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Abstract

An attempt was made to answer the question if spontaneous oscillatory conversion
and peptidization of proteinogenic o-amino acids might be essential for living
organisms. To this effect, we investigated an impact of heavy water (D,O) on the
peptidization of L-Cys. As analytical techniques, we used high-performance liquid
chromatography, mass spectrometry, scanning electron microscopy, and tur-
bidimetry. The results obtained demonstrate that heavy water seriously hampers the
oscillatory peptidization of L-Cys, apparently due to the presence of the deuterium
cation in the reaction medium. A cautious conclusion can be drawn that thorough
reflection is needed on possible importance of the oscillatory peptidization of
proteinogenic o-amino acids for various different life processes.

Keywords 1L-Cysteine - D,O - Spontaneous oscillatory peptidization - Mass
spectrometry - Scanning electron microscopy

Introduction

In our studies on the oscillatory chemical reactions initiated in 2005 with paper [1],
we have abundantly reported on the phenomena of spontaneous oscillatory chiral
inversion and spontaneous oscillatory condensation with the low-molecular-weight
carboxylic acids such, as profen drugs, hydroxy acids and proteinogenic a-amino
acids (e.g., [1-3]).
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Among the compounds investigated so far, proteinogenic o-amino acids seem the
most significant group, due to their prominent role played in all living organisms. In
the experiments demonstrating the phenomena of spontaneous oscillatory chiral
inversion and peptidization, many analytical techniques have been engaged such, as
polarimetry [1, 4], turbidimetry [5], IR spectroscopy [6], 'H and '*C NMR
spectroscopy [7, 8], mass spectrometry [9-11] and scanning electron microscopy
(SEM) [12], yet the most important techniques were the thin-layer chromatography
(TLC) [1] and high-performance liquid chromatography (HPLC) [3]. Moreover,
theoretical models were presented in a series of papers [2, 9-11, 13-15], devised
based on general physicochemical knowledge and semi-quantitative assumptions
regarding the observed inversion and condensation phenomena, with an aim to add
to them a justifiable rationale. Upon an example of L-cysteine, schematic
presentation is provided of the processes of chiral inversion and peptidization with
proteinogenic o-amino acids and a scheme of these two processes running in the
parallel (Fig. Sla-Slc; Supplementary material). It is noteworthy that all these
elementary steps are largely based on transfer of the hydrogen cation.

We assume that spontaneous oscillatory peptidization of proteinogenic o-amino
acids can take place not only in the test tubes, but in living organisms as well and be
responsible for various physiological processes on molecular level. Water is a
natural environment for all these processes as the main component of living beings,
able to facilitate the mechanisms of hydrogen cation transfer. To get a deeper insight
in the processes running in living organisms, the scientists have long explored the
role of heavy water (D,O) on the metabolism of many organisms [16-29]. The
simplest organisms (such as bacteria, protozoa and algae) have proved to be the
most resistant to the toxic effects of heavy water at an expense of usually a not very
significant slowdown of their living processes (which is, however, reversible upon
bringing back these organisms to H,O). It was demonstrated upon an example of
Escherichia coli that this bacterium was able to adapt to and survive in pure heavy
water [23]. The organisms with a slightly higher level of cellular organization can
also survive either in pure heavy water (algae) [17, 18], or in water considerably
enriched with D,O (protozoa) [18]. The toxic influence of heavy water is far more
acute with higher organisms such as, e.g., fishes, birds and mammals [18-22]. With
certain mammals, lethal effect has been established at the 30% D,O level per the
organism’s weight [20]. Besides, on the cellular level it has been proved that D,O
strongly affects the processes of mitosis, changes molecular properties of
desoxyribonucleic acid, affects separation of the DNA strands and also the course
of their further replications [24]. These results gave rise to the expectations on a
possibility of including heavy water in the anti-cancer therapies as an apoptotic
agent [24-29].

A separate and very interesting field of research on the impact induced by D,O on
the mechanism and kinetics of the “classical” oscillatory chemical reactions (i.e.,
the Belousov-Zhabotinsky and Bray-Liebhafsky reaction) has been developed in the
span of almost four decades now and the results were presented in a selection of
papers (e.g., [30-35]). In view of the fact that analytical tools sensitive enough to
adequately scrutinize the oscillatory chemical reactions are still rather limited, the
insights gained and conclusions derived by individual research groups can only be
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regarded as fragmentary and hence, as preliminary and tentative only. Nevertheless,
each research group has reported an evident impact of D,O on the oscillation
dynamics of the processes of interest and some attempts were made to explain the
role of heavy water for the selected elementary steps of these processes.

Data on the impact of heavy water on living organisms available in the literature
instigated our interest in an effect of D,O on spontaneous peptidization of the
proteinogenic a-amino acids. We assumed that the kinetics of the elementary steps
of the chiral inversion and peptidization (Fig. Sla-S1c); Supplementary material)
might be affected by replacement of hydrogen by deuterium in the reaction
environment, leading to perceptible changes in the peptidization dynamics also. For
the experiment, we selected L-cysteine (L-Cys) as an important building block of the
mammalian proteins and we employed high-performance liquid chromatography
with evaporative light-scattering detection (HPLC-ELSD), mass spectrometry (MS),
scanning electron microscopy (SEM) and turbidimetry as the measuring techniques.

Experimental
Reagents and samples

L-Cys was of analytical purity, purchased from Reanal (Budapest, Hungary). Heavy
water (D,O) was acquired from the Cambridge Isotopic Laboratories (Andover,
MA, USA; 99% purity). Water (H,O) was deionized and double distilled by means
of an Elix Advantage Millipore system. Acetonitrile (ACN) was of HPLC purity
(J.T. Baker, Deventer, the Netherlands).

The L-Cys sample prepared for the HPLC-ELSD experiment was dissolved at a
concentration of 0.7 mg mL™! (5.77 x 1073 mol L™ Y in ACN + H,0, 70:30 (v/v)
and the chromatographic measurements of the concentration changes of the
monomeric L-Cys were carried out for 95 h at 21 £ 0.5 °C, at the 10-min intervals.
The analogous measurements of the concentration changes were carried out for the
monomeric L-Cys dissolved in pure D,0.

All the L-Cys solutions used for mass spectrometry, scanning electron
microscopy and turbidimetry were prepared at a concentration of 1 mg mL™'
either in pure DO, or in the binary liquid mixture ACN + X, 70:30 (v/v), where X:
the binary mixture of H,O 4 D,O in the changing volume proportions: 30:0, 29:1,
27:3, 26:4, 25:5, 20:10, 10:20, 5:25, and 0:30.

High-performance liquid chromatography with evaporative light scattering
detection (HPLC-ELSD)

High-performance liquid chromatography with evaporative light scattering detec-
tion (HPLC-ELSD) was employed to separate the monomeric L-Cys from peptides.
The analyses were carried out using a Varian model 920 liquid chromatograph
equipped with a 900-LC autosampler, gradient pump, 380-LC ELSD detector and
ThermoQuest Hypersil C18 column (150 x 4.6 mm i.d.; 5 pm particle size) for L-
Cys and Galaxie software for data acquisition and processing. The chromatographic

@ Springer



558 Reaction Kinetics, Mechanisms and Catalysis (2018) 125:555-565

column was thermostatted at 35 °C using a Varian Pro Star 510 column oven. The
chromatographic analyses were carried out using the 10-pL sample aliquots and a
methanol-water (80:20, v/v) mobile phase at a flow rate of 0.80 mL min~".
Relatively short sampling time intervals were chosen in order to derive quasi-kinetic

information about the oscillatory peptidization.

Mass spectrometry (MS)

All mass spectra were recorded in the positive ionization mode on a Varian MS-100
mass spectrometer (extended ESI-MS scan, positive ionization, spray chamber
temperature 50 °C, drying gas temperature 250 °C, drying gas pressure 25 psi,
capillary voltage 50 V, needle voltage 5 kV). The mass spectra were recorded for
the soluble peptide fraction (as the insoluble microparticle suspensions self-
separated by sedimentation) of the ten investigated L-Cys samples immediately after
7 days storage in the measuring cell of turbidimeter.

Scanning electron microscopy (SEM)

Visualization of nano- and microparticles for ten investigated L-Cys samples was
performed after 1 month sample storage period with use of a JEOL JSM-7600F
model scanning electron microscope (SEM). Visualization was performed for nano
and microparticles obtained from the solutions evaporated to dryness.

Turbidimetry

Turbidity measurements were performed for ten investigated L-Cys samples. For
this purpose, the turbidity sensor (TRB-BTA, Vernier Software & Technology,
Beaverton, OR, USA) was used that allowed continuous monitoring of turbidity
changes. For these experiments, ca. 15-mL aliquots of the L-Cys solutions in the
solvents were freshly prepared and placed in the instrument cells. The turbidity
changes were registered for the period of 7 days (in the 1-min intervals) under the
thermostatic conditions at 25.0 &£ 0.5 °C. To confirm qualitative reproducibility of
the results, the turbidity measurements were repeated twice.

The stability of turbidimeter was controlled for D,O, H,O, ACN, and 70%
aqueous ACN as the references (and established as equal to 91.8, 0.0, 80.1 and 40.1
NTU (nephelometric turbidity units) in the course of 20 h. In each case, the turbidity
was quite stable (as confirmed by insignificant RSD values).

Results and discussion

High-performance liquid chromatography with evaporative light scattering
detection (HPLC-ELSD)

Prior to considering the impact of D,O on the process of spontaneous peptidization
of L-Cys, we investigated its behavior when stored for the period from 25 h to 95 h
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in ACN + H,0O (70:30, v/v). In that way, we verified our basic assumption
regarding spontaneous oscillatory condensation taking place with chiral low
molecular weight carboxylic acids (confirmed with a number of other analytes in
our earlier studies, e.g., in [2, 9-11, 13—15]). Although we are well aware of the fact
that condensation of L-Cys consists not only of peptidization, but also of bridging
the molecules through the disulfide bonds (as shown in our earlier paper [36]), for
the sake of convenience we are going to refer to the condensation as peptidization
(keeping in mind that formation of disulfides plays a secondary role in the discussed
process).

Thus, the achiral HPLC mode was employed to separate the monomeric L-Cys
from the spontaneously formed peptides and to check from its changing amount,
whether it was undergoing an oscillatory peptidization/hydrolytic de-peptidization
process, or not. The chromatogram remained qualitatively unchanged throughout
the whole sample storage time (the recorded retention time, fg, was ca. 4.10 min),
although quantitative changes of the L-Cys amount were far above an otherwise
negligible experimental noise, inherent of the ELSD-type detector. In order to
visualize time evolution of the solution, we plotted the changing L-Cys peak heights
against the sample storage time (Fig. S2; Supplmentary material). Thus, we saw the
non-linear signal intensity changes, which are equivalent to the L-Cys amount
changes. Then we Fourier transformed the chromatographic time series in order to
check if the HPLC signal for the monomeric L-Cys contains a significant periodic
component. The power spectrum calculated for the L-Cys peak is also given in
Supplementary material (Fig. S3). It contains a large peak at zero frequency, which
was neglected. Then another peak (slightly above the background noise) appears at
0.0007 min~"', implying a periodicity of ca. 24 h. However, the total length of the
data is limited to 70 h by our experimental stability and certainly a longer time
series would be desirable to confirm this periodicity.

The analogous experiment of storing L-Cys in pure D,O for the period of 72 h
resulted in a practically unchanged chromatographic peak height of this compound,
equivalent to an unchanged L-Cys amount throughout the whole storage period.
Hence, a conclusion was drawn that the environment of heavy water—unlike that
consisting of ACN + H,O (70:30, v/v)—fully hampers the process of spontaneous
oscillatory peptidization of L-Cys.

Mass spectrometric (MS) tracing of spontaneous peptidization of 1.-Cys

According to the assumed working procedure, one sample of L-Cys was dissolved in
100% D,0 and nine samples of L-Cys were dissolved in the ACN + X, 70:30 (v/v)
liquid mixtures, were X: H,O + D,O in different volume proportions (see
“Reagents and samples”). The highest volume amount of D,O in the ACN + X
mixture was fixed at 30%, based on the Ref. [20] pointing out to this value per
organism weight as a lethal amount for experimental mammals. The process of
peptidization of each L-Cys sample was running spontaneously at 25 4 0.5 °C for
7 days in the darkness. After that time, for each sample the mass spectrum was
recorded to reveal peptides formed in the course of sample storage. For technical
reasons, these mass spectra could be recorded for the monomeric L-Cys and the
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soluble peptides only, as the insoluble higher peptides self-separate from the
solution by sedimentation.

The obtained mass spectra were treated as fingerprints and attentively compared.
The mass spectrum recorded for the sample dissolved in pure D,O showed slight
contamination of the commercial L-Cys sample with some peptides originating from
the manufacturing process and impossible to hydrolyze in D,O (as normally is the
case in H,0). For this reason, the mass spectrum recorded for L-Cys dissolved in
pure D,O was excluded from further considerations. With the nine L-Cys samples
dissolved in ACN + X, the following regularity was observed. For the sample with
the volume amount of H,O fixed at 30% (i.e., the volume amount of D,O equal 0%)
and for those with relatively low amounts (up to 3%) of D,0 in the solvent, the mass
spectra showed relatively low numbers of relatively low intensity signals, mostly in
the m/z range up to 1000. With the increasing amounts of D,0, the nature of the
obtained fingerprints was changing, i.e., more signals started appearing in the whole
recorded m/z range (extending up to m/z 3500) and their intensities were
considerably higher. Selected examples collected in Fig. 1 well illustrate this
tendency.

At a first glance, the mass spectra obtained in our experiment seem witnessing to
the fact that it is H,O which hampers peptidization and D,O which stimulates it.
However, such conclusion is not correct, if we keep in mind that the mass
spectrometric results are obtained for soluble (hence, the lower molecular weight)
peptides only. The complementary results originating from the scanning electron
microscopy (SEM) (discussed in the next section) witness to the opposite. The SEM
results presenting peptide nano- and microstructures cumulated in the considered
solutions clearly prove that the more H,O is in a solvent, the bigger are the obtained
peptide structures (and consequently the less soluble as well). In other words, H,O
pushes an overall equilibrium of peptidization toward the higher (largely insoluble)
peptides, whereas peptidization in the presence of D,O obstructs it, leading toward
the lower (and mostly soluble) peptides.
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Fig. 1 Mass spectra recorded for L-Cys dissolved in ACN + X, 70:30 (v/v). X: the binary mixture of

H,0 + D50 in the changing volume proportions; a 0% D,0O; b 3% D,0; ¢ 4% D,0; d 10% D,0; e 20%
D,0; f 30% D,O
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Scanning electron microscopic (SEM) tracing of spontaneous peptidization
of L-Cys

With the mass spectra recorded for the samples with increasing quantitative
proportions of H,O in solution, the general trend of the lowering yields of the
soluble L-Cys-derived peptides was observed (Fig. 1). On the other hand, from our
earlier studies on peptidization of L-Cys in ACN + H,0 (70:30, v/v), it clearly
came out that its spontaneous peptidization was fast and within a few days of sample
storage insoluble peptides abundantly floating in solution were easily perceptible
with naked eye (see Fig. 2 in [30]). Thus a conclusion was drawn that the mass
spectrometric evidence of the diminishing yields of soluble peptides with the
increasing quantitative proportions of H,O did not reflect the overall peptidization
yields, as the higher insoluble peptides escaped the mass spectrometric evidence. To
this effect, we compared average yields and sizes of insoluble L-Cys-derived
peptides in ten investigated solutions with use of the scanning electron microscopy
(SEM). Selected micrographs which well illustrate the observed regularities and
trend are given in Fig. 2.

Micrographs of the higher and mostly insoluble L-Cys-derived peptides show
lowering of peptide yields with the increasing amounts of D,O in the solvent
(Fig. 2). Peptides formed in an absence of D,O (Fig. 2a) and in the presence of 3
and 10% D,O (Fig. 2b, c) show a compact peptide matter formed of stuck together
globular particles up to ca. 100 nm diameter, just on the borderline between nano-
and microparticles. The texture of the peptide matter formed in the presence of 20%
D50 is perceptibly less compact (Fig. 2d) and aggregations in solution containing
30% DO peptide are even smaller (Fig. 2e). The micrograph valid for L-Cys stored

8
100 hm

Fig. 2 Scanning electron micrographs recorded for the L-Cys-derived peptides retrieved from the samples
dissolved in ACN + X, 70:30 (v/v). X: the binary mixture of H,O + D,O in the changing volume
proportions; a 0% D,0, x 100,000; b 3% D,0, x 50,000; ¢ 10% D,O, x 100,000; d 20%
D,0, x 30,000; e 30% D,0O, x 35,000; f 100% D,O, x 37,000
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in pure D,0 shows the smallest peptide aggregations of them all (Fig. 2f). In each
case, average diameters of single globular particles were comparable (in the range
of up to ca. 100 nm) and hence, it can be concluded that the increasing amounts of
D,O0 result in lowering of peptide yields viewed as the less numerous aggregations,
but not necessarily in lowering of the average particle sizes.

Turbidimetric tracing of spontaneous peptidization of L-Cys

In view of a lack of standardization in turbidity units, measurement devices and
calibration techniques, usage of turbidimetry to analytical determinations can only
be empirical and rather qualitative [37]. However, from our earlier turbidimetric
investigations it comes out that even, if—due to certain randomness of spontaneous
peptidization—the absolute turbidity values can slightly differ from one experiment
to the other, the patterns remain very similar in each repetition [38]. The plots of
turbidity changes were recorded in the 1-min intervals for the period of 7 days for
one L-Cys sample dissolved in pure D,O and nine L-Cys samples dissolved in the
ACN + X, 70:30 (v/v) mixtures. They revealed differences in patterns and hence, in
peptidization dynamics visibly correlated with an amount of D,O in a given system.
Selected results well illustrating the trend of the observed changes are shown in
Fig. 3.

In each turbidity plot shown in Fig. 3, an initial sharp signal drift lasting a few
hours was observed, due to adjusting the sample’s temperature to 25.0 &= 0.5 °C (as
turbidity strongly depends on density of liquid sample and prior to the experiment,
D,O was kept in refrigerator). Let us start our comparison from Fig. 3d valid for
pure D,O as a reference. After an initial sharp signal drop, for the rest of the 7 days
sample storage, a fairly stagnant plot was observed with not very prominent
turbidity changes. To the contrary, the turbidity plot for L-Cys with 1% D,O
evidently became dynamic with turbidity values non-monotonously changing after
the first day of relative stagnation (as indicated with an arrow; Fig. 3a). This plot is
almost identical to that valid for L-Cys in complete absence of D,O. In Fig. 3b, we
show the turbidity plot for L-Cys with 3% D,0O and although the growth of D,O
concentration is relatively small, it is reflected in perceptible prolongation of
preliminary stagnation to 2 days. Only then, certain dynamics of the turbidity
pattern (and more precisely, the stepwise turbidity drop) was observed. Addition of
20% D,0 resulted in prolongation of the initial stagnation period to over 3 days and
only then, the gradual and not very strongly pronounced turbidity drop began. In
conclusion, it can be stated that the growing amount of D,O in solution was
perceptibly changing the L-Cys turbidity pattern, making it increasingly more
stagnant.

Summing up, from the experimental results originating from several analytical
techniques presented in this study, a conclusion could be drawn that spontaneous
oscillatory peptidization of L-Cys is hampered by the presence of D,O in liquid
systems. This hampering effect could be twofold. First, one can expect purely
physical interactions of D,O with the L-Cys molecules like the dipole—dipole
interactions, formation of H-bonds etc., all of them able to affect the rate constants
of the elementary processes shown in Supplementary material. Secondly, the impact
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Fig. 3 Turbidity changes (in nephelometric turbidity units, NTU) in the period between 0 and 7 days
measurement for the L-Cys solution in ACN + X, 70:30 (v/v). X: the binary mixture of H,O + D,0 with
the changing volume proportions: a 1% D,0, b 3% D,0, and ¢ 20% D,0. As a reference, d pure D,0 is
considered. Arrows indicate the end of the initial stagnation of the turbidity plot

of D,0 could also be of a chemical nature, through the isotopic exchange of the
L-Cys protons for the deuterons. With the concentration excess of D,O over L-Cys,
such an isotopic exchange can occur on each hydrogen atom in the L-Cys molecule,
although the energetically and mechanistically most meaningful exchange might be
expected on the -COOH, —-NH, and —SH functionalities, turning them to —COOD,
-NHD, —-ND, and -SD. Detailed reflections on the contributions of D,O to
hampering spontaneous oscillatory peptidization will be the subject matter of our
future studies.

In a general sense, the experimental results obtained in this study remain in
agreement with those provided in the earlier papers on the impact of D,O on the
known oscillatory processes [30-35]. The results presented in papers [32, 33]
emphasize the change of the reaction mechanism (i.e., the kinetic pathways) of the
Bray-Liebhafsky reaction under the influence of heavy water. In paper [35], the
impact of heavy water on the kinetics of the Belousov-Zhabotinsky reaction was
demonstrated and more specifically, an evident slowdown of this reaction due to
considerable prolongation of its induction period. In our study, the impact of heavy
water expressed itself by a practical standstill of the oscillatory process of
peptidization.
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Conclusion

In this study, it was once again demonstrated that spontaneous peptidization of
L-Cys is an oscillatory process. Hampering oscillations of L-Cys with aid of D,O was
investigated for the first time and it proves practically unequivocal with hampering
peptidization. Now a future and thorough reflection is needed on the importance of the
oscillatory peptidization of the proteinogenic a-amino acids for various different life
processes, the phenomenon which might carry some evolutionary implications.
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