively. The C monomers (mimic of 
hydrogen) are not indicated
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observed during Run 1 (Fig. 2). One of the manifestation of this A-layer-related 
slowdown is that � is reduced down to 0.21.

The main goal of the work was to show the A segregation and void formation, 
and the first set of parameters (Run 1) was selected from this perspective. The 
other simulations presented below were performed with the same values of the 
ratios �AA∕kBT  and �AB∕kBT  as in the first set of parameters. In particular, the 
third set of the parameters (Run 3) was chosen as the first one except the p value 
which was reduced from 0.1 to 0.02. In reality, this physically corresponds to 
decrease of the hydrogen pressure. With this modification, as expected, the kinet-
ics becomes slower than during Run 1 (Fig. 2). The patterns are, however, quali-
tatively similar to those observed in Run 1 (cf. Figure 3 and S1 in Supplementary 
Information), i.e., there is no formation of the coherent A film in the external area 
of the array. For this reason, this slowdown of the kinetics does not reduce � (as 
in the case of Run 2). In fact, � increases up to 0.51, because B particles have 
more time to diffuse from the internal area to the external area and react there.

In the fourth set of the parameters (Run 4), l was reduced from 100 to 70. With 
this modification, the kinetics becomes shorter (see Fig. 2 and cf. Figures 3 and 
S2 in Supplementary Information).

Fig. 4  As Fig. 3 for Run 2 (Fig. 2) with �
AA

∕k
B
T = −3 and �

AB
∕k

B
T = −4 (the other parameters are as 

for Run 1 shown in Fig. 3)
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The fifth set of the parameters (Run 5) was identical to the first one. The differ-
ence was in the initial conditions with one of the side of the A-B array contacting 
one of the lattice boundaries and prohibition of C supply at this boundary. These 
boundary conditions are aimed to simulate an oxide nanoparticle located at the 
support. In this case, the kinetics is somewhat slower than during Run 1 (Fig. 2), 
and the reduction occurs primarily in the upper part of the array (Fig. 5).

The sixth set of the parameters (Run 6) was identical to the first one as well, 
and the difference was also in the initial conditions. Here, the initial 100 × 100 
A-B array had inside a circular region of vacant sites. The radius of this region 
was 30. These initial conditions are aimed to simulate an ONP with a void inside. 
Such ONPs are often observed in experiments after oxidation of MNPs and asso-
ciated either with the specifics of diffusion of metal atoms and oxygen (Kirken-
dall effect [31, 32]) and/or induction of tensile strain [33, 34] during oxidation. 
With this setup, the initial phase of the kinetics and the corresponding patterns 
are similar to those predicted with the first set of the parameters (cf. Figures 3 and 
S3 in Supplementary Information). After penetration of C to the central region, 
the kinetics becomes, however, faster, and there is difference in the patterns.

Fig. 5  As Fig. 3 for Run 5 (Fig. 2) with the same parameters as for run 1 shown in Fig. 3. Here, the A-B 
array contacts the lattice boundary
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Conclusion

The MC simulations performed in the framework of the proposed generic 2D lattice 
model on the times up to 107 MCS illustrate the specifics of the formation of metal 
aggregates and voids during reduction of OMNs by hydrogen or methane. This dura-
tion of the MC runs is sufficient in order to reach appreciable extent of reduction. 
The conclusions drawn from the simulations are as follows: 

 (i) As one could expect physically, the patterns observed in the simulations are 
fairly sensitive to the A-A (metal-metal) and A-B (metal-oxygen) interactions. 
With decreasing the former interaction and increasing the latter interaction, 
the model predicts the transition from the formation of metal aggregates and 
voids to the formation of a metal film around the oxide core. This effect was 
not obvious in advance and accordingly can be classified as novel.

 (ii) During the initial phase of the kinetics under consideration, the extent of 
reduction can roughly be described by using the power law with � ≃ 0.3 . This 
finding is novel as well.

 (iii) With decreasing p (hydrogen or methane pressure) and/or increasing the ONP 
size, the kinetics become longer.

 (iv) The patterns depend on the presence of the support and/or Kirkendall void in 
an ONM.

All these conclusions obtained in the framework of the 2D lattice model appear 
to be physically reasonable, and one can add that two of them, (iii) and (iv), are 
obvious and applicable in the 3D case as well. The other two, (i) and (ii), are, how-
ever, not trivial and merit additional more specific remarks. In particular, conclusion 
(i) is qualitative, could be physically expected, and likely holds in the 3D case. Con-
clusion (ii) is quantitative and physically supported by referring to the specifics of 
Ostwald ripening and the corresponding Lifshitz-Slyozov exponent which is appli-
cable in the 2D and 3D cases. With this reservation, one cannot, however, exclude 
that in the 3D case the exponent for the ONP reduction will be somewhat different 
compared to the obtained one, � ≃ 0.3 . In fact, the difference has been observed in 
the simulations presented ( � = 0.21 for Run 2, and � = 0.51 for Run 3).

Taken together, the results of the simulations are instructive. In particular, one 
can see that the qualitative interpretation of the specifics of the formation of metal 
aggregates and voids during reduction of ONPs by hydrogen or methane is possible 
at the generic level.

Finally, it is worth to notice that the model presented can be extended in various 
directions. One of the extensions is to choose the parameters so that the patterns 
become to be closer to those implied in the mean-field treatments mentioned in the 
Introduction. Another and perhaps more interesting extension is to perform simula-
tions in the 3D case.
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