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Abstract
Kinetic analysis of the gas-phase and liquid phase hydrogenation of toluene to 
methylcyclohexane on Ni catalysts was performed. For complex reaction mecha-
nisms comprising several kinetically significant steps, nonlinear regression, while 
giving an adequate description of experimental data, leads to kinetic parameters 
which are poorly defined. The approach based on Bayesian statistics allows identi-
fication of the values of such parameters which are the most statistically probable.

Keywords Hydrogenation · Kinetics · Bayesian statistics · Parameter estimation

Introduction

In kinetic analysis of complex catalytic reactions, a task inherent to chemical reac-
tion engineering, it is often important to determine the values of kinetic and ther-
modynamic parameters in a reliable way. Reaction kinetic data are used extensively 
in reactor design [1, 2]. While even simple power law expressions can sometimes 
be used in simulation of industrial reactors [3], such an approach has a limited 
insight into the reaction mechanism and can be applied only in a limited range of 
reaction conditions [4]. More complex reaction mechanisms, such as those usu-
ally referred to as Langmuir–Hinshelwood or Eley–Rideal [1] mechanisms assume 
quasi-equilibria of adsorption/desorption steps and certain rate determining steps. 
The Langmuir–Hinshelwood approach based typically on one or just few most abun-
dant surface intermediates has clear limitations, even if it is useful for chemical 
reaction engineering and reactor modelling. An alternative approach is to consider 
in a more comprehensive way the elementary reactions on surfaces [5, 6], which 
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exhibit either nonuniformity of active sites or lateral interactions of adsorbed spe-
cies [7]. The theory of complex reactions developed by Horiuti and Temkin [8, 9] 
did not assume any rate determining step allowing derivation of rate equations for 
multistep reaction mechanisms, at least following linear sequences on ideal surfaces, 
i.e. reaction mechanisms with only linear steps [1]. Development of kinetic models 
for complex heterogeneous reactions and subsequent computer assisted modelling 
[10, 11] requires formulation of a hypothesis for the reaction mechanism, deriva-
tion of the rate equations and finally numerical data fitting along with identification 
of kinetic parameters. Obviously the statistical analysis of parameters [12] should 
include an analysis of how physically reasonable are the regressed parameters. 
Moreover, already in Refs. [10, 11] it was suggested that theoretically sound values 
of pre-exponential factors, activation energies, adsorption enthalpy and entropy, dis-
tribution functions for the number of actives sites with different heats of adsorption, 
Polanyi parameters for elementary steps, etc., should be introduced as an input to 
computer subroutines. A more refined methodology coined microkinetic modelling 
[4, 13–16], has become a widespread approach to incorporate the essential features 
of surface chemistry. For relatively simple cases, such as ammonia synthesis, based 
on the surface science data it is possible to describe the experimental observations 
without any fitting of the parameters.

Unfortunately, not all reaction intermediates as well as for example lateral inter-
actions between them are accessible to experimental measurements or theoreti-
cal predictions [4]. Besides the often unknown effects of the coadsorbed species, 
application of model instead of real surfaces in density functional theory (DFT) cal-
culations or an assumption of rapid diffusion in the adsorbed layer, also dynamic 
changes in the catalytically active phase during the reaction can lead to limitations 
in not only design of catalytic materials [4], but in reliable description of kinetic 
data as well. While microkinetic modelling per se aids in understanding the reaction 
mechanisms, it does not eliminate the need for numerical data fitting and statistical 
analysis of kinetic parameters. The reason is that kinetic and thermodynamic param-
eters of elementary surface reactions are estimated with a certain degree of preci-
sion and the calculated values of reaction rates or concentrations do not necessarily 
match theoretical predictions. For example, current DFT calculations of adsorption 
energies and activation energies can have ca. 20 kJ/mol uncertainties [17]

Microkinetic modelling can be used for catalyst design and explanation of reac-
tion mechanisms, predicting the kinetic trends, however, a more rigorous reactor 
design should be based on an adequate description of experimental observations. An 
option of incorporating microkinetic analysis is to specify all variables except few 
using this approach and then apply nonlinear regression to estimate the unspecified 
parameters [18].

A standard tool in kinetic analysis is parameter estimation by nonlinear regression 
[12], which requires representative initial values resulting hopefully in parameter 
values with physical and statistical significance. One of the problems in kinetic anal-
ysis of heterogeneous catalytic reactions is that for either simplified models based on 
the Langmuir adsorption isotherms and most abundant surface intermediates, or for 
mechanisms based on the theory of complex reactions, the rate expressions contain 
kinetic and thermodynamic parameters both in the numerators and denominators. 
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This leads to strong correlation between the parameters even if the experimental 
data are of high quality. Severe correlations between the parameters make them not 
reliable, also not allowing extrapolation beyond the experimental domain. In par-
ticular, there are often correlations between the activation energy and the frequency 
factors. The intrinsic parameter correlation problem in such kinetic models requires 
a sophisticated statistical approach, which will be addressed in the current work.

The Bayesian parameter estimation approach, contrary to conventional parameter 
estimation, addresses the probability of the values of parameters constructing pos-
teriori distributions of the estimated parameter values. A more detailed account of 
the basic principles of the Bayesian statistics applied to kinetic modelling of chemi-
cal reactions is available in literature [17, 19, 20]. The approach is well-known in 
chemical kinetics as a tool of discrimination of kinetic models and identification of 
kinetic parameters [19].

While the Bayesian statistics can be used not only for parameter estimation, but 
also for the design of experiments [20], the current work is limited to statistical 
evaluation of parameters obtained by nonlinear regression using the Markov Chain 
Monte Carlo (MCMC) algorithm [21]. This method, incorporated in the modelling 
and optimization software ModEst [22], allows an evaluation of the reliability of the 
model parameters by treating all the uncertainties in the data and in the modelling as 
statistical distributions [23].

Hydrogenation of toluene to methylcyclohexane over nickel catalysts in gas [24] 
and liquid phases [25] was selected as an example. In the former case, the data were 
generated on a Ni/Al2O3 catalyst in a differential reactor operating at constant tem-
perature between 150 and 200 °C and at atmospheric pressure, but varying system-
atically hydrogen and toluene partial pressures. For the liquid phase hydrogenation, 
performed in a shaker operating under high vibration frequency, the experimental 
data covered the temperature range between 160 and 200  °C and the pressure of 
hydrogen between 0.2 and 5 MPa. The models despite reflecting the same reaction 
are of different type allowing thus elucidation of the Bayesian approach to different 
kinetics.

Gas phase hydrogenation

Both gas and liquid phase hydrogenation of monoaromatics are very selective giving 
only the cyclic compound as a product. The reaction product of toluene hydrogena-
tion is methylcyclohexane.

Mechanistic aspects of gas-phase toluene hydrogenation have been addressed 
in numerous publications [26–29]. For the purpose of this work, the same mecha-
nistic Langmuir–Hinshelwood type model based on simultaneous competitive 
quasi-equilibrium adsorption of hydrogen and toluene on the catalyst surface 
as proposed in the original paper [24] will be used. Adsorption of hydrogen is 

3H2Toluene Methylcyclohexane+ (1)
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considered to be dissociative, while adsorption of toluene is non-dissociative. 
Hydrogenation of toluene leads to methylcyclohexane, which was assumed to 
desorb rapidly from the surface.

The general form of the rate equation is [24]

Here r is the reaction rate, k the reaction rate parameter and KT and KH are the 
respective adsorption equilibrium parameters for toluene and hydrogen, and PT 
and PH are the partial pressures of toluene and hydrogen. Y denotes the number 
of hydrogen atoms added simultaneously to adsorbed toluene molecule. Equa-
tion (2) can be rearranged to have less correlated parameters

Here k’ is the lumped parameter k� = kKTK
Y∕2

H
 . In order to improve the estima-

tion statistics of temperature dependent parameters the reference temperature Tref 
is introduced [1]

Here Ea is the activation energy of the hydrogenation reaction, while ΔHT and 
ΔHH are the adsorption enthalpies of toluene and hydrogen on the catalyst surface 
and z is

This means that k′ref   is the rate constant at the reference temperature.
Estimation of parameters by nonlinear regression was done by ModEst mod-

elling and parameter estimation software [22] using the Levenberg−Marquardt 
algorithm. Experimental data from a laboratory scale tubular reactor were used. 
Because of conversion levels, the differential reactor model was used. Reaction 
rates were determined directly from the experimental data. The goodness of 
the fit is reflected by the degree of explanation (R2), defined as the ratio of the 
squared difference in the experimental and the estimated values of reaction rates, 
and the square of the differences between the experimental and the mean of the 
estimated rates. The parameter estimation was done for the whole data sets at all 
partial pressures of reactants simultaneously by solving Eq. 3 for different param-
eter values. The residual sum of squares was used as the objective function in the 
parameter estimation.

The results presented in Table  1 and Fig.  1 clearly illustrate capability of the 
model to describe the experimental concentration dependencies in an excellent way. 
The errors of the parameters (Table 1) are, however, large implying that although the 

(2)r =
kKTK

Y∕2

H
PTP

Y∕2

H

(1 + KTPT + K
1∕2

H
P
1∕2

H
)Y+1

(3)r =
k�
1
PTP

Y∕2

H

(1 + KTPT + K
1∕2

H
P
1∕2

H
)Y+1

(4)k� = k�ref e
−Eaz

R

(5)z =

(

1

T
−

1

Tref

)



5

1 3

Reaction Kinetics, Mechanisms and Catalysis (2021) 133:1–15 

fit per se is adequate confirming the capability of the model to capture the reaction 
kinetics, there is still uncertainly about the statistical reliability of the parameters.

The Markov Chain Monte-Carlo analysis of the correlation between the parame-
ters represented by the contour plots (Fig. 2) illustrates that some parameters exhibit 
a strong mutual correlation which is visible as elongated ovals (e.g.  KT and , or  KH 
and ).

The parameter  was let floating during the statistical data fitting. From the mecha-
nistic viewpoint its value of 1.93 is very close to two, which indicates an addition of 
a pair of hydrogen atoms or an adsorbed molecule. Setting = 2 the degree of expla-
nation after the data fitting can be marginally improved to 99.2% also somewhat 
diminishing the errors (Table 2).

At the same time despite the estimated large errors for the rate constant and 
adsorption coefficient for dihydrogen, the MCMC analysis confirms that the param-
eters have well defined maxima (Fig.  3). It was thus interesting to compare the 
results of the data fitting using the simplex- Levenberg–Marquardt approach with 
the simulation when all parameters are fixed to their optimal values according to the 
MCMC analysis. Such comparison is presented in Fig. 1 illustrating just a small dif-
ference in the calculated rates. It should be noted that the interpretation of the 
parameter k′

ref
 (Fig. 3) might be too optimistic as the 2D posterior graphs (Fig. 2) 

show a sharp upper bound.

Table 1  Parameter values for 
the kinetic model represented 
by Eq. (3) for gas- phase 
hydrogenation of toluene [24] 
 (Tmean = 171 °C)

Parameter Value Error, % Units

k
′

ref
0.68 ×  10+5 130 mol/

kg/s*bar*bar2/γ

Ea 77 2.1 kJ/mol
� 1.93 24.3 –
KT 78 63 bar−1

KH2
3.8 211 bar−1

Fig. 1  Comparison between 
experimental [24] and calcu-
lated (Eq. 3) values of rates 
(mol/kg/s) given as black dots 
for hydrogenation of toluene 
over a nickel catalyst. Degree 
of explanation  R2 = 99%. Red 
dots represent simulations with 
parameters fixed after MCMC 
analysis (see explanation in the 
text)
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Liquid‑phase hydrogenation

The liquid-phase hydrogenation of toluene will be considered as another exam-
ple. The reaction kinetics was extensively investigated previously [25, 28, 30–33]. 
Taking into account kinetic regularities different from the gas-phase hydrogena-
tion as well as thermodynamic considerations, the following scheme for hydro-
genation of toluene (relevant for other aromatic compound) was proposed.

Here T is toluene, M is methylcyclohexane, Y is methylcyclohexene,  TH2 
and  TH4 are intermediate complexes, step 3′ is rapid because hydrogena-
tion of cycloalkenes is much faster than aromatic compounds and step 4 is 

(6)

Fig. 2  Contour plots for all parameter combinations, 95% confidence regions with Monte Carlo simu-
lated points

Table 2  Parameter values for 
the kinetic model represented 
by Eq. 3 for gas-phase 
hydrogenation of toluene [24] 
 (Tmean = 171 °C) with � = 2

Parameter Value Error (%) Units

k
′

ref
5.2 ×  10+5 200 mol/kg/s  bar2

Ea 77 2 kJ/mol
KT 143 69 bar−1

KH2
26 160 bar−1
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at quasi-equilibrium. A similar approach has been was applied more lately for 
hydrogenation of substituted alkylbenzenes [34–38].

Derivation of the kinetic equation for this reaction system using the steady-state 
approximation is provided in the original publications [25, 31]. The same equation 
can be also derived from an expression for the four-step sequence is given in [39] 
considering irreversibility of step 3,

Here �i are frequencies of steps [9]. Step 4 is at quasi-equilibrium, therefore 
the rates are rapid in both directions. Further simplifications of Eq.  7 by divid-
ing the numerator and the denominator by �+4 , neglecting subsequently the 
terms �+1�+2�+3∕�+4 and �−3�+1�+2∕�+4 and using the mole fractions of the 

(7)r =
�+1�+2�+3�+4

D
Ccat

(8)

D = �+2�+3�+4 + �−1�+3�+4 + �−1�−2�+4 + �+1�+2�+3 + �−4�+2�+3+

�−4�−1�+3 + �−4�−1�−2 + �+4�+1�+2 + �+3�+4�+1 + �−2�+4�+1

Fig. 3  MCMC analysis of parameters (Table 2) determined by nonlinear regression. Y-axes correspond 
to posterior distributions for the parameters reflecting their probability while the parameters are shown in 
x axes. The most probable values of parameters are at maxima
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liquid-phase components and the pressure of hydrogen instead of hydrogen concen-
trations in the liquid phase, result in the expression

Here K4 = k+4∕k−4 ; NT is the mole fraction of the reactant with the initial value No
T
 , 

and k�
+1
;k�

+2
 are modified rate constants reflecting the utilization of hydrogen pres-

sure rather than hydrogen concentration in the liquid phase.
Equation (9) explains the observed kinetic regularities, such as the reaction order 

in hydrogen exceeding unity at low hydrogen partial pressures and zero orders in tol-
uene and hydrogen at high pressures. This equation can be further rearranged result-
ing in the expression, which was used for parameter estimation

While in Ref. [25] data fitting was done after linearization of Eq. (10), in the cur-
rent study estimation of parameters by nonlinear regression was done using the same 
procedure as applied for the gas-phase hydrogenation for the whole set of experi-
mental data generated at different temperatures and pressures. The results of calcula-
tions shown in Fig. 4 correspond to the goodness of the fit of 95.4%. The calculated 
values of parameters are shown in Table 3.

Similar to the gas-phase hydrogenation kinetics (Table  1) the errors of some 
parameters are (Table  3) rather large, therefore the Markov Chain Monte-Carlo 
(MCMC) analysis of the correlation between the parameters is needed to explore 
potential correlations between the parameters. The results displayed in Fig. 5 show 
apparent correlations for few parameters (e.g.  k2 vs  Ea2). MCMC analysis (Fig. 6) 
illustrates that some parameters have poor maxima while the others are much better 
identified.

For several parameters (e.g. k′
1
 , k′

2
 or k−1 with very large errors of parameters 

exceeding 100%) the MCMC analysis illustrates that the values of parameters 
regressed during numerical data fitting do not exhibit too broad maxima, while other 
parameters ( KH2

 and especially Ea,−2 ) were not properly identified. The value of the 
activation energy for the second step in the forward direction is also probably too 
high.

As in the previous case of the gas-phase toluene hydrogenation, an interpretation 
of the values of constants should be done in combination with the 2D contour plots. 
Otherwise, a decrease in 1D plot can be just an artefact because 2D graphs show 
for example that a certain parameter hits an upper bound, set during numerical data 
fitting.

Considering that the stability of the aromatic ring is broken in the addition of the 
first hydrogen molecule (or pair of hydrogen atoms) it can be assumed that the acti-
vation barrier during the second addition is much lower in both directions. On the 
contrary, the activation energy for the third step cannot be neglected, because this 
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step corresponding to the isomerization in the adsorbed layer of complex explains 
the zero order in both reactants (i.e. toluene and hydrogen) at high hydrogen pres-
sures. With this assumption ( Ea,2 << Ea,1; Ea,−2 << Ea,1 ) the goodness of the fit can 

Fig. 4  Comparison between experimental [25] and calculated values of mole fractions (Eq.  10) for 
hydrogenation of toluene over a nickel catalyst: a mole fractions as a function of modified time (m/n*t, 
where m in gram, n—in moles, t in h); b the parity plot between experimental and calculated values of 
mole fractions. Black dots correspond to simplex-Levenberg–Marquardt parameters obtained by numeri-
cal data fitting. Red dots—simulations with parameters fixed after MCMC analysis
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be slightly improved giving the degree of explanation of 95.7%. The calculated val-
ues of parameters are shown in Table 4.

As can be seen from Table  4 at least three parameters have very large errors. 
Interestingly enough the MCMC analysis (Fig. 7) gives a possibility first to elucidate 
the optimum values of these parameters and then to freeze them in the subsequent 
parameter estimation.

The quality of the fit with the parameters in Fig. 7 fixed to the optimum val-
ues does not influence the degree of explanation making, the values, of constants 
more statistically reliable (Table  5) with a minimal correlation between param-
eters (Table 6). The run with all parameters fixed at the maxima of the posteriori 
distribution (Fig.  4) illustrates just a minor difference between the data fitting 

Table 3  Values of kinetic 
parameters for the model 
represented by Eq. (10) 
for the liquid-phase phase 
hydrogenation of toluene 
[25] on a nickel catalyst. First 
iteration

Parameter Value Error, % Units

k′
1

7.3  > 100 mol/g/h/bar
k′
2

2.0  > 100 mol/g/h/bar
k3 0.42 6.4 mol/g/h
k−1 3.8  > 100 mol/g/h
k−2 0.02  > 100 mol/g/h
K4 1.03 81 –
Ea1 16.4 1.9 kJ/mol
Ea2 175 51 kJ/mol
Ea3 44 14 kJ/mol
Ea,−1 250 95 kJ/mol
Ea,−2 0.38  > 100 kJ/mol

Fig. 5  Contour plots for all kinetic parameter combinations for hydrogenation of toluene over a nickel 
catalyst [25], 95% confidence regions with Monte Carlo simulated points
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Fig. 6  MCMC analysis of parameters (Table 2) determined by nonlinear regression. First iteration

Table 4  Values of kinetic 
parameters for the model 
represented by Eq. (10) 
for the liquid-phase phase 
hydrogenation of toluene 
[25] over nickel. Second 
iteration assuming that 
Ea,2 << Ea,1;Ea,−2 << Ea,1)

Parameter Value Error, % Units

k′
1

1.07 55.6 mol/g/h/bar
k′
2

272  > 1000 mol/g/h/bar
k3 0.44 5.5 mol/g/h
k−1 3.4  > 1000 mol/g/h
k−2 3.1  > 1000 mol/g/h
K4 2.1 74 –
Ea1 131 22.9 kJ/mol
Ea3 40.1 15.3 kJ/mol
Ea,−1 329  > 100 kJ/mol
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with simplex—Levenberg–Marquardt parameters and the simulation with the 
fixed MCMC optimal parameters.

Conclusions

Quite often in analysis of kinetic parameters by numerical data fitting the errors of 
parameters are becoming very large. Moreover, the structure of kinetic models often 
applied in heterogeneous catalysis inevitably leads to correlation between param-
eters present in both the numerator and th denominator. The Bayesian parameter 
estimation approach, which addresses the probabilities of the parameter values, was 
applied in the current work to the elucidate kinetics of the gas- and liquid phase 

Fig. 7  MCMC analysis of parameters (Table 4) with high errors

Table 5  Values of kinetic 
parameters for the model 
represented by Eq. (10) 
for the liquid-phase phase 
hydrogenation of toluene [25] 
over nickel

 Third iteration ( Ea,2 << Ea,1; Ea,−2 << Ea,1)

Parameter Value Error, % Units

k′
1

1.2 14.4 mol/g/h/bar
k′
2

241 fixed mol/g/h/bar
k3 0.43 3.1 mol/g/h
k−1 4.59 fixed mol/g/h
k−2 4.26 fixed mol/g/h
K4 2.0 36.4 –
Ea1 141 7.6 kJ/mol
Ea3 39.8 7.8 kJ/mol
Ea,−1 292 7.4 kJ/mol

Table 6  The correlation matrix 
of the kinetic parameters (10) 
for the liquid-phase phase 
hydrogenation of toluene [25] 
over nickel

kp1 1.000
k3 − 0.482 1.000
Eap1 0.686 − 0.287 1.000
Ea3 − 0.043 − 0.253 − 0.480 1.000
Eab1 0.785 − 0.411 0.843 − 0.051 1.000
K4 − 0.480 − 0.245 − 0.025 0.082 − 0.015 1.000
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hydrogenation of toluene on nickel catalysts. The Markov Chain Monte Carlo analy-
sis was applied to parameters obtained by numerical data fitting allowing to deter-
mine the most probable values even for those parameters which exhibit large errors. 
The strategy utilized in the current study was to fix the values of such parameters 
at the optima and then repeat make the parameter estimation. For the investigated 
cases of toluene hydrogenation the overall description was the same while other 
parameters were even better identified.

The non-identification of a parameter should not be viewed, however, as a seri-
ous shortcoming of a particular numerical data fitting. For example, when the model 
simulations are not going to be extrapolated beyond the experimental conditions of 
the experiments, the value of such an unidentified parameter simply does not impact 
the simulations. Such a parameter value can be still restricted in the domain revealed 
by MCMC. Moreover, even if the unidentified parameters do have an impact on the 
model values in some extrapolated experimental conditions at either laboratory or 
industrial conditions, that still provides a hint on the domain of conditions where 
additional experiments should be conducted.

The approach used in this work can be suggested for the elucidation of kinetic 
parameters for complex heterogeneous catalytic reactions when the model structure 
leads to strong correlations between parameters.
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