Skip to main content
Log in

A strategy to improve the para-selectivity in toluene methylation on P2O5-ZSM-5 modified by the para-xylene placeholder method

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This paper reports a new method of modifying selectively the external surface of ZSM-5 nanoparticles with phosphide, which does not affect the microchannels and the acid centers inside the channels, resulting in a high activity. With H-ZSM-5 as the matrix, the modified catalysts can be obtained in six consecutive steps, where the most critical issues are the selection of placeholder molecules and the temperature for selective removal of the molecules. The results show that the catalysts made by the selective modification method have higher para-selectivity and better activity in comparison to the ones made by the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Robert A, Larry Y (1961) Kinetics of three-compound equilibrations. V. Concurrent alkylation and isomerization. J Am Chem Soc 83(13):2799–2805

    Article  Google Scholar 

  2. Venuto P, Hamilton L, Landis P (1966) Organic reactions catalyzed by crystalline aluminosilicates I. Alkylation reactions. J Catal 4:81–98

    Article  Google Scholar 

  3. Venuto P, Hamilton L, Landis P (1966) Organic reactions catalyzed by crystalline aluminosilicates II. Alkylation reactions: mechanistic and aging considerations. J Catal 5:484–493

    Article  CAS  Google Scholar 

  4. Yashima T, Ahmad H, Yamazali K, Katsuta M, Hara N (1970) Alkylation on synthetic zeolites I. Alkylation of toluene with methanol. J Catal 16:273–280

    Article  CAS  Google Scholar 

  5. Kokotailo G, Lawton S, Olson D, Meier W (1978) Structure of synthetic zeolite ZSM-5. Nature 272:437–438

    Article  CAS  Google Scholar 

  6. Argauer R, Landolt G. Crystalline zeolite ZSM-5 and method of preparing the same: US3702886[P]. 1972-11-14

  7. Chen N, Kaeding W, Dwyer F (1979) Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts. J Am Chem Soc 101(22):6783–6784

    Article  CAS  Google Scholar 

  8. Liu C, Long Y, Wang Z (2018) Optimization of conditions for preparation of ZSM-5@ silicalite-1 core–shell catalysts via hydrothermal synthesis. Chin J Chem Eng 26(10):2070–2076

    Article  CAS  Google Scholar 

  9. Zhang J, Zhu X, Wang G, Wang P, Meng Z, Li C (2017) The origin of the activity and selectivity of silicalite-1 zeolite for toluene methylation to para-xylene. Chem Eng J 327(1):278–285

    CAS  Google Scholar 

  10. Miyamoto M, Ono S, Oumi Y, Uemiya S, Perre S, Virdis T, Baron G, Denayer J (2019) Nanoporous ZSM-5 crystals coated with silicalite-1 for enhanced p-xylene separation. ACS Appl Nano Mater 2(5):2642–2650

    Article  CAS  Google Scholar 

  11. Ghosal D, Maity U, Sengupta S, Basu J (2017) Kinetic modeling and study of H-ZSM-5 coated silicon carbide ceramic foam in toluene methylation to produce xylene. Appl Petrochem Res 7(2–4):131–142

    Article  CAS  Google Scholar 

  12. Lee C, Lee S, Kim W, Ryoo R (2018) High utilization of methanol in toluene methylation using MFI zeolite nanosponge catalyst. Catal Today 303(1):143–149

    Article  CAS  Google Scholar 

  13. Ghani N, Jalil A, Triwahyono S, Aziz M, Rahman A, Hamid M, Izan S, Nawawi M (2019) Tailored mesoporosity and acidity of shape-selective fibrous silica beta zeolite for enhanced toluene co-reaction with. Chem Eng Sci 193(1):217–229

    Article  CAS  Google Scholar 

  14. Peng C, Liu Z, Yonezawa Y, Yanaba Y, Katada N, Murayama I, Segoshi S, Okubo T, Wakihara T (2019) Ultrafast post-synthesis treatment to prepare ZSM-5@Silicalite-1 as a core-shell structured zeolite catalyst. Microporous Mesoporous Mater 277(3):197–202

    Article  CAS  Google Scholar 

  15. Yi D, Xu X, Meng X, Liu N, Shi L (2019) Synthesis of core–shell ZSM-5 zeolite with passivated external surface acidity by b_oriented thin silicalite-1 shell using a self_assembly process. J Porous Mater 26(6):1767–1779

    Article  CAS  Google Scholar 

  16. Wang Y, Liu M, Zhang A, Zuo Y, Ding F, Chang Y, Song C, Guo X (2017) Methanol usage in toluene methylation over Pt modified ZSM-5 catalyst: effects of total pressure and carrier gas. Ind Eng Chem Res 56(16):4709–4717

    Article  CAS  Google Scholar 

  17. Li J, Ji W, Liu M, Zhao G, Jia W, Zhu Z (2019) New insight into the alkylation-efficiency of methanol with toluene over ZSM-5: microporous diffusibility significantly affects reacting-pathways. Microporous Mesoporous Mater 282:252–259

    Article  CAS  Google Scholar 

  18. Chen N. Selective production of para-xylene: US4002697[P].1977-01-11

  19. Kaeding W. Methylation of toluene in the presence of a phosphorus-modified activated crystalline aluminosilicate catalyst: US4002698[P]. 1977-01-11

  20. Derouane E, Gilson J, Gabelica Z, Mousty D, Verbist J (1981) Concerning the aluminum distribution gradient in ZSM-5 zeolites. J Catal 71(2):447–448

    Article  CAS  Google Scholar 

  21. Gilson J, Derouane E (1984) On the external and intracrystalline surface catalytic activity of pentasil zeolites. J Catal 88(2):538–541

    Article  CAS  Google Scholar 

  22. Namba S, Inaka A, Yashima T (1986) Effect of selective removal of aluminium from external surfaces of HZSM-5 zeolite on shape selectivity. Zeolites 6:107–110

    Article  CAS  Google Scholar 

  23. Inomata M, Yamada M, Okada S, Niwa M, Murakami Y (1986) Benzene-filled pore method: a method of measuring external surface areas applicable to zeolites with low-to-high Si-to-Al ratios. J Catal 100(1):264–269

    Article  CAS  Google Scholar 

  24. Wilshier K, Smart P, Western R, Mole T, Behrsing T (1987) Oligomerization of propene over H-ZSM-5 zeolite. Appl Catal 31(215):339–359

    Article  CAS  Google Scholar 

  25. Kaeding W, Chu C, Young L, Weinstein B, Butter S (1981) Selective alkylation of toluene with methanol to produce para-xylene. J Catal 67(1):159–174

    Article  CAS  Google Scholar 

  26. Kaeding W, Chu C, Young L, Butter S (1981) Shape-selective reactions with zeolite catalysts: II. Selective disproportionation of toluene to produce benzene and p-xylene. J Catal 69(2):392–398

    Article  CAS  Google Scholar 

  27. Young L, Butter S, Kaeding W (1982) Shape selective reactions with zeolite catalysts: III. Selectivity in xylene isomerization, toluene-methanol alkylation,and toluene disproportionation over ZSM-5 zeolite catalys. J Catal 76:418–432

    Article  CAS  Google Scholar 

  28. Faramawy S, EI-Sabagh S, AI-Mehbad N (1999) Selective alkylation of toluene with methanol over p-modified H-ZSM-5: effect of treatment with chromium and nickel. React Kinet Catal Lett 66(2):257–263

    Article  CAS  Google Scholar 

  29. Xie Y, Zhao B, Long X, Tang Y (1999) Dispersion of oxides on HZSM-5 and threshold effect on shape-selective methylation of toluene[C]//Song C. ACS Symposium Series. American Chemical Society, Washington, DC, pp 188–200

    Google Scholar 

  30. Cardoso M, Rosas D, Lau L (2005) Surface P and Al distribution in P-modified ZSM-5 zeolites. Adsorption 11:577–580

    Article  CAS  Google Scholar 

  31. Ghiaci M, Abbaspur A, Arshadi M, Aghabarari B (2007) Internal versus external surface active sites in ZSM-5 zeolite part 2: toluene alkylation with methanol and 2-propanol catalyzed by modified and unmodified H3PO4/ZSM-5. Appl Catal A Gen 316:32–46

    Article  CAS  Google Scholar 

  32. Zhao Y, Wu H, Tan W, Zhang M, Liu M, Song C, Wang X, Guo X (2010) Effect of metal modification of HZSM-5 on catalyst stability in the shape-selective methylation of toluene. Catal Today 156:69–73

    Article  CAS  Google Scholar 

  33. Zhao Y, Tan W, Wu H, Zhang A, Liu M, Li G, Wang X, Song C, Guo X (2011) Effect of Pt on stability of nano-scale ZSM-5 catalyst for toluene alkylation with methanol into p-xylene. Catal Today 160:179–183

    Article  CAS  Google Scholar 

  34. Göhlich M, Reschetilowski W, Paasch S (2011) Spectroscopic study of phosphorus modified H-ZSM-5. Microporous Mesoporous Mater 142:178–183

    Article  Google Scholar 

  35. Lu P, Fei Z, Li L, Feng X, Ji W, Ding W, Chen Y, Yang W, Xie Z (2013) Effects of controlled SiO2 deposition and phosphorus and nickel doping on surface acidity and diffusivity of medium and small sized HZSM-5 for para-selective alkylation of toluene by methanol. Appl Catal A Gen 453:302–309

    Article  CAS  Google Scholar 

  36. Janardhan H, Shanbhag G, Halgeri A (2014) Shape-selective catalysis by phosphate modified ZSM-5: generation of new acid sites with pore narrowing[J]. Appl Catal A Gen 471:12–18

    Article  CAS  Google Scholar 

  37. Tan W, Liu M, Zhao Y, Hou K, Wu H, Zhang A, Liu H, Wang Y, Song C, Guo X (2014) Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts: synergistic effects of surface modifications with SiO2, P2O5 and MgO. Microporous Mesoporous Mater 196:18–30

    Article  CAS  Google Scholar 

  38. Zhang J, Qian W, Kong C, Wei F (2015) Increasing Para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst. ACS Catal 5:2982–2988

    Article  CAS  Google Scholar 

  39. Wang C, Wang Y, Chen H, Wang X, Li H, Sun C, Sun L, Fan C, Zhang X (2019) Effect of phosphorus on the performance of IM-5 for the alkylation of toluene with methanol into p-xylene. C R Chimie 22:13–21

    Article  CAS  Google Scholar 

  40. Yi D, Meng X, Xu X, Liu N, Shi L (2019) Catalytic performance of modified ZSM-5 designed with selectively passivated external surface acidity by phosphorus. Ind Eng Chem Res 58:10154–10163

    Article  CAS  Google Scholar 

  41. Wei J (1982) A mathematical theory of enhanced para-xylene selectivity in molecular sieve catalysts. J Catal 76:433–439

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No.21676028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Ma, X., Ren, D. et al. A strategy to improve the para-selectivity in toluene methylation on P2O5-ZSM-5 modified by the para-xylene placeholder method. Reac Kinet Mech Cat 132, 967–981 (2021). https://doi.org/10.1007/s11144-021-01929-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01929-6

Keywords

Navigation