Skip to main content
Log in

Methanolysis of olive oil for biodiesel synthesis over ZnO nanorods

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

ZnO nanorods synthesized via a wet chemistry approach were used as catalysts for the production of biodiesel via methanolysis of olive oil. Conversions of the oil to biodiesel as high as ~95 % were observed at 150 °C. A kinetic study was conducted to evaluate the reaction rate parameters. Interestingly, at short reaction times, the overall rate was dominated by mass transfer limitations. Then, reaction kinetics dominated at moderate to longer times. In the reaction kinetics regime, a pseudo-first order reaction rate constant with respect to the oil of ~0.51 h−1 was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shahid EM, Jamal Y (2011) Production of biodiesel: a technical review. Renew Sustain Energy Rev 15:4732

    Article  CAS  Google Scholar 

  2. Tariq M, Ali S, Khalid N (2012) Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: a review. Renew Sustain Energy Rev 16:6303

    Article  CAS  Google Scholar 

  3. Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN (2013) The effects of catalysts in biodiesel production: a review. J Ind Eng Chem 19:14

    Article  CAS  Google Scholar 

  4. Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification - a review. Renew Sustain Energy Rev 10:248

    Article  CAS  Google Scholar 

  5. Singh Chouhan AP, Sarma AK (2011) Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renew Sustain Energy Rev 15:4378

    Article  Google Scholar 

  6. Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083

    Article  CAS  Google Scholar 

  7. Zabeti M, Wan Daud WMA, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90:770

    Article  CAS  Google Scholar 

  8. Bancquart S, Vanhove C, Pouilloux Y, Barrault J (2001) Glycerol transesterification with methyl stearate over solid basic catalysts: i. relationship between activity and basicity. Appl Catal A: Gen 218(1):1–11

    Article  CAS  Google Scholar 

  9. Greene LE, Yuhas BD, Law M, Zitoun D, Yang P (2006) Solution-Grown Zinc Oxide Nanowires. Inorg Chem 45:7535

    Article  CAS  Google Scholar 

  10. Wong T, Lau K, Tam W, Leng J, Etchesc JA (2014) UV resistibility of a nano-ZnO/glass fibre reinforced epoxy composite. Mater Des 56:254

    Article  CAS  Google Scholar 

  11. Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566

    Article  CAS  Google Scholar 

  12. Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15:464

    Article  CAS  Google Scholar 

  13. Wang X, Ding Y, Summers CJ, Wang ZL (2004) Large-scale synthesis of six-nanometer-wide ZnO nanobelts. J Phys Chem B 108:8773

    Article  CAS  Google Scholar 

  14. Peng Y, Xu A, Deng B, Antonietti M, Cölfen H (2006) Polymer-controlled crystallization of zinc oxide hexagonal nanorings and disks. J Phys Chem B 110:2988

    Article  CAS  Google Scholar 

  15. Erkoç Ş, Kökten H (2005) Structural and electronic properties of single-wall ZnO nanotubes. Phys E 28:162

    Article  Google Scholar 

  16. Saleema N, Farzaneh M (2008) Thermal effect on superhydrophobic performance of stearic acid modified ZnO nanotowers. Appl Surf Sci 254:2690

    Article  CAS  Google Scholar 

  17. Pan A, Yu R, Xie S, Zhang Z, Jin C, Zou B (2005) ZnO flowers made up of thin nanosheets and their optical properties. J Cryst Growth 282:165

    Article  CAS  Google Scholar 

  18. Liu F, Zhang Y (2011) Controllable growth of “multi-level tower” ZnO for biodiesel production. Ceram Int 37:3193

    Article  CAS  Google Scholar 

  19. Akgun MC, Kalay YE, Unalan HE (2012) Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. J Mater Res 27:1445

    Article  CAS  Google Scholar 

  20. Ilgen O, Akin AN (2012) Determination of reaction orders for the transesterification of canola oil with methanol by using KOH/MgO as a heterogeneous catalyst. Appl Catal B 126:342

    Article  CAS  Google Scholar 

  21. Kaur N, Ali A (2014) Kinetics and reusability of Zr/CaO as heterogeneous catalyst for the ethanolysis and methanolysis of Jatropha crucas oil. Fuel Process Technol 119:173

    Article  CAS  Google Scholar 

  22. Lukic I, Kesic Z, Maksimovic S, Zdujic M, Liu H, Krstic J, Skala D (2013) Kinetics of sunflower and used vegetable oil methanolysis catalyzed by CaO·ZnO. Fuel 113:367

    Article  CAS  Google Scholar 

  23. Di Serio M, Mallardo S, Carotenuto G, Tesser R, Santacesaria E (2012) Mg/Al hydrotalcite catalyst for biodiesel production in continuous packed bed reactors. Catal Today 195:54

    Article  Google Scholar 

  24. Vyas AP, Subrahmanyam N, Patel PA (2009) Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel 88:625

    Article  CAS  Google Scholar 

  25. Li J, Fu Y-J, Qu X-J, Wang W, Luo M, Zhao C-J, Zu Y-G (2012) Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst. Bioresour Technol 108:112

    Article  CAS  Google Scholar 

  26. Veljkovic VB, Stamenkovic OS, Todorovic ZB, Lazic ML, Skala DU (2009) Kinetics of sunflower oil methanolysis catalyzed by calcium oxide. Fuel 88:1554

    Article  CAS  Google Scholar 

  27. Fogler HS (2010) Essentials of chemical reaction engineering. Pearson Education Inc., Boston

    Google Scholar 

  28. Venna SR, Jasinski JB, Carreon MA (2010) Structural evolution of zeolitic imidazolate framework-8. J Am Chem Soc 132:18030

    Article  CAS  Google Scholar 

  29. Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang Y, Saykally RJ, Yang P (2003) Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed 42:3031

    Article  CAS  Google Scholar 

  30. Endalew AK, Kiros Y, Zanzi R (2011) Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenerg 35:3787

    Article  CAS  Google Scholar 

  31. Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J (2008) Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87:2798

    Article  CAS  Google Scholar 

  32. Jain S, Sharma MP (2010) Kinetics of acid base catalyzed transesterification of jatropha curcas oil. Bioresour Technol 101:7701

    Article  CAS  Google Scholar 

  33. Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moises A. Carreon.

Additional information

Apolo Nambo and Carmen M. Miralda have contributed equally to this work.

Supporting information

Protons of Interest in 1HNMR Analysis of Biodiesel samples and representative NMR Spectrum for Biodiesel; SEM and (b) XRD pattern of conventional ZnO; and relative XRD peak intensity ratios of ZnO nanorods (Recycled/fresh catalyst).

Supplementary material 1 (DOCX 2923 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nambo, A., Miralda, C.M., Jasinski, J.B. et al. Methanolysis of olive oil for biodiesel synthesis over ZnO nanorods. Reac Kinet Mech Cat 114, 583–595 (2015). https://doi.org/10.1007/s11144-014-0802-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0802-3

Keywords

Navigation