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Abstract
During the past decade, pyrolysis routes have been identified as one of the most 
promising solutions for plastic waste management. However, the industrial adoption 
of such technologies has been limited and several unresolved blind spots hamper 
the commercial application of pyrolysis. Despite many years and efforts to explain 
pyrolysis models based on global kinetic approaches, recent advances in compu-
tational modelling such as machine learning and quantum mechanics offer new 
insights. For example, the kinetic and mechanistic information about plastic pyroly-
sis reactions necessary for scaling up processes is unravelling. This selective litera-
ture review reveals some of the foundational knowledge and accurate views on the 
reaction pathways, product yields, and other features of pyrolysis created by these 
new tools. Pyrolysis routes mapped by machine learning and quantum mechanics 
will gain more relevance in the coming years, especially studies that combine com-
putational models with different time and scale resolutions governed by “first prin-
ciples.” Existing research suggests that, as machine learning is further coupled to 
quantum mechanics, scientists and engineers will better predict products, yields, and 
compositions, as well as more complicated features such as ideal reactor design.

Keywords Plastic pyrolysis · Machine learning · Quantum mechanics · Kinetics · 
Reaction pathways

Introduction

Modernity has been undoubtedly supported by the progress of plastic materials. As 
a result, plastic is ever-present in applications ranging from food packaging to the 
aerospace industry. However, exponential consumption patterns and unrepentant 
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plastic pollution are negatively impacting our ecosystems. Therefore, several efforts 
based on primary, secondary, and tertiary technologies have been applied to reduce 
the effect of plastic waste on the environment [1]. Many European countries, among 
others, have pursued the “reduce, reuse, and recycle” policy to eliminate the plastic 
materials that end up in the oceans, rivers, and landfills. However, it is estimated 
that just 10% of all worldwide plastic waste produced since 1950 has been effec-
tively recycled [2], which indicates more concerted efforts are needed to solve plas-
tic-based pollution globally.

New technologies view plastic waste as a potential feedstock [3]. The literature 
reviews of Al-Salem et  al. [1] and Schwarz et  al. [4] show an overview of these 
technologies and applications. The recent analysis by Rahimi et al. [5] shows that 
chemical recycling, especially catalytic pyrolysis, might be the most suitable techno-
logical solution in plastic recycling strategies. This approach could prevent 3.5 bil-
lion barrels of oil from entering the plastic loop, thus saving around US$ 38 million 
annually.

The general concept of plastic pyrolysis involves the breakdown of the polymer 
into smaller molecular fragments that can be used as a value-added commodity or 
building blocks for the production of fuels, polymers, and carbon-based materials 
including carbon nanotubes and graphene [6]. Plastic pyrolysis leads to the forma-
tion of oil, gases, and solid char, which are closely dependent on the operational 
parameters, including the feedstock employed. Despite the great advancement of 
pyrolysis technologies, some technical and fundamental bottlenecks need to be 
addressed before the process is viable at the commercial scale. A recent analysis by 
the United States Department of Energy (US-DoE) shows knowledge gaps in cata-
lysts designs, processes, and material feedstocks that need to be overcome in the 
coming years to enable plastic circularity [7].

To fill such gaps requires polymer pyrolysis modelling, which is the process of 
defining, categorizing, mapping multiple chemical reactions, feedstocks and prod-
ucts. Models provide insights into how particular polymers are transformed into 
smaller molecules and then reassembled into new materials. This kind of modelling 
involves data on broad kinetic processes and detailed data on specific, sometimes 
microscopic reactions.

This approach involves sequential multiscale modelling from micro- to macro-
scale reactor levels, along with solid–liquid–gas phase interactions [8]. However, 
transforming discarded plastics into higher-value products also requires more accu-
rate determination of the thermodynamic parameters of the depolymerization reac-
tions. While polymer synthesis is an exothermic and relatively simple reaction dom-
inated by the C–C bond formation, the opposite reaction, depolymerization, is an 
endothermic process. The energy-intensive characteristic of such processes makes 
it difficult to selectively break down the C–C bonds and achieve high yields of the 
desired products without also generating undesired radicals or highly reactive mol-
ecules that produce other unwanted products. Therefore, there is no universal or 
multi-purpose catalyst for all plastics, which means it is necessary to select the cata-
lyst according to the polymers and the desired target of products needed.

Most of the research carried out at lab scale [9] and bench-scale [10] has shown 
the potential of zeolites [11] and transition-metal catalysts to convert raw plastic 
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materials into fuel or other commodities [12]. However, when real waste is used, 
the results obtained differ from the yield and composition of the products obtained 
or predicted from the pyrolysis of the virgin polymer. On one hand, such gaps hap-
pen because real waste shows a broad composition of plastic material with different 
properties including additives along with a small number of metals and other impu-
rities, which have great impact on the reaction performance. On the other hand, the 
global kinetic expression typically used to analyze the kinetic information fails to 
capture and drive the complex and interlinked nature of these reactions [13]. Such 
limitations have hindered the growth and development of plastic pyrolysis technolo-
gies. However, the deep details about the progress and evolution of pyrolysis tech-
nologies is reported in the literature [14].

To address these gaps, “data-driven” tools, based on machine learning (ML) and 
quantum mechanics (QM) have been widely applied to unravel reaction mechanisms 
and kinetics triplets [15–19]. For this reason, the following sections of this review 
explore the recent advances of computational tools, such as ML and QM, applied 
to obtain kinetics and mechanisms information of plastic pyrolysis. First, a recent 
literature review of the general methods and limitations of the kinetic models is pro-
vided, followed by an analysis on the progress of ML tools in plastic pyrolysis mod-
elling. Finally, a new perspective combining fundamental knowledge based on QM 
and previous modelling tools to overcome barriers in the plastic pyrolysis field is 
described. To the best of our knowledge, this is the first work that summarizes the 
recent state-of-art research works for the application of ML and QM in the pyrolysis 
of plastics.

Methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) method was adopted in this study. The methodology requires four sys-
tematic steps: (i) identification; (ii) screening; (iii) eligibility; and (iv) qualitative 
synthesis. These steps are summarized in Fig. 1. Based on the previous review on 
plastic pyrolysis [20], the identification process in this study focused on publica-
tions (articles, proceedings and reviews) in the Web of Science (WoS) and Scopus 
databases. The final search was performed on 30 March 2021 and the time frame 
was set at 2001–2021. In both queries, the search string used consisted of the fol-
lowing search terms and Boolean operators: (“plastic waste” OR “polymer waste” or 
polyolefin* or polyethylene or polypropylene or polystyrene or “polyvinyl chloride” 
or “poly(ethylene terephthalate)”) AND (“thermal pyrolysis” or “catalytic pyroly-
sis” or “thermal cracking” or “catalytic cracking” or “thermolysis” or “thermocata-
lytic”). The first query included a third operator and group of search terms: AND 
((“machine learning” OR “neural network” OR “ANN” OR “pattern recognition” 
OR “Statistical Inference” OR “structured prediction” OR “ensemble algorithm*” 
OR “big data”)). The second query used the AND ((“DFT” OR “Density Functional 
Theory” OR “ab-initio” OR “VASP” OR “Molecular Dynamics” OR “Quantum 
Mechanic” OR “ReaxFF”)). The two queries resulted in 2816 documents, of which 
729 were removed as duplicates. Next, an initial screening process was conducted, 
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which involved scanning titles, keywords, and, when appropriate, the abstracts to 
locate the relevant articles. The articles that focused on theoretical approaches, case 
studies, or others not directly concerned with the kinetic parameters of pyrolysis 
were removed from the dataset. During this stage, 1936 articles were removed. This 
was followed by a second screening process, based on a more detailed analysis of 
the abstracts (151 remaining articles), which was performed and separated based on 
their primary subject. The final dataset contained 93 documents, which were then 
used to synthesize this review.

Global kinetic models

Thermochemical routes, including pyrolysis, offer promising methods to reduce 
plastic pollution. Among the different thermo-degradation routes, the catalytic 
pathway has the potential to (i) reduce the reaction temperature, and (ii) achieve 
the desired and narrowed distribution of products [22]. From an engineering point 
of view, the optimization of the plastic conversion and yields of desired products 
requires attention to many interlinked parameters.

Global kinetic modelling, in comparison to semi-detailed approaches, implies 
the selection of a few critical reactions from the hundreds of species and thousands 
of reactions that may occur during chemical transformation. This simplification of 

Fig. 1  Flow diagram illustrating literature research and selection process based on PRISMA model ( 
Adapted from Moher et al.[21])



595

1 3

Reaction Kinetics, Mechanisms and Catalysis (2021) 134:591–614 

the reaction networks entails a loss of mechanism information leading to inaccurate 
data-fitting and conclusions.

For instance, the most common control parameters from global kinetic model-
ling in pyrolysis are temperature, heating rate [23, 24], pressure [25], catalyst [26], 
feedstock composition [27], and reactor configuration [28]. Despite the numerous 
detailed experiments, consensus about which parameters have more impact on the 
conversion and product yields and the corresponding kinetic models is lacking. 
Kinetic modelling has allowed engineers to accurately predict the product distri-
bution and kinetic parameters e.g. in synthesis or decomposition of ammonia [29]. 
However, the kinetic modelling of plastic waste conversion particularly for the cata-
lytic route remains limited because the nature of these reactions is not well under-
stood [30].

Based on the recommendation of the Kinetics Committee of the International 
Confederation of Thermal Analysis and Calorimetry (ICTAC) [31], research-
ers extensively explored the kinetic parameters of plastic pyrolysis using various 
model methods. For example, the model-free methods of Friedman, Kissinger–Aka-
hira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO), or the model-fitting methods 
of Coats-Redfern have been examined in the past two decades. However, some gaps 
remain around the process that involves multiple-step kinetics such as determining 
the kinetic triplets from real plastic waste, which is the main goal, and the crucial 
step in the scaling-up process [17, 32, 33]. A deep analysis of triplet where multiple-
step kinetics such as those involved in plastic waste pyrolysis, requires evaluation 
through nonlinear methods that involve more complex analysis and data processing 
[34–36].

Different approximation methods have been developed to evaluate the activation 
energy  (Ea) and the rate-determining step (or mechanism) in plastic pyrolysis, based 
on thermogravimetric analyses, which are well discussed by Liu et al. [37] and Wang 
et al. [38]. However, the kinetic parameters obtained do not represent the intrinsic 
kinetic values of the reaction per se. Hence, the data are commonly expressed as 
apparent activation energy and apparent pre-exponential factor [39]. This difference 
also highlights the poor suitability of nth order reaction models. Experiments using 
iso-conversational approaches have obtained distinct kinetic conclusions despite 
using the same feedstock and similar thermogravimetric analysis [40].

Urionabarrenechea-Lopez et al. [41] used an empirical model to predict the prod-
uct yields from real municipal plastic waste, which could be considered as the “holy 
grail” for the waste-to-valued-added products. The authors found highly accept-
able results, reporting a difference between model results and real data of 2–5%. 
Although satisfactory but “time-saving”, these models are too simplistic and cannot 
predict specific compounds, which is a key aspect of using pyrolysis as waste-to-fuel 
or waste-to-energy routes.

The discrepancies in global kinetic models are exacerbated by catalytic processes. 
These simplifications occur due to catalyst deactivation, mass, or heat transfer limi-
tation phenomena, which significantly affect the reaction pathways and product 
yields. In summary, the models tend to overlook the physical and chemical back-
grounds of the underlying chemical reactions [42]. As described above, the kinetic 
analysis of plastic pyrolysis is a complex task, and different models reflect relatively 
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narrow parameters or experimental conditions, including feedstock. Although this 
approach has provided a useful overview of the kinetics and mechanism of plastic 
pyrolysis, it is limited in length and time scale, which explains the need for new 
approaches.

Table 1 summarizes the kinetic parameters recently reported for different plas-
tic feedstock for pyrolysis. The list includes Polypropylene (PP), Polyethylene (PE), 
Polystyrene (PS), High-Density Polyethylene (HDPE), Low-Density Polyethylene 
(LDPE), Polybutylene Terephthalate (PBT), and Acrylonitrile Butadiene Styrene 
(ABS). The different kinetic methods (previously mentioned), including the power-
law and Sestak-Berggren models, have been compared. Significant differences 
regarding the kinetic parameters can be highlighted, even when the same materials 
are analyzed by different methods. The observation hampers consensus about the 
dominant reaction mechanism, which makes it quite challenging to select the best 
way to produce a certain kind of product.

To overcome such limitations, Lin et al. [50] proposed the use of the lumping-
kinetic (LK) model that divides the entire process into several steps and measures 
different “categories” of simplified reactions between the lumps. Normally these 
lumps are also called pseudo-components or “families,” and are surrounded by 
chemical compounds according to intrinsic properties such as boiling point. In the 
work carried out by Lin, the lumps are portioned into three major fractions according 
to the average number of carbon compounds. The results showed that LK-modelling 
presents a feasible option for reducing the complexity of the underlying chemical 
network. However, this strategy proves inadequate for predicting the entire reactor 
composition, especially when different feedstock compositions are used in the same 
lumping and the physicochemical nature of the reactions cannot be anticipated.

Other approaches based on the immiscibility of pyrolysis products (liquid, gas, 
and char) and binary activity coefficients have been used by Fakhrhoseini et al. [42] 
to estimate the product yields. When model results are compared with the real yields 
obtained from the individual and different mixtures of plastic feedstock, it appears 
that the overall process can be modelled. Yet, substantial differences in the composi-
tion of products limit the application of such approach.

Although the aforementioned approaches may provide necessary and useful snap-
shots of pyrolysis, scientists cannot still track all the reactions. Therefore, this results 
in overestimated parameters (activation energy, pre-exponential factor, and kinetic 
order), which are only valid for a narrow set of conditions.

Semi‑detailed kinetic models

Kinetic models based on single-step mechanisms are more accurate, but the fea-
sibility of such models is dependent on the number of reactions involved, thus 
it is expensive and time-consuming. For plastic pyrolysis, this network involves 
hundreds of chemical compounds and thousands of chemical reactions, which 
increase exponentially with the number of carbon atoms involved. The recent 
work by Dogu et al. [17] details the strengths and limitations of different kinetic 
approaches for the pyrolysis and gasification of plastics. In addition, Dogu 
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highlights the relevance of incorporating computational tools to have better and 
more accurate kinetic models to tackle plastic waste recycling through pyrolysis.

Complicated reaction systems, like plastic pyrolysis or cracking, depend 
on many kinetic parameters. Some efforts to retrieve precise information about 
kinetic parameters have been pursued by Levine et  al. [32], who employed the 
method of moments approach that combines the theory of reaction with balance-
based models. By solving moment equations, the authors can follow the evolu-
tion of the molar mass distribution of the products. The authors used the global 
rate coefficients considering zero, first, and second moments to satisfactorily 
describe the changes in the molecular weight distribution as a function of time. 
The method proposed detailed mechanistic models for polymer reaction systems 
to track 151 species and 11,000 reactions from single polyethylene pyrolysis. 
Despite the study’s enhanced understanding of the reaction pathway, the findings 
should not be interpreted as definitive because end-chain radicals can be formed 
by multiple pathways that can affect the overall yield of HDPE decomposition. 
These results could be improved by distinguishing the reactions pathway and 
product formation based on information retrieved from advanced characterization 
techniques.

Recently, the foundation of the chemical and physical processes involved in 
the pyrolysis of polymers has been addressed by experimentation based on dif-
fuse reflectance spectroscopy of cellulose [51], and a new thermal-pulsing reac-
tor for pulse-heated analysis of solid reactions [52]. Both techniques provide fur-
ther details on the kinetics and mechanisms of polymer decomposition. Although 
biomass conversion is the primary goal of the research, fundamental knowledge 
retrieved from these investigations highlights the molecular and short-time scales 
in plastic pyrolysis. Linking the atomic scale with the unravelling cleavage and 
bond-formation to the mesoscale level, where inter- and intra-molecular forces 
impact the final macroscale properties will uncover new strategies based on 
high-throughput experiments and computational modelling tools. Such differ-
ences have been highlighted in previous work by Sánchez-Jimenez et al. [39]. The 
authors show that model-fitting methods are “less time consuming” when used to 
study the kinetic modelling of plastic pyrolysis, but these models do not reveal 
the real evolution of the reactions. Based on the arguments described above, the 
highly complex nature of plastic pyrolysis is the main obstacle for scientists to 
accurately describe and predict the real process using kinetic modelling. How-
ever, the large amount of experimental data indicates a new paradigm in chemi-
cal engineering organized by computational tools including artificial intelligence 
(AI).

Concerning this matter, more detailed knowledge about the kinetic and mecha-
nism in real-time based on predictive science-based models is required, as the 
US-DoE has identified in their report, “PRO 4: Develop Novel Tools to Discover 
and Control Chemical Mechanism for Macromolecular Transformation”[7]. In 
this regard, the following section explores the most recent efforts and progress 
supported by different computational tools like AI to unravel key aspects related 
to the kinetics and mechanism of plastic pyrolysis.
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Insights from “in silico” modelling

Traditionally, heterogeneous catalysis progresses through abundant experimen-
tation, trial-and-error discoveries [53], and a systematic approach using model 
catalysts, molecules, and physics-based modelling [54]. One of the most famous 
examples regarding the experimentation-based approach is the progress made 
over ammonia synthesis catalyst by Haber and then by Mittasch and Bosch in the 
first decades of the twentieth century [55]. The final progress and understanding 
of this reaction were achieved after 10,000 experiments during which different 
single- and multi-combination of metals led to the final Fe-based catalyst [56]. 
The application of computational tools based on AI strategies can reduce the time 
and investment required to synthesize, test, and increase the efficiency of these 
processes [57, 58].

The application of AI to chemical engineering disciplines such as catalysis, mate-
rial science, energy, and fuels has gained significant attention in recent years [18, 
59, 60]. The progress of ML in chemical processes has been explicitly described by 
Venkatasubramanian [61], as summarized in Fig. 2 showing the most relevant mile-
stones achieved during the last 50 years. The authors categorize the evolution of ML 
in four phases or stages, according to the improvement of the technology and com-
putational task force. Moreover, the authors opine that one of the most important 
challenges that scientists are facing is the development of fundamental knowledge 
based on a mathematical framework. The proposed framework should predict mac-
roscopic properties from various fundamental “first-principles” and mechanisms, 
which cannot be achieved using global kinetic or physics-based models alone.

In 2018, the first Turing test for chemical synthesis resulted in a machine that 
discovered a more effective retrosynthesis route for small organic molecules than 
those proposed by scientists [62]. Other influential works addressed by computer-
generated reaction predictions and automated technicians (robots) have shown to 
be more accurate and involving less time than those performed by humans [63, 
64]. The fast and accurate development of in-silico tools based on ML for various 
chemistry fields and processes will increase in the coming years. An analysis of 
this trend was recently reported by García [65]. The next section will highlights 
the impacts of the new approaches on pyrolysis research.

Fig. 2  Major timeline evolution of computational tools based on ML for chemical engineering applica-
tions
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Machine learning for plastic pyrolysis

In-depth investigations on the kinetic parameters and mechanisms for plastics pyrol-
ysis are complicated due to the numerous interlinked network reactions that occur 
simultaneously. Hence, the prediction of product yields and reactor modelling is 
extremely complex [66]. Based on the documents dataset examined, the landscape 
of plastic pyrolysis is being transformed by ML-based tools such as artificial neural 
network (ANN) [67], genetic-algorithm-artificial-neural-network (GA-ANN) [46], 
and support vector machines (VSM) [68].

Although the ultimate goals are similar, the tuning capabilities of global 
kinetic models and the capability of machine learning are quite distinct. In global 
approaches, the starting parameters must be provided from previous research or 
based on general assumptions (isothermal conversion, non-transfer mass balance, 
and energy limitation, etc.). However, in machine learning, the starting parameters 
are discovered during the training of the algorithms to learn the data structure with-
out previous considerations.

In general, ANN organizes data, “learns” to recognize patterns, and then pre-
dicts the outputs for a new set of similar data. An ANN consists of neuron layers 
with less than two hidden layers, which is the core processing unit of the network. 
A neural network with more than 2 hidden layers is considered a deep neural 
network [69]. ANN is constituted by (i) an input layer, which receives the input 
data; (ii) an output layer predicts results; and (iii) a hidden layer, which is located 
between the input and output layers performing most of the operations required 
by the network (see Fig. 3). The details of the underlying algorithms, architecture 

Fig. 3  Schematic representation of a typical artificial neural network (ANN)
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together with the “forward” and “backward” propagation techniques used to train 
the networks are extensively reviewed in the literature [70–72].

The adoption of ML and its representative subset in chemical engineering and 
other subfields has increased in a sustained way in the last decade and have been 
addressed by Tkatchenko and Dobbelaere [18, 73]. One of the major areas with 
notable progress in this field is “in silico” catalyst synthesis, drugs, and materials 
design, among others [74, 75]. New applications to understand the relationship 
between catalyst properties versus reaction performance are increasing rapidly.

For decades, “chemical intuitions” have driven scientists to formulate mathe-
matical equations to describe chemical phenomena. However, attempts to describe 
them in this way relies heavily on simplifying assumptions, which sometimes do 
not represent the real reaction networks. Nevertheless, the current evolution of 
ML has increased the ability to screen different reaction pathways with non-linear 
relationships and overcome traditional bottlenecks shown by the "chemical intui-
tion". The recent application of ML in plastic pyrolysis signifies a new and more 
computationally feasible approach to predict reaction yields, mechanisms, and 
kinetic parameters. The outlined aspects are fundamental to scaling-up processes, 
especially those that cannot be tracked using traditional kinetic models.

The application of ML in plastic pyrolysis has been demonstrated by Conesa 
et al. [76]. This study represents one of the first attempts to train ANN to inves-
tigate the kinetic parameters of the thermal degradation of PE and other natural 
polymers. By selecting 20 points from each of the experimental TGA curves at 
different heating rates, as input data, and 20 neurons in the input, 10 neurons in 
the hidden layer, and 3 neurons in the output layer (ANN-20-10-3), the authors 
were able to predict accurately the kinetic parameters (activation energy Ea, reac-
tion order n, and the pre-exponential factor k0) in the range reported in previous 
works by model-free or model-fitting approaches.

Similarly, Fazilat et al. [77] obtained good accuracy in determining the kinetic 
parameters for the thermal degradation of Nylon 6 (or polycaprolactam). This 
was achieved by incorporating ANN and adaptive networks based on fuzzy inter-
ference systems to reveal the nature of the relations made by the ANN. Despite 
the lack of information on the number of neuron layers, this work represents a 
milestone on the application of ANN to plastic pyrolysis. The modelling tool 
used by the authors generated results that were quite close to the experimental 
data and the Friedman or the KAS model. The findings signify the possibility of 
integrating the predictive models and decision-making tools in the plastic pyroly-
sis process.

Abnisa et al. [78] employed ANN to estimate the composition yield for the pyrol-
ysis of plastic wastes such as HDPE, LDPE, PP, and PS in a fixed bed reactor. Fur-
thermore, the authors used a combination of plastic waste and pyrolysis products as 
input and output data for training the ANN. Based on an ANN architecture of four 
neurons for the input layer, ten in the hidden layer, and the other three for the out-
put layer (ANN-4-10-3), the authors successfully and precisely predicted the experi-
mental and reported data with a very low mean square error (MSE < 2.6 ×  10–4) and 
a high coefficient of determination  (R2 > 0.9). However, the work of Abnisa was 
based on architecture similar to the version used by Conesa [76]. The authors used 
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data obtained from a batch reactor, which is a more reliable scale than applied in 
previous studies conducted by thermogravimetric analysis.

Al-Yaari et al. compared the effects of different neural network architecture and 
transfer functions to develop a highly efficient kinetic model for LDPE pyroly-
sis [48, 49]. The findings reported in the two publications strongly agree with the 
calculated values from the global kinetic model (see Table 1). The results confirm 
the versatility of the ANN, which is based on two different architectures (ANN-2-
10-10-1 or ANN 3-10-10-1) and the capacity of the two transfer functions (Tan-
sig-Logsig or Logsig-Logsig) to model the catalytic pyrolysis reaction of LDPE 
and HDPE, respectively. While the authors did not conclude in favor of a specific 
approach, based on the MSE and  R2 obtained, the ANN-3-10-10-1 and Logsig–Log-
sig are the best architecture and transfer functions, respectively. The results provide 
further indication that ML applications are effective in terms of MSE and  R2. This 
study suggests that the best configurations for plastic pyrolysis, according to the lit-
erature presented here, are one or two hidden layers with 10 neurons in each hid-
den layer, which is in good agreement with the results reported by Conesa [76] and 
Abnisa [78]. Nevertheless, determining the number of neurons or hidden layers for 
data modelling requires trial and error. Stathakis encourages the use of a genetic 
algorithm [79], nevertheless, this is only a general idea, and neuron layers must be 
moulded based on specific parameters as demonstrated by Al-Yaari [48].

With the increasing machine power, new approaches that focus on the mechanics 
of natural selection and natural genetics such as GA-ANN have been employed to 
analyse and optimize the kinetic triplets of plastic pyrolysis reactions. Both ANN 
and GA-ANN aim to achieve the best results possible albeit in different ways. 
Although ANN is used to predict the solution for the given inputs, genetic algo-
rithms are strongly focused on the optimization of the problem. Several applications 
based on genetic algorithms have shown their applicability in chemical engineering 
[80] and biotechnology [81], among other fields.

Saha et al. [82], employed a genetic algorithm to evaluate fifteen different decom-
position models reported in the literature. The advancement of this work relies on 
two aspects: (i) support for the ANN on genetic algorithm, and (ii) application of 
ML to model the data obtained from catalytic pyrolysis reaction of PP (based on 
Al-MCM41). From the analysis, the authors suggested that the degradation of PP 
changes from initiation-propagation to random scission mechanism after the weak 
links are consumed. In this line, similar results have been reported by Reddy et al. 
[83] for PP pyrolysis using HZSM-5 as a catalyst by exploring parallel approaches 
based on genetic algorithms (GA). Comparing this work to the previous one, it is 
possible to note that GA can predict variations of the kinetic parameters according 
to the catalyst used (128 kJ/mol vs 92 kJ/mol for Al-MCM41 and HZSM-5, respec-
tively). Despite the accuracy obtained by implementing the GA for simultaneously 
comparing different kinetic models, the strong similarity between the models makes 
it necessary to analyze and track the reaction with other tools such as “operando” 
to reveal the precise decomposition model and the rate-limiting step. Other recent 
analyses on virgin plastics such as polystyrene and polyurethane [84] or plastic 
waste [46] using GA have been highlighted with a high degree of confidence. Istadi 
et  al. [85] showed that hybrid GA-ANN can predict the evolution of liquid yields 
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during the catalytic conversion of PP/PE. The authors optimized the reactor condi-
tions to achieve the maximum yield of  C4–C13 liquids with relatively high accuracy. 
Although this work does not display the computed kinetic parameters, the modelling 
results demonstrate that catalyst characteristics exert significant effects on product 
yields.

Understanding and predicting the reactor’s behavior is one of the major tasks in 
the scaling process. Moein et al. [86] examined this issue by testing different types 
of plastic feedstock to simulate the typical composition of plastic waste. The authors 
evaluated the capability of the ANN and Least Square Support Vector Machine to 
predict the gas and liquid products. Based on the reaction temperature, catalyst/feed-
stock ratio, and reaction time data, the authors simulated the product yields with a 
high confidence level. The modelling result shows that each design is statistically 
adequate in terms of  R2 and MSE, making both quite precise and reliable tools.

Machine learning has proven to be suitable for unravelling the kinetic triplets of 
plastic pyrolysis and highlighting the kinetic mechanisms involved. However, the 
data-driven models must be supplemented by critical analysis of the physicochemi-
cal phenomena behind a chemical reaction such as the breaking and forming of 
bonds. Data-science tools such as ML can offer “black-box” solutions constructed 
upon the relationship between input data (mass loss) and the output data (activa-
tion energy). This does not capture the chemical process in the same way as a phys-
ics-based model in which mathematical equations are built upon data developed by 
measurements of intrinsic phenomena such as surface adsorption, bonds formations, 
and conversion among others. Our review suggests that the future of ML for predict-
ing and unravelling the physicochemical nature of processes should be based upon 
“first-principle knowledge,” which is similar to quantum mechanics. Some spark in 
this direction is highlighted in the next sections.

Quantum mechanics for plastic pyrolysis

Several tools based on QM, such as ab initio, molecular dynamics (MD) or density 
functional theory (DFT), have led to a deeper understanding of the microscopic rela-
tionship between atoms. These types of computational tools are based on solving 
the molecular Schrödinger equation and the electronic density function for ab initio 
and DFT, respectively [87]. Since electrons movements are governed by the laws of 
quantum mechanics, the many-electron problem is, in principle, fully described by a 
Schrödinger equation. However, the electrostatic forces between the electrons make 
its numerical resolution an impossible task in practice, even for a relatively small 
number of particles or ideal systems. While the analysis of the DFT theory is not the 
aim of this review, the article, “A Primer in Density Functional Theory” [88] offers 
a good starting point on this topic. DFT is one of the most common approaches to 
quantum simulations. DFT establishes that all the properties of the ground state of 
a system are a function of their charge density, which requires complex and compu-
tationally intensive tasks. Hence, the kinetic modelling and estimation of product 
yields based on QM-level calculations require significant computational power. This 
is particularly evident when calculating the representation of large molecules and 
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their interactions during a chemical reaction. However, these models have recently 
grown in popularity due to the development of user-friendly software packages.

A potential class of catalysts, known as alloy nanoparticles, offers another par-
ticularly interesting application of QM coupled to ML for fields such as fuel cells, 
biomass conversion, and natural gas conversion [89]. The drawback may be the 
requirement of exascale computing power and highly efficient optimization algo-
rithms for the ML component, although such methods are still under development. 
Despite the advancements of QM tools, DFT remains limited by (i) the delocaliza-
tion error of approximate functional, and (ii) the static correlation error of approxi-
mate functional [16, 90]. These errors limit the ability to properly estimate the bar-
riers of the chemical reactions and fail to describe, degenerate or near-degenerate 
states during the breaking and formation of chemical bonds. Cohen et al. [90] and 
Schleder et al. [16] present a deeper and detailed explanation of the current limita-
tions and state of DFT.

The most successful models that describe the reaction at the atomic level are cre-
ated with tools such as Reactive Force-Field Molecular Dynamics (ReaxFF) [91]. 
ReaxFF can describe reactive systems in large-scale dimensions with the accuracy 
of QM, but with lower computational efforts. These tools could provide deeper 
insights to the researchers on the mechanisms and product yields of the degradation 
process of complex molecules under reactive environments, such as non-catalytic 
plastic pyrolysis.

Kinetic and mechanistic information provide part of the fundamental knowledge 
necessary to achieve future scalability of plastic-to-fuel processes. In this sense, Liu 
et al. [92] analyzed the evolution of pyrolysis products by ReaxFF simulations, and 
their results showed a detailed mechanism for the majority of products formed at 
different temperatures by coupling the modelling with Visualization and Analysis 
of Reactive Molecular Dynamics (VARMD). These computational approximations 
were able to illustrate a highly complex chemical reaction network, emphasizing the 
most important reaction pathways. The results obtained from the kinetic analysis 
are detailed in Table 2, which is also consistent with other work in this field [93]. 

Table 2  Representative kinetic parameters calculated by different quantum mechanics tools for plastic 
pyrolysis reaction

– Not available

Plastic Kinetic Parameters Modelling References

Ea
(kJ/mol)

Reaction
order, n

LnA,
(s−1)

Sulfonated-PE 200–210 – – ReaxFF + Kinetic-Monte Carlo Younker et al. [97]
HDPE 250–258 1.50 21.8–25.2 ReaxFF + VAR-MD Liu et al. [92]
PE 230–280 0.87 13.0 ReaxFF Liao et al. [94]
PI 187 1 35.2 ReaxFF Lu et al. [98]
PE 403–439 0.62 40.4–40.5 ReaxFF Lane et al. [96]
PE 452 1 – ReaxFF Hong et al. [99]
PS 314 1 –
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These significant insights present a better understanding required to tune the reac-
tion parameters and implement plastic-to-fuel technologies.

Liao et al. [94] investigated the evolution of the kinetic parameters for thermal 
decomposition of PE by ReaxFF simulation. The authors followed the evolutions of 
the kinetic parameters and products. Table 2 shows that the kinetic parameter evolu-
tion is correlated with the presence of oxygen during the thermal degradation of the 
polymer. The simulation captured the temporal evolution of species produced by PE 
pyrolysis with high accuracy. However, the calculated kinetic parameters indicate 
that the major mechanism in free-oxygen experiments follows a random scission 
 (Ea = 230–280  kJ/mol) in the same order as those published in Table  1, based on 
global models. The significant variability of  Ea reported during low oxygen-concen-
tration experiments (50–400 kJ/mol), could indicate that different mechanisms are 
taking place according to the evolution of the reaction course.

Decomposition of other types of plastic such as polypropylene (PP), has been 
followed by molecular dynamics simulation using the AMBER force field package 
simulator by Huang et al. [95]. The authors showed that during the modelling, three 
temperature regions can be identified and used to promote the formation of specific 
compounds: (i) below 550 K, (ii) between 550 and 700 K, and (iii) above 700 K. 
These three major regions can be associated with: the energy absorption and some 
changes on C–C bonds length; break down of C–C bonds of the main carbon chain, 
and finally, the production of small carbon-chain products. The model obtained by 
the authors showed that thermal decomposition of PP can be carried out by intra-
molecular hydrogen transfer, and further C–C homolytic cleavage mechanisms. 
Details about the mechanistic model obtained here can be used to guide researchers 
to develop better kinetic models or even support physics-based models.

Lane et al. [96] investigated the effect of heating rate by laser-driven experiments 
of PE thermal degradation by molecular dynamics simulation using ReaxFF. The 
construction of proper kinetic models for this process focused on determining the 
effect of the thermal ramp  (1010–1014 K/s) on the reaction kinetics at 300–5000 K. 
Due to the experimental conditions, the analysis of the model was carried out in 
the timescale range of picosecond to nanoseconds. The results obtained from this 
simulation have been modelled in ultra-high heating rates for a different purpose 
than plastic pyrolysis, but the kinetic model produced by this approximation showed 
similar accuracy with the kinetic models based on first-order random-scission which 
is often used for pyrolysis of PE under ambient conditions [44]. These approxima-
tions show the versatility of computational tools for multipurpose analysis.

Outlook on plastic pyrolysis models

Plastic pyrolysis is one of the most suitable tools for plastic waste management. The 
process can reduce the carbon footprint of plastic and foster the transition to a circu-
lar carbon economy. However, some blind spots exist related to the kinetic modelling 
and reaction mechanisms of plastic waste pyrolysis. The traditional approach based 
on the kinetic analysis of global models provides scientists with basic knowledge 
about pyrolysis. These models are limited to narrow ranges of reaction parameters, 
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dismissing effects of heat and mass transfer as well as catalysts, among other param-
eters. Such shortcomings explain the need for more detailed kinetic models to pre-
dict and track the products of plastic pyrolysis under a wide range of conditions and 
feedstocks at a high resolution in time and space scales. Obtaining such knowledge 
can help ease the major bottlenecks and close the loop around plastic waste.

To overcome the limitations of these models, scientists have used ML to develop 
interatomic potentials and estimate energy interactions. The ML is trained with 
data generated by QM, which is commonly termed as machine-learned interatomic 
potentials (MLPs) [70]. These new approaches can be used to explain solid–gas 
interaction and chemical equilibrium, which could also help to predict the evolution 
of catalysts under reaction conditions [98]. The progress in this direction has been 
recently addressed by Jacob et al. [100], and Artith et al. [101].

Recently progress on MLP has been shown by Liu et al. [102] on the pyrolysis of 
glucose as a probe molecule. Based on global neural network potential, the authors 
achieved a deep exploration of the evolution of glucose decomposition. After man-
aging 1.2 million minima and 150,000 reaction pairs, the final reaction database 
was depurated to obtain 4000 unique molecules and 6000 reaction pairs. The results 
reported by the authors unravelled the most important pathways described for the 
formation of 5-hydroxymethylfurfural (HMF). The HMF product is the most valu-
able product observed during experimentation, concluding that the MLP coupled to 
the global neural network provides a strong tool to explore the complex pathways of 
chemical reactions.

In plastic pyrolysis, the ML and QM could be useful to predict kinetic param-
eters and degenerated-state or transition-state energy levels. Although this “strange 
couple” may sound like science fiction, this partnership is growing and should lead 
to important breakthroughs in the coming years [103]. Recently, a multidisciplinary 
team involving the Technical University of Berlin, the University of Warwick, and 
the University of Luxemburg have developed an ML method to predict molecular 
wave function and electronic properties of molecules. The tool also captures the 
degree of freedom in molecules, which is the heart of quantum chemistry and pro-
vides access to the chemical interpretation of reactions, bond order, and charge den-
sity without any additional ML models for each property [104].

Unravelling and improving the capability to predict new stables structures or 
potential reaction pathways to achieve desirable products is one of the key points of 
computational chemistry. Nevertheless, it is necessary to have a deep and detailed 
understanding about the elementary steps and the abundant intermediate species, 
which in terms of heterogeneous catalysis means finding the corresponding struc-
ture of the transition state (TS). This process is immensely challenging because it 
involves finding a connection between two lowest-energy paths on the potential 
energy surface in high-dimensional space. The key here is that ML can acceler-
ate the process of finding the minimum energy paths by acquiring information 
from quantum data. Although ML and QM for predicting chemical reactions is in 
a nascent stage, this “strange couple” could be generalized in two ways: Firstly, the 
focus on ML can learn from quantum chemistry to describe molecular properties 
(Fig. 4a). Secondly, ML model may predict the ground-state wave function deter-
mined by the Schrödinger equation (Fig. 4b). Detailed analysis of these approaches 
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covers wide-range information that will require expanding the spotlight beyond plas-
tic pyrolysis topics and offering a deep analysis of statics, stochastic and quantum 
knowledge. However, readers are invited to follow recent and in-depth reviews in 
this field reported by Noe et al. [105], Rupp [106], and Schutt et al. [104]. These 
reviews follow the main advantages of integrating different models and how new 
neural network architectures can improve quantum calculation, especially for reac-
tions involving big molecules.

As noted, most of the works summarized in this paper show that ML or QM 
present significant advantages to modelling data and obtaining information about 
kinetic triplets. Still, certain gaps need to be addressed to impact plastic recy-
cling technologies on a global scale significantly. Some of the challenges that can 
be drawn from this paper include (i) feedstocks main composition: comprehen-
sive analysis of real plastic waste is required to improve the current capability 
of the artificial networks; (ii) additive and impurities: plastic waste has a high 
quantity of impurities or other inorganic materials. A detailed analysis of these 
is quite challenging and theoretically infinite. A starting point could be made by 
“back-engineering exercises” to understand what the industries do not need. For 
example, what level of additives or impurities are theoretically permissible dur-
ing industrial application without causing damage or environmental concerns. 
Further studies on the impact of bromine, chlorine and other impurities on the 

(a)

(b)

Fig. 4  Integration of machine learning and quantum mechanics adapted from [104]. a Representative for-
ward ML model. b ML predict the wavefunction, which acts as an interface between ML and QM
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plastic pyrolysis process is required; finally (iii) a “bridge” between ML and QM 
tools, so that scientists across disciplines can unravel the key aspects for develop-
ing proper kinetic models and efficient mapping of the reactors and final products.

Lastly, scientists and engineers will continue to work towards merging ML and 
QM modelling as a standard tool to improve efficient catalysts prototyping and 
parameter optimization reactions. New systematic experiments and massive data 
sets with stronger accuracy, validity and curation techniques will be required for 
machine learning purposes. The workflow for this “exotic mixture” requires: (i) 
databases that can hold the prepared-to-use catalysts and operational conditions; 
(ii) that each catalyst and product must be characterized by its representation (or 
fingerprint), which consists of its electronic structure and atomic and physical 
properties (this is where QM plays its role), and (iii) ML will be used to build 
patterns, discover descriptors, and find models.

Conclusion

Despite the evolution of plastic pyrolysis in recent decades, more accurate and 
sustainable methods for improving plastics waste recycling are required. In the 
coming years, research on plastic pyrolysis will make great strides in using ML 
and/or QM to solve multi-dimensional challenges related to kinetic and timescale 
modelling. Considering that all properties of a systems, physical and chemical, 
can be determined by the wave function, the intuitive evolution of this “strange 
coupling” between ML and QM seems to be focused on find better descriptors 
and architecture to increase the speed of screening the high number of potential 
transition state and long-timescale kinetic in high chemical space. This review 
points out that computational approaches based on ML and QM have the poten-
tial to make a strong contribution in the coming years by unravelling complex 
reaction networks such as plastic waste pyrolysis. This means that new and more 
scientists have to evolve and adapt their skills to incorporate more “in silico” 
tools in their daily work.
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