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Abstract
A series of sulfonated Zr-MCM-41 samples were synthesized by the in-situ method 
followed by sulfonation using sulfuric acid for the catalytic study of cellulose to 
5-hydroxymethyl furfural in batch condition. All synthesized catalysts were charac-
terized by XRD,  N2 adsorption–desorption isotherm, FT-IR, TEM, EDX, and  NH3 
temperature-programmed desorption analysis. The XRD and  N2 adsorption–desorp-
tion isotherm results have confirmed that incorporated  Zr4+ was substituted within 
the framework of silica MCM-41 with hexagonal pores. Similarly, the FT-IR and 
EDX results have proved that Zr-MCM-41 was sulfonated. The Brønsted acidic 
and Lewis acidic sites were identified by  NH3-TPD analysis. Among the sulfonated 
Zr-MCM-41 catalysts, S-15Zr-MCM-41 has shown 70% cellulose conversion with 
16.4% selectivity of 5-hydroxymethyl furfural at 170 °C for 2 h which was higher 
than other catalysts. It was attributed to the high ratio of Brønsted acidic to Lewis 
acidic sites.
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Introduction

5-Hydroxymethyl furfural (5-HMF) is a major important platform chemical that 
could be produced from cellulose and hemicellulose by hydrolysis in the acidic 
medium [1–3]. It is an intermediate in biomass-based carbohydrate chemistry and 
petroleum-based industrial chemistry to produce chemicals and fuels [4, 5]. Produc-
tion of 5-HMF from cellulose involved 3 steps catalytic mechanism: hydrolysis of 
cellulose to glucose by Brønsted acid, isomerization of glucose to fructose by Lewis 
acid assistance, and dehydration of fructose to 5-HMF by Brønsted acid [6]. Few 
research groups have studied the conversion of cellulose to 5-HMF using homogene-
ous catalysts such as  H2SO4, HCl-AlCl3,  CrCl2-CrCl3,  ZrOCl2/CrCl3 [7–11]. How-
ever, they have reported some issues such as lack of separation of the catalyst, corro-
sion, and toxicity. These can be overcome by the use of solid acid catalyst [12–17].

As mentioned above, the conversion of cellulose to 5-HMF is catalyzed by Brøn-
sted acidic and Lewis acidic sites. For this purpose, bifunctional solid acid catalysts 
have been developed and used. Mazzotta et  al. have reported the effectiveness of 
Ti(IV)-HSO3 catalyst for the dehydration of cellulose, glucose, and fructose. They 
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depicted the dual role of Brønsted acidic and Lewis acidic sites for biomass con-
version [18]. Similarly, Osatiashtiani et al. have used bifunctional sulfonated zirco-
nia (S-ZrO2) catalyst for the conversion of glucose to 5-HMF [6]. The effectiveness 
of this catalyst was increased by impregnation on mesoporous silica, SBA-15 [19]. 
Mesoporous silica materials like SBA-15 and MCM-41 have been widely used as 
support due to high surface area 600–1200  m2/g and tunable pore size 2–50  nm 
[20–22].

Based on the above concept, in this article, we have studied the catalytic reac-
tion of cellulose to 5-HMF in a batch reactor using sulfonated Zr-MCM-41 catalysts 
synthesized by in-situ method followed by sulfonation. Moreover, the role of Brøn-
sted acidic and Lewis acidic sites presented in the synthesized catalyst useful for the 
catalytic reaction was also discussed.

Experimental

Materials

Analytical grade chemicals like zirconium (IV) sulfate (Zr(SO4)2), Tetraethyl 
orthosilicate  (SiC8H20O4, TEOS), ammonium hydroxide  (NH5O, 25wt%), cetyltri-
methylammonium bromide  (C19H42BrN, CTABr), sulfuric acid  (H2SO4), cellulose 
((C6H10O5)n) and 5-hydroxy methyl furfural  (C6H6O3) were purchased from the M/s. 
Sigma Aldrich Chemicals Pvt. Ltd., Vietnam, and used without purification.

Synthesis of MCM‑41 and sulfonated Zr‑MCM‑41

MCM-41 was synthesized by the soft template method using CTABr as a template. 
The desired quantities of TEOS, CTABr, and  NH4OH were mixed in a glass beaker 
until a homogeneous solution was obtained. The mixture was transferred into a Tef-
lon lined autoclave and kept at 100 °C for 24 h. A white precipitate was formed. It 
was filtered and washed with distilled water then dried at 100 °C for 12 h. Finally, it 
was calcined at 550 °C for 4 h in static air. We obtained MCM-41 [23]. Zr-MCM-41 
was synthesized using the same procedure as that of MCM-41 with Zr/Si ratio (4, 8, 
12, 15, 20 wteqauti%). To sulfonate Zr-MCM-41, it was treated with 1 M  H2SO4 at 
room temperature for 1 h followed by filtration and washed with distilled water then 
dried at 100 °C for 12 h. We obtained sulfonated Zr-MCM-41 and labeled as S-xZr-
MCM-41, where x represents the wt% of Zr loaded.

Characterization

The X-ray diffractions were recorded using a D8 Advance X-ray diffractometer hav-
ing Ni filtered Cu  Kα radiation in the range from 2θ = 0.7–70° with a scan speed of 
2°/min. The  N2 adsorption–desorption isotherms were measured using Micromer-
itics Tristar 3000 gas adsorption analyzer at 77  K. Before the isotherm measure-
ment, 0.1  g of sample was activated at 200  °C for 3  h under vacuum to remove 
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moisture. The surface area was calculated by the multipoint BET method, total 
pore volume at P/P0 = 0.99, and pore size by the BJH method. TEM images were 
recorded using FEI TECNAI G2 20 X-Twin high-resolution transmission electron 
microscopy operated at high voltage 200 kV. Energy-dispersive X-ray spectroscopy 
analysis was performed using Hitachi S-4700 scanning electron microscopy. FT-IR 
spectra were recorded on the JASCO FT-IR-4100 spectrometer in the range from 
4000 – 400 cm−1 with a resolution of 4 cm−1 using the KBr disc method. Ammonia 
temperature-programmed desorption  (NH3-TPD) was measured using Micromeritics 
Autochem-II 2920 analyzer from 100–600 °C with a heating rate of 10°/min.

Catalytic study of S‑Zr‑MCM‑41

The catalytic reaction of cellulose to 5-HMF using S-Zr-MCM-41 catalysts was car-
ried out in a Teflon-lined stainless steel reactor equipped with a mechanical stirring 
system. The reaction mixture, 2 g cellulose, 0.2 g catalyst, and 10 mL water were 
transferred into 50  mL reactor then the temperature was raised to 170  °C with a 
heating rate of 10 °C/min and kept at this temperature for 2 h with a rotation speed 
of 400  rpm/min. The reaction products were collected by centrifugation and ana-
lyzed using GC–MS Agilent 7890A with MS detector.

Results and discussion

X‑ray diffraction analysis

The low and wide-angle XRD patterns of MCM-41 and sulfonated Zr-MCM-41 
were shown in Fig. 1. MCM-41 has shown 3 peaks at 2θ = 2°, 3.7° and 4.4° with 
reflections planes (100), (110) and (200) respectively (JCPDS No. 00-049-1712) 
which were the main characteristic peaks of hexagonal mesoporous MCM-41 
with a space group P6mm (Fig. 1a) [24]. Zr-MCM-41 catalysts have also shown 

Fig. 1  XRD of MCM-41 and sulfonated Zr-MCM-41: a low angle and b wide-angle
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a low angle XRD pattern similar to bulk MCM-41. However, a decrease in the 
intensity of major peaks has been observed with an increase in the amount of 
Zr. In wide-angle XRD of MCM-41 and Zr-MCM-41 samples, no diffraction 
peaks have appeared (Fig. 1b) [25]. The lattice parameters  d100 and  a0 for all syn-
thesized samples were presented in Table  1. The d-spacing  (d100) and unit cell 
parameter constant  (a0) were higher for higher loadings of Zr (12, 15, and 20 
wt%) compared with bare MCM-41 because of the replacement of  Si4+ by  Zr4+ in 
the framework. Consequently, a change in lattice parameters has been observed.

N2 adsorption–desorption isotherms

The  N2 adsorption–desorption isotherms of MCM-41 and sulfonated Zr-MCM-41 
at 77 K were shown in Fig. 2 and textural properties were presented in Table 1. 
For MCM-41, a hysteresis loop has been observed above the relative pressure P/
P0 = 0.85 [26]. The isotherm curve of MCM-41 was similar to Type-IV with the 
H1 hysteresis loop of classification of the porous materials by IUPAC [27]. There-
fore, it has mesopores. For sulfonated Zr-MCM-41 samples, a hysteresis loop has 
not appeared. It was due to the shrinkage of pore size by sulfonation. The calcu-
lated specific surface area, pore-volume, and pores size of MCM-41 was 1191 
 m2/g, 1.99  cm3/g, and 6.1  nm respectively. MCM-41 and S-4Zr-MCM-41 have 
shown surface area nearly the same. Further increase in Zr content, a change in 
textural properties has been observed. The surface area was reached to 874  m2/g, 
pore volume 0.74  cm3/g and pore size 3.6 nm. It was due to deformation effect of 
Zr ions incorporated into the structure of MCM-41.

Table 1  The lattice parameters and textural properties of MCM-41 and sulfonated Zr-MCM-41

a d-spacing at (100)
b unit cell parameter  (a0 = 2d100/√3)
c BET surface area
d mesopore surface area
e total pore volume
f pore size by BJH method

Sample d100
a (nm) a0

b (nm) SBET
c  (m2/g) Smesopore

d  (m2/g) Vtotal
e  (cm3/g) Pore  sizef (nm)

MCM-41 3.92 4.53 1191 826 1.99 6.1
S-4Zr-MCM-41 3.93 4.53 1243 825 1.27 3.7
S-8Zr-MCM-41 3.94 4.55 1040 664 0.91 3.5
S-12Zr-

MCM-41
4.27 4.94 913 601 0.85 3.6

S-15Zr-
MCM-41

4.34 5.01 1022 591 0.75 3.1

S-20Zr-
MCM-41

4.23 4.89 874 575 0.74 3.6
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FT‑IR analysis

FT-IR spectra of MCM-41 and sulfonated Zr-MCM-41 catalysts were shown in 
Fig.  3. For MCM-41, the bands appeared at 3450  cm−1 and 1640  cm−1 repre-
sented the stretching and bending vibrational bands of the O–H group of water. 
The symmetric and asymmetric vibrational bands of the Si–O-Si group have 

Fig. 2  N2 adsorption–desorption isotherms of MCM-41 and sulfonated Zr-MCM-41

Fig. 3  FT-IR spectra of MCM-41 and S-Zr-MCM-41 samples



831

1 3

Reaction Kinetics, Mechanisms and Catalysis (2020) 130:825–836 

appeared at 1084 cm−1 and 826 cm−1 respectively. Moreover, the band appeared at 
465 cm−1 represented the bending vibrational band of Si–O-Si (or) Zr–O–Si [25, 
28]. In sulfonated Zr-MCM-41 samples, the major vibrational bands of MCM-41 
have been replicated. Along with this, the  SO2 deformation band also appeared at 
550 cm−1 [29]. Hence, FT-IR analysis has confirmed that the sulfonate group has 
been attached to the walls of Zr-MCM-41.

TEM and EDX analysis

Fig. 4 shows the TEM images of MCM-41 and sulfonated Zr-MCM-41. Ordered 
hexagonal pores were obtained for MCM-41 (Fig. 4a). For sulfonated Zr-MCM-41 
samples, the same hexagonal pore structure was obtained. However, the particles 
correspond to zirconium oxide have not appeared. It confirmed that the incorpo-
rated zirconium was interconnected with the framework of MCM-41. The TEM 
analysis result was correlated with XRD. The content of zirconium in sulfonated 
Zr-MCM-41 samples was determined using energy-dispersive X-ray spectros-
copy. Table 2 shows the elemental composition of sulfonated Zr-MCM-41 sam-
ples. Experimentally obtained Zr (wt%) was near to theoretically loaded amount. 
The amount of Sulphur in each sample was 10–12.5 wt%. It was also confirmed 
the presence of sulfur in the sulfonated Zr-MCM-41 samples.

Fig. 4  TEM images of a MCM-41, b S-4Zr-MCM-41, c S-8Zr-MCM-41, d S-12Zr-MCM-41, e S-15Zr-
MCM-41, and f S-20Zr-MCM-41 (scale bar- 100 nm)
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Temperature programmed desorption of  NH3

Ammonia temperature-programmed desorption profile of S-8Zr-MCM-41, S-15Zr-
MCM-41, and S-20Zr-MCM-41 was shown in Fig. 5. The amount of  NH3 desorbed 
was presented in Table 3. Each sample has shown 3 desorption peaks in between the 
temperatures 140–170 °C, 250–270 °C and 470–570 °C which correspond to phys-
isorbed ammonia, Brønsted acidic and Lewis acidic sites respectively [30]. By sub-
stitution of  Si4+ by  Zr4+ created Lewis acidic sites whereas sulfonated Zr-MCM-41 
sample has generated Brønsted acidic sites  (SO3H−). The total amount of  NH3 des-
orbed was 1.807 mmol/g for S-8Zr-MCM-41, 1.809 mmol/g for S-15Zr-MCM-41, 
and 1.259  mmol/g for S-20Zr-MCM-41. The catalyst S-8Zr-MCM-41 has shown 
high Lewis acidic sites whereas S-15Zr-MCM-41 has shown high Brønsted acidic 
sites. The order of the ratio of Brønsted acidic site to Lewis acidic site was S-15Zr-
MCM-41 > S-8Zr-MCM-41 > S-20Zr-MCM-41. The synergetic of the skeleton 

Table 2  Elemental composition of sulfonated Zr-MCM-41 samples from EDX

Sample Elements

Silicon (wt%) Zirconium (wt%) Sulphur (wt%)

S-4Zr-MCM-41 85.95 3.84 10.21
S-8Zr-MCM-41 81.27 7.23 11.50
S-12Zr-MCM-41 77.73 10.02 12.25
S-15Zr-MCM-41 73.44 14.78 11.78
S-20Zr-MCM-41 69.54 16.78 10.68

Fig. 5  NH3 temperature-programmed desorption of S-Zr-MCM-41 samples
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structure, Zr loading and Sulphur surface concentration lead to variation in the type 
of acidic site strength.

Catalytic conversion of cellulose to 5‑HMF

MCM-41 and sulfonated Zr-MCM-41 catalysts have been used for the catalytic con-
version of cellulose to 5-HMF in the Teflon lined stainless steel reactor. The results 
were presented in Table 4. The conversion of cellulose without catalyst was 1.3% 
at 170 °C for 2 h. For MCM-41, the conversion was increased to 15.2% and S-Zr-
MCM-41 catalysts 63.3–70.2%. The selectivity and yield of 5-HMF were higher 
with the increase in the amount of Zr. Yayati et al. have studied silica-supported tin 
catalyst for the catalytic reaction of glucose. It has converted glucose into fructose 
by isomerization because of the Lewis acidic nature of the catalyst [31]. In this arti-
cle, the synthesized catalyst sulfonated Zr-MCM-41 has both Brønsted acidic and 
Lewis acidic sites. So, it converted cellulose into 5-HMF. Among the synthesized 
sulfonated Zr-MCM-41 catalysts, high conversion of cellulose and 5-HMF selectiv-
ity was obtained for S-15Zr-MCM-41 because of the high ratio of Brønsted acidic 
to Lewis acidic sites  (NH3-TPD analysis). Therefore, the catalyst which has Brøn-
sted acidic and Lewis acidic properties are useful for the hydrolysis of cellulose and 

Table 3  Amount of  NH3 desorbed for S-Zr-MCM-41 samples

a Ratio of Bronsted acidic/Lewis acidic sites

Sample NH3 desorbed (mmol/g) Total  NH3 
desorbed 
(mmol/g)

Ratio of B/La

Tmax 140–
170 °C

Tmax 250–
270 °C

Tmax 470–
570 °C

S-8Zr-MCM-41 0.415 0.799 0.593 1.807 1.347
S-15Zr-

MCM-41
0.404 0.986 0.419 1.809 2.353

S-20Zr-
MCM-41

0.385 0.490 0.384 1.259 1.276

Table 4  Catalytic reaction of 
cellulose to 5-hydroxymethyl 
furfural at 170 °C for 2 h

Catalyst Conversion of 
cellulose (%)

Selectivity of 
5-HMF (%)

Yield of 
5-HMF 
(%)

No catalyst 1.3 0.8 0.01
MCM-41 15.2 1.3 0.2
S-4Zr-MCM-41 63.3 3.0 1.9
S-8Zr-MCM-41 64.5 10.6 6.8
S-12Zr-MCM-41 69.5 11.4 9.0
S-15Zr-MCM-41 70.2 16.4 11.5
S-20Zr-MCM-41 68.6 9.4 6.4
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cellulose derivatives. In the forthcoming article, we want to study the optimization 
of catalyst quantity, temperature, reaction time, and recyclability.

Conclusion

In this work, we have systematically studied the catalytic conversion of cellulose to 
5-hydroxymethyl furfural using MCM-41 and sulfonated Zr-MCM-41 catalysts in a 
batch reactor. The characterization results have stated that replacement of  Si4+ with 
 Zr4+ in MCM-41 by in-situ synthesis, the existence of hexagonal mesopores, attach-
ment of sulfate groups to the walls of Zr-MCM-41, and the presence of Bronsted 
acidic and Lewis acidic sites. The high catalytic conversion of cellulose and selec-
tivity of 5-HMF was obtained for S-15Zr-MCM-41 at 170 °C, for 2 h because of the 
high ratio of Brønsted acidic to Lewis acidic sites.
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