Skip to main content
Log in

Experimental and theoretical study on the kinetics and mechanism of the amine-catalyzed reaction of oxiranes with carboxylic acids

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, a systematic study on the kinetics and mechanism of ring-opening reaction of oxirane by carboxylic acid initiated by a tertiary amine is presented. Kinetic parameters of β-hydroxypropyl ester formation including reaction orders, rate constants, and activation energies were established at the temperature range 323–353 K. The experimental values of ΔH° and ΔS° are characteristic for the SN2-like processes. In the initial reaction system, the acid, oxirane and amine exist mainly as hydrogen-bonded complex acid-oxirane, free oxirane and free base. H-bonding was analyzed using IR-spectroscopy. The reaction pathways were examined by the density functional theory (DFT) method at the B3LYP/6-31+G** level. Optimized equilibrium configurations of transition states and corresponding activation parameters were established. In accordance to both experimental and theoretical approaches, it is reasonable to suggest that amine-catalyzed ring-opening reaction of oxirane by carboxylic acid is a series of parallel consecutive stages: (1) quaternization of tertiary amine by activated oxirane; (2) carboxylate anion participation in ring-opening of both nonactivated and activated oxirane. The kinetic model, which adequately describing all observations, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Scheme 5
Scheme 6
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 7

Similar content being viewed by others

References

  1. Wicks ZW, Jones FN, Pappas SP (2007) Organic coatings science and technology, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  2. Gilbert M (ed) (2016) Brydson’s plastics materials, 8th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  3. Meninno S, Lattanzi S (2016) Chem Eur J 22:3632–3642

    Article  CAS  PubMed  Google Scholar 

  4. Choi BS, Choi J, Bak S, Koo S (2015) Eur J Org Chem 3:514–524

    Article  CAS  Google Scholar 

  5. Blank WJ, He ZA, Picci M (2002) J Coat Technol 74:33–41

    Article  CAS  Google Scholar 

  6. Sinel’nikova MA, Shved EN (2014) Russ J Org Chem 50:332–336

    Article  CAS  Google Scholar 

  7. Kakiuchi H, Tanaka Y (1966) J Org Chem 31:1559–1564

    Article  CAS  Google Scholar 

  8. Tanaka Y (1967) J Org Chem 32:2405

    Article  CAS  Google Scholar 

  9. Mares F, Hetflejs J, Bazant V (1969) Collect Czech Chem Commun 34:3086–3097

    Article  CAS  Google Scholar 

  10. Hetflejs J, Mares F, Bazant V (1969) Collect Czech Chem Commun 34:3098–3109

    Article  CAS  Google Scholar 

  11. Shvets VF, Romashkin AV (1972) Kinet Katal 13:885–891

    CAS  Google Scholar 

  12. Ricci CG, Cabrera MI, Luna JA, Grau RJ (2002) Synlett 11:1811–1814

    Google Scholar 

  13. Brønsted JN, Pedersen KJ (1924) Stöchiometrie und verwandtschaftslehre. Z Phys Chem 108:185–235

    Google Scholar 

  14. Swain CG, Scott CB (1953) J Am Chem Soc 75:141–147

    Article  CAS  Google Scholar 

  15. Bakhtin S, Bespal’ko Y, Shved E (2016) Reac Kinet Mech Cat 119:139–148

    Article  CAS  Google Scholar 

  16. Cheng G-J, Zhang X, Chung LW, Xu L, Wu Y-D (2015) J Am Chem Soc 137:1706–1725

    Article  CAS  PubMed  Google Scholar 

  17. Ly UQ, Pham M-P, Marks MJ, Truong TN (2017) J Comput Chem 38:1093–1102

    Article  CAS  PubMed  Google Scholar 

  18. Bakhtin S, Shved E, Bespal’ko Y (2017) J Phys Org Chem 30:3717–3726

    Article  CAS  Google Scholar 

  19. Nikol’skii BP (ed) (1971) Spravochnik khimika (chemist’s handbook). Khimiya, Moscow

    Google Scholar 

  20. Perrin DD, Amarego WLF (1988) Purification of laboratory chemicals. Pergamon Press, Oxford

    Google Scholar 

  21. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  23. Becke AD (1993) J Chem Phys 93:5648–5652

    Article  Google Scholar 

  24. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  25. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  26. Bouteiller Y, Gillet J-C, Gregoire G, Schermann JP (2008) J Phys Chem A 112:11656–11660

    Article  CAS  PubMed  Google Scholar 

  27. Gonzales C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  Google Scholar 

  28. McQuarrie DA (2000) Statistical Mechanics. University Science Books, Sausalito

    Google Scholar 

  29. Takao I (1979) Tetrahedron 35:299

    Article  Google Scholar 

  30. Derevyanko LI (1972) Ukr Khim Zh 38:771

    CAS  Google Scholar 

  31. Gordon AJ, Ford RA (1972) The chemist’s companion. Wiley, New York

    Google Scholar 

  32. Okovytyy S (2014) In: Gorb L, Kuzmin V, Muratov E (eds) Application of computational techniques in pharmacy and medicine, challenges and advances in computational chemistry and physics. Springer, Dordrecht

    Google Scholar 

Download references

Acknowledgements

Funding was provided by Ministry of Education and Science of Ukraine (Grant No. 0116U002519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Shved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bespalko, Y.N., Shved, E.N. Experimental and theoretical study on the kinetics and mechanism of the amine-catalyzed reaction of oxiranes with carboxylic acids. Reac Kinet Mech Cat 126, 903–919 (2019). https://doi.org/10.1007/s11144-018-01524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-01524-2

Keywords

Navigation