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Abstract

Automation—such as machine learning, robotic process automation, and artifi-
cial intelligence—is the next major technological leap in accounting and financial
reporting, and I empirically study whether public firms’ use of automation technol-
ogy improves their financial reporting, specifically focusing on the internal control
environment. I document two critical inferences. First, I find evidence which sug-
gests that automation improves financial reporting quality. Specifically, firms’ use
of automation in the financial reporting process is associated with a reduction in
internal control material weaknesses. This association is consistent in a levels analy-
sis with firm and year fixed effects, in a changes analysis, and in a propensity score
matched difference-in-differences analysis. Second, I find evidence which suggests
that monitoring of the financial reporting process decreases after automation, likely
because of a perception that automation reduces the need for monitoring vis-a-vis
stronger internal controls. Specifically, automation is associated with higher external
audit fees and audit committee meetings in the initial years after a firm implements
automation but associated with lower external audit fees and audit committee meet-
ings in subsequent years. I also find evidence which suggests that this decreased
monitoring may be costly: when internal control failures do happen for firms with
automation, the failures are more material, as proxied by stronger negative market
reactions. In aggregate, my evidence provides nuanced insights regarding whether
automation technology improves financial reporting.
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1 Introduction

Automation—such as machine learning, robotic process automation, and artificial
intelligence—is hailed as the next frontier in accounting and financial reporting.
Deloitte (2018a, p. 3) argues that accounting is “prime for automation” and ““a signif-
icant number of [accounting] roles have the potential to be automated.” PwC (2021,
p. 1) agrees, asserting that automation is “the future” of financial reporting. AICPA
(2020, p. 1) also contends that automation is “especially important” for account-
ants. Regulators too have taken notice, with an ongoing debate about whether and
how to modify standards because of automation (PCAOB 2020; PCAOB 2021). At
the same time, EY (2021) reports that close to two-thirds of chief financial officers
are concerned about the financial reporting risks posed by automation, and Gartner
finds that concerns about removing human judgment from the financial reporting
process has made (at least some) accounting executives reluctant to adopt automa-
tion (McCann 2019). Indeed, the robots may be “coming for Phil in accounting”
(Roose 2021, p. 1), but empirical evidence is extremely limited on the effect these
robots have on financial reporting. To that end, in this study, I analyze whether pub-
lic firms’ use of automation improves their financial reporting, specifically focusing
on the internal control environment.

Broadly defined, accounting automation encompasses a wide range of technolo-
gies that enable firms to automate accounting processes, including but not limited to
technologies that enable artificial intelligence, machine learning, and robotic process
automation (Wang 2022). While these technologies differ in their scope and how
they function, they all share the common ability to enable technology to automate
otherwise manual processes.! For example, Vic.ai is an “autonomous accounting”
platform that uses artificial intelligence to automate various accounting functions
like invoice processing and expense approvals (Vic.ai 2021). Likewise, SolveXia
allows firms to “automate hundreds of processes for your company, including rec-
onciliations, revenue and expense reporting, regulatory compliance, rebate man-
agement, and much more” (SolveXia 2023). Similarly, BlackLine provides firms
the ability to “automate accounting workflows,” such as reconciliations, accounts
receivables, and consolidations (BlackLine 2017).

The concerns raised by practitioners (e.g., McCann 2019; EY 2021) about
automation harming internal controls and financial reporting are based on the
notion that automation injects a new source of complexity into the financial
reporting process. This complexity results from automation’s reliance on imperfect
technologies (e.g., optical character recognition and fuzzy logic), the fact that data
inputs are not always well structured (which automation can struggle with), and the
rise of shadow information technology—which is the notion that often automation
implementations are siloed within business units, giving rise to potential frictions

! Artificial intelligence and machine learning are relatively more sophisticated forms of automation in
which the software has (at least some) built-in ability to make decisions, whereas robotic process auto-
mation is relatively less sophisticated where software repeats the tasks it is programmed to do but with
no decision-making (Deloitte 2017).
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with the firm’s other information technology and internal control infrastructure
(Deloitte 2018a; Whitehouse 2019; PwC 2019; Commerford et al. 2022; Plattfaut
and Borghoff 2022).2 As Gartner (2020, p. 5) notes, one of the top modern trends
that chief financial officers must address is how automation is “putting internal
controls at risk.” It should therefore come as no surprise that the Association of
Chartered Certified Accountants (2015) reports that chief financial officers are
reluctant to trust automation.

In contrast to concerns raised by practitioners, I argue that automation improves
internal controls and, by association, financial reporting because a significant source
of internal control problems is humans—people who fail to properly execute a firm’s
internal control policies or blatantly disregard those policies, whether for fraudulent
purposes, due to agency conflicts, or because of poor training and low skill (Ashraf
2022). For example, PCAOB (2007, p. 58) notes that “internal control over finan-
cial reporting is a process that involves human diligence and compliance and is
subject to lapses in judgment and breakdowns resulting from human failures.” The
value proposition of automation is to remove (or minimize) the human element and
thereby prevent weaknesses that result from forgetfulness, mistakes, discretion, and
collusion or fraud (Lanza 2007; Blue Lance 2012; Deloitte 2015; Deloitte 2018b;
WNS 2020). Given that humans are a major source of failure in the internal con-
trol environment, conceptually, the benefits of replacing human labor with automa-
tion should arguably outweigh any additional complexity automation injects into the
financial reporting process.

I identify firms that introduce automation in their financial reporting process
based on textual analysis of the Controls and Procedures section of 10-K and 10-Q
filings. In this section of periodic accounting reports, firms are required to disclose
all the material changes made to a firm’s internal control environment—regardless
of whether the changes were made in response to an existing weakness or whether
the changes were made as a routine part of business rather than to address exist-
ing problems (EY 2020). Although disclosure of new accounting automation in the
Controls and Procedure section of SEC filings does not mean that a firm has com-
pletely automated financial reporting, I am able to cleanly identify a comprehensive
set of firms that introduce material automation in at least some parts of their finan-
cial reporting process. Further, because disclosures in the Controls and Procedure
section are mandatory, voluntary disclosure incentives are less likely to threaten
my inferences, and analyzing the Controls and Procedures section ensures that I am
focused on firms’ implementation of material accounting automation.

Empirically, I search in the Controls and Procedure section for automation-
related terms, such as “machine learning”, “artificial intelligence”, and “automa-
tion” (Chen and Srinivasan 2023). For example, MicroStrategy notes in its 10-Q

2 The complexity also varies depending on the type of automation technology. For example, artificial
intelligence and machine learning depend on models that must be trained on and learn from data, while
robotic process automation is rules-based and completes repetitive tasks with little to no training or
learning from data. Thus, the source of risk for artificial intelligence and machine learning stems from
training on or learning from poor quality or unapplicable data whereas the source of risk for robotic
process automation stems from being confined to pre-defined rules that are unable to adapt to potentially
changing scenarios.
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filing for 2017 that “we implemented a new professional service automation sys-
tem to track billable time used to invoice customers”; LL Flooring discloses in its
10-K filing for 2016 that “[we] implemented automated alert controls to monitor
privileged access activities”; and Solo Cup states in its 10-Q filing for 2011 that
it implemented a “software [which] automates the vendor, purchase order, and
overall spending review and approval processes.” I discuss my textual analysis
process in more detail in Sect. 4.

In my main analysis, I find AUTOMATION (an indicator variable for whether the
firm has introduced automation in its financial reporting process before the begin-
ning of the firm-year) is negatively associated with MATERIAL_WEAKNESS (an
indicator variable for whether a firm-year possesses a material weakness in internal
control over financial reporting), with the data suggesting that firms who introduce
automation in their financial reporting process exhibit 61.80 percent lower odds of
experiencing a material weakness. This association is consistent in (i) a levels analy-
sis with firm and year fixed effects, (ii) a changes analysis, and (iii) a propensity
score matched difference-in-differences analysis. Further, I drill down to identify the
specific area of accounting where automation is introduced and document a reduc-
tion in material weaknesses for the same area of accounting that is automated. My
findings in aggregate suggest that automation improves financial reporting quality
for the average firm.

There are six potential concerns with my main analysis. One concern is whether
AUTOMATION is noisily proxying for firms that address existing material weak-
nesses rather than the effect of automation per se. Another concern is whether I am
capturing the effect of automation specifically or the effect of overall upgrades to a
firm’s information technology that may be unrelated to automation. A third concern
is whether AUTOMATION is noisily proxying for firms that make changes to their
internal controls. Although I am studying automation use by public firms and not
external audit firms, a fourth concern is whether AUTOMATION is confounded with
the effect of automation use by external auditors. The fifth concern is whether my
results are driven by my choice to study SOX 404b material weaknesses rather than
SOX 404a. Finally, there is a concern whether my results hold only in the later years
of my sample. I address all six of these concerns using robustness analyses. Infer-
ences remain consistent.

Having provided evidence which supports the notion that automation improves
financial reporting quality, I next explore in additional analyses how AUTOMA-
TION impacts monitoring of the financial reporting process. If automation benefits
financial reporting quality, then it is possible that the firm scales back oversight over
financial reporting, due to a perception that automation reduces the likelihood of
errors or fraud and therefore financial reporting requires less monitoring. I focus on
two monitors: auditors (i.e., an external monitor) and the audit committee (i.e., an
internal monitor). I find AUTOMATION is associated with an increase in audit fees
and audit committee meetings during the initial years of automation but a decrease
in audit fees and audit committee meetings in subsequent years. The former is con-
sistent with the external auditor and the audit committee increasing oversight ini-
tially to gain comfort over new automation in the financial reporting process. The
latter is consistent with both the external auditor and the audit committee scaling
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back oversight once they perceive automation is leading to stronger financial report-
ing quality.

Further, while my evidence suggests that automation overall benefits internal
controls, automation cannot perfectly prevent weaknesses. Consequently, a byprod-
uct of less oversight may be that internal control weaknesses are more material when
they do happen. Consistent with this notion, I find AUTOMATION is associated
with more negative market reactions around the disclosure of internal control weak-
ness—but this association exists only in the later years after automation, rather than
during the initial years after automation, which comports with the just-documented
decrease in monitoring by the external auditor and the audit committee.

Finally, I conduct four more additional analyses. First, to ensure that my findings
are not driven by my choice of studying internal controls, in additional analysis, I
study the association of AUTOMATION with another proxy of financial reporting
quality—restatements (e.g., Dechow et al. 2010). Consistent with my main analy-
sis, AUTOMATION is significantly negatively associated with restatements (i.e., less
likely to possess an error in financial statements). I also document some evidence
that the reduction in restatements is in the specific area of accounting that was auto-
mated. Second, I study whether AUTOMATION is associated with securities class
action lawsuits by investors (e.g., Kim and Skinner 2012). I find a significant and
negative association with these lawsuits, suggesting that investors view firms with
automation relatively more favorably. Third, I study another component of financial
reporting: timeliness (e.g., Ashraf et al. 2020). I find that AUTOMATION is signifi-
cantly associated with earlier disclosure of annual financial statements. This find-
ing is consistent with arguments that automation increases efficiencies (e.g., Cooper
et al. 2019). Fourth, I document that AUTOMATION is associated with a smaller
audit committee, suggesting that there is lower demand for audit committee direc-
tors after a firm introduces automation during the financial reporting process.

Overall, my findings contribute to our understanding of how automation impacts
financial reporting. The use of automation in accounting and financial reporting is
forecasted to increase going forward (Deloitte 2018a; AICPA 2020; PwC 2021). At
the same time, there is practitioner concern about whether removing human judg-
ment will harm the financial reporting process (McCann 2019; Gartner 2020; EY
2021). My evidence indicates that the effect of automation on financial reporting is
more nuanced than one may expect. My results suggest that automation improves
financial reporting overall through a stronger internal control environment; I also
provide some evidence of increased reporting efficiencies. With the caveat that I am
unable to observe the investment costs that firms must undertake in order to imple-
ment automation, my analyses provide empirical support for the push by firms to
increase reliance on automation of their financial reporting process. At the same
time, my evidence suggests that this automation is associated with decreased over-
sight over the financial reporting process, perhaps due to the perception that less
oversight is needed because automation decreases the likelihood of errors or fraud;
this has an unintended consequence of more material internal control weaknesses
when they do happen.

My manuscript is related to recent literature that studies the effect of automation
use by external auditors. Fedyk et al. (2022) find that use of artificial intelligence by
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external auditors improves audit quality and decreases demand for auditor jobs. In
contrast, Commerford et al. (2022) show that use of artificial intelligence by external
auditors harms audit quality, and concurrent work by Law and Shen (2022) finds
audit firm use of artificial intelligence does not decrease demand for auditor jobs. I
build upon this literature in four ways.

First, I study public firms’ use of automation in their own financial reporting
processes rather than external audit firm use of automation during the audit of cli-
ents. The two are related but distinct constructs. Second, I document that a possible
negative externality of automation is that oversight of the financial reporting pro-
cess decreases and, as a result, financial reporting failures are more material when
they do happen—an important inference not documented by prior literature. Third,
empirically, extant research uses either job postings or résumés of employees to
proxy for auditor use of automation. In contrast, I study the effect of automation
actually implemented by public firms, based on textual analysis of periodic account-
ing filings, rather than whether a firm has hired or is trying to hire automation-
skilled employees. In that regard, my manuscript resembles the work of Chen and
Srinivasan (2023), who use textual analysis of periodic accounting filings to doc-
ument higher firm value for firms that adopt digital technologies, and Schoenfeld
(2022), who identifies firms that conduct voluntary cybersecurity audits based on
10-K disclosures. Fourth, the literature disagrees on the effect that automation has
on demand for rank-and-file (auditor) employees (e.g., Fedyk et al. 2022; Law and
Shen 2022). I contribute to this debate by focusing on demand for board directors at
public firms, specifically the audit committee.

To my knowledge, I am the first to empirically document the role automation
plays in financial reporting and oversight thereof.?> Given the increasing relevance
of automation in accounting and financial reporting, empirical evidence is warranted
on whether firms’ use of automation improves their financial reporting—especially
as regulators debate adapting regulations and standards to accommodate automation
use by firms (e.g., PCAOB 2020; PCAOB 2021). Taken in aggregate, my evidence
should be informative to regulators, boards, and shareholders regarding practitioner
concerns about removal of human judgment in the financial reporting process (e.g.,
McCann 2019; Gartner 2020; EY 2021).

3 Concurrent work by Awyong et al. (2022) finds that firms’ digitalization improves financial report-
ing quality. However, like other manuscripts, Awyong et al. (2022) study the effect of job postings that
require candidates to have digital skills, whereas I study the effect of implemented automation. Aside
from being different empirical proxies, conceptually digitalization (which is related to information tech-
nology more generally) is a different construct than automation (which tends to focus on specifically
on technologies like machine learning, artificial intelligence, and robotic process automation). Awyong
et al. (2022) also do not document the same nuanced implications that I do (i.e., stronger overall financial
reporting but decreased oversight).
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2 Related literature
2.1 Related literature on the role of accounting automation

There is a nascent but growing accounting literature on the effects of accounting
automation, and this literature generally focuses on the external audit setting.
Commerford et al. (2022) study auditor use of artificial intelligence in an
experimental setting, finding that auditors exhibit algorithm aversion wherein they
tend to advise more audit adjustments to management when suggested by a human
specialist compared to a machine-suggested adjustment, ultimately harming audit
quality. In contrast, Fedyk et al. (2022) find that the use of artificial intelligence
technology by external auditors improves audit quality. They also find lower
demand for human auditors, although Law and Shen (2022) find that auditor use
of artificial intelligence does not decrease jobs for human auditors. Finally, Cooper
et al. (2019) survey partners at Big 4 firms, who report that the firms continue to
implement robotic process automation across their service lines and claim that the
use of automation has enhanced work quality and efficiency, and Cooper et al. (2022)
find in a survey that both Big 4 partners and lower-level employees positively view
robotic process automation. While these manuscripts are not about financial reporting
quality or internal controls per se and they focus on external auditors, the manuscripts
collectively highlight the growing importance of automation in accounting and
signify the need for large sample, generalizable empirical evidence on whether
automation use by firms during their own financial reporting process is beneficial.

2.2 Related literature on the role of accounting information technology

Beyond the literature that focuses on various forms of automation, a large literature
studies firms’ use of information technology generally (rather than automation spe-
cifically) in a variety of accounting settings. For example, Kobelsky et al. (2008)
study the determinants and consequences of information technology budgets; Chen
and Srinivasan (2023) find that non-technology firms that implement digitaliza-
tion exhibit higher market-to-book ratios; and Schoenfeld (2022) studies the deter-
minants and outcomes of firm’s that opt for cybersecurity audits. However, more
relevant to my research question is the literature that studies the effect of informa-
tion technology (although not automation specifically) on financial reporting and
disclosure.

In particular, Dorantes et al. (2013) study the effect of information technology
on a firm’s internal information environment, finding that enterprise systems are
associated with more accurate management forecasts. Next, Ashraf et al. (2020) find
that possessing an information technology expert on audit committees is associated
with higher financial reporting quality. Further, Masli et al. (2010) study firms that
implement SOX-related information technology during 2004 to 2006, the years that
immediately follow the passage of SOX; they find firms that implement such tech-
nology exhibit better internal controls, smaller increases in audit fees, and smaller
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increases in audit delay. However, in sharp contrast, concurrent work by Choudhary
et al. (2023) provide evidence that complex information technology can harm finan-
cial reporting quality, as proxied by a higher likelihood of restatements.

3 Is automation synonymous with information technology?

While automation is undoubtedly a component of information technology, disa-
greement in the literature and the unique attributes of automation make it ex ante
unclear whether automation improves internal controls and financial reporting. First,
empirically, the literature appears to disagree on whether better information tech-
nology is associated with stronger or weaker financial reporting (e.g., Masli et al.
2010; Choudhary et al. 2023. Second, conceptually, information technology can
benefit internal controls through several channels that are distinct from automation
(e.g., enabling the implementation of internal controls, facilitating testing and evalu-
ation of controls, transforming internal information environment and communica-
tion, improving compliance, and enhancing risk assessment and mitigation). In other
words, even if the literature was in agreement on the effect information technology
has on financial reporting, it is not clear whether it is the automation or the non-
automation aspect of information technology that drives this (possible) benefit. Con-
sequently, it remains an open question whether automation in particular (rather than
information technology in general) benefits financial reporting quality—especially
given the apparent disagreement in the literature regarding the effects of automation
in the setting of external auditors (Fedyk et al. 2022; Commerford et al. 2022) and
the lack of extant empirical evidence on this topic (Plattfaut and Borghoff 2022).

4 Empirically identifying firms’ use of automation during their own
financial reporting process

Firms are required to disclose material changes to internal control over financial
reporting in the Controls and Procedures section of 10-K and 10-Q filings (usually
Item 9a in 10-Ks and Item 4 in 10-Qs) (SEC 2008). This disclosure must be made
every quarter, even though assessment of the effectiveness of internal control over
financial reporting is on an annual basis, and the disclosure requirement is triggered
regardless of the underlying reason for the internal control changes (EY 2020).* For
example, a firm that is making changes to address existing material weaknesses must
disclose the changes to investors; so too must a firm that does not possess existing
material weaknesses but is still making changes as a routine part of business.

4 According to SEC (2008, p.19), “a company must disclose any change in its internal control over
financial reporting that occurred during the fiscal quarter covered by the quarterly report, or the last fiscal
quarter in the case of an annual report, that has materially affected, or is reasonably likely to materially
affect, the company’s internal control over financial reporting.”.
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I use CALCBENCH to analyze the content of the Controls and Procedures sec-
tion of 10-K and 10-Q filings, thereby allowing me to identify firms that introduce
automation in their financial reporting process.’ Following Chen and Srinivasan
(2023), I search for the following automation-related words in the Controls and

CLIY3

Procedures section: “artificial intelligence”, “ai tech”, “ai related”, “conversational
ai”, “evolutionary ai”, “evolutionary computing”, “intelligent system”, “computer
vision”, “neural network”, “virtual agent”, “virtual assistant”, “cognitive comput-

LLINNY3 LLINNT

ing”, “biometric”, “deep learning”, “machine learning”, “natural language process-

CLINNY3 9 < ELIY3

ing”, “image recognition”, “facial recognition”, “speech recognition”, “automation

EXINT3 LLIT3 9 <.

solutions”, “intelligent automation”, “marketing automation”, “process automation”,

ELINNT3

“robotic process automation”, “autonomous tech”, “autonomous”, and the catchall
root word of “automat” (which captures the words “automation”, “automate”, and
“automatically”).® I then manually read each Controls and Procedures section that
contains such a word to ensure construct validity.

For example, in its 10-K filing for the year that ended December 31, 2012,
Novus Robotics note: “The bookkeeping system has been modified so that all sales
of extended warranties are automatically recorded as deferred revenue and that the
amount of revenue that is ultimately recognized as warranty revenue is as the result
of an analysis of the significant aspects of the warranty such as coverage and period.”
Further, in its 10-Q filing for the quarter that ended June 30, 2010, Jetblue Airways
state: “We significantly strengthened our internal controls over our customer loyalty
program by implementing and leveraging the enhanced automated controls of the
new customer loyalty system.” Moreover, in its 10-K filing for the year that ended
September 30, 2015, Wesco Aircraft Holdings reveal: “[We] purchased and began
implementation of new software that will help automate and improve certain ele-
ments of our financial close and reporting process, including our consolidations
process.” Finally, in its 10-Q filing for the quarter that ended September 30, 2018,
Quintana Energy Services declare: “[We] designed, implemented and tested an auto-
mated process that eliminated the ability for the same individual to Create and Post

5 CALCBENCH is a data aggregator that extracts data directly from SEC filings (Hoitash and Hoitash
2018). CALCBENCH is similar to traditional data sources such as Compustat, except CALCBENCH
extracts more than just financial statements from SEC filings. Specifically relevant to my research design,
CALCBENCH gathers and allows textual analysis on the individual sections of 10-K and 10-Q filings —
such as the Controls and Procedures section (Calcbench 2023).

6 Chen and Srinivasan (2023) search for seven types of words in their analyses: analytics-related, auto-
mation-related, artificial intelligence-related, big data-related, cloud-related, digitization-related, and
machine learning-related (see their Appendix A). Given that my construct of interest is automation
(which tends to focus specifically on things like machine learning, artificial intelligence, and robotic pro-
cess automation) and not Chen and Srinivasan’s (2023) construct of digitalization (which is related to
information technology more generally), I focus on their words that are related to automation, artificial
intelligence, and machine learning.
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The Areas of Accounting and Internal Controls Where Firms Introduce Automation

Segregation of Duties, Other
User Access and [9 Obs.]
Monitoring, and IT
(Group 4)
[29 Obs.]

Revenue &

Receivables \
(Group 3)
[50 Obs.]

Consolidations, Do Not Specify
Reconciliations, and [209 Obs.]

Journal Entries (Group
2)
[52 Obs.]

Expenses & Payables
(Group 1)
[73 Obs.]

Fig. 1 The Areas of Accounting and Internal Controls Where Firms Introduce Automation

journal entries into the general ledger, thus resulting in the proper segregation of
duties.”

I ultimately identify 422 unique firms in my sample period that make material
changes to internal controls which involve automation.” I use this data to calculate
my test variable, as I describe in Sect. 5. As shown in Fig. 1, roughly half of the
422 firms do not specify the area of accounting that was automated. Of the ones
that do specify, 73 firms introduce automation in expenses and payables; 52 in con-
solidations, reconciliations, and journal entries; 50 in revenue and receivables; 29 in
segregation of duties, user access and monitoring, and information technology; and
nine in miscellaneous areas that could not be easily grouped together.

Given that the Controls and Procedures section disclosures are required, arguably
I am able to cleanly identify a comprehensive set of firms that introduce material
automation in their financial reporting process. However, although my bag of words
contains a broad range of automation-related words, a limitation of the data is that
firms usually do not explain in detail the automation technology they use; some,
but not all, firms detail the task the automation technology will accomplish (see
Fig. 1), but they still do not describe the underlying technology that will be used to
accomplish said task. So, for example, when a firm discloses that it has introduced

7 Tt is possible that some firms introduce accounting automation that they do not discuss in the Con-
trols and Procedures section. However, firms are required to disclose material changes to their financial
reporting process in this section of 10-K and 10-Q filings (SEC 2008), filings that the CEO and CFO
personally attest to the validity of. Consequently, any automation that a firm has introduced but has not
disclosed in the Controls and Procedures section is likely to be not material. Empirically, this noise in my
test variable should not bias toward statistical significance.
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automation in its financial reporting process, it typically discusses the technology
broadly as automation rather than specifically mentioning artificial intelligence or
machine learning. Conceptually, I am focused on firms’ implementation of material
accounting automation and am agnostic to the form that it takes.

5 Research design, data, and sample selection
5.1 Research design

I use the following linear probability model to test my research question:

MATERIAL_WEAKNESS,, = o; + &, + JIAUTOMATION,,
+B2IT_COMMITTEE,, + B3AC_IT_EXPERTISE,, + PANEW_IT,
+B5SIZE, + B6SEGMENTS,, + fTFOREIGN,,
+B8ACQUISITION,, + fORESTRUCTURE,, + p1OFIRM_AGE, )
+B11SALES_GROWTH,, + 12INV,, + B13LOSS,, + p14Z_SCORE,
+B15AUDITOR_RESIGN,, + PIGANNOUNCE_RESTATEMENT,,
+B17INST_OWNERSHIP,, + f18BIG4;, + ¢;,

where i indexes firm and ¢ indexes years.8 The dependent variable, MATERIAL _
WEAKNESS, equals one if firm i has a SOX 404b material weakness in internal con-
trols for year ¢ (zero otherwise). My test variable is AUTOMATION, which equals
one if firm i has introduced automation in its financial reporting process before the
beginning of year ¢ (zero otherwise). I identify the use of automation via textual anal-
ysis of the Controls and Procedures section of 10-K and 10-Q filings, as described in
Sect. 4. A negative coefficient on AUTOMATION indicates that accounting automa-
tion enhances the internal control environment and, thus, financial reporting.

My model includes firm fixed effects to help control for time-invariant unobserv-
able firm characteristics and year fixed effects to mitigate the effect of time-corre-
lated factors, such as year-specific shocks or time trends. I also cluster robust stand-
ard errors at the firm level to account for heteroskedasticity and correlated standard
errors. Further, I control for IT_COMMITTEE, AC_IT_EXPERTISE, and NEW_IT to
ensure the effect of AUTOMATION is orthogonal to IT-related effects documented
by extant research (e.g., Masli et al. 2010; Ashraf et al. 2020). Finally, I follow prior
literature and control for a vector of firm-year characteristics that have been shown
to affect a firm’s internal controls; following Ashbaugh-Skaife et al. (2007), Doyle
et al. (2007), and Ashraf (2022), I control for the variables SIZE, SEGMENTS,
FOREIGN, ACQUISITION, RESTRUCTURE, FIRM_AGE, SALES_GROWTH,
INV, LOSS, Z_SCORE, AUDITOR_RESIGN, ANNOUNCE_RESTATEMENT,

8 T employ a linear probability model, instead of a logistic regression, because of the incidental param-
eters problem that can arise from complex fixed effect structures in nonlinear models (Greene 2004) and
because interactions can be difficult to interpret in nonlinear models (Ai and Norton 2003). Results are
consistent in an analogous fixed effects logistic regression (see Table OA.2 in the online appendix).
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Table 1 Sample Selection

Main Internal Controls Sampl

Firm-years observations from 2009 — 2019 that have data on CIK and possess a SOX 404b 39,888
internal control over financial reporting opinion (Compustat; Audit Analytics)

Less: Observations with data missing on the Controls and Procedures section (CALCBENCH)  (7,203)

Less: Missing data to calculate required control variables (BoardEx; Compustat; Audit (7,081)
Analytics; Thomson Reuters) or are singleton observations (Correia 2015)

Final main internal controls sample of firm-year observations 25,604

INST_OWNERSHIP, and BIG4 in my regression model. These firm-year variables
are defined in Appendix A.

5.2 Data and sample selection

I present my sample selection in Table 1. I begin with 39,888 Compustat firm-year
observations between 2009 and 2019 that possess data on CIK and have data on the
effectiveness of SOX 404b internal control over financial reporting.” I then exclude
7,203 observations that are missing data on the Controls and Procedures section and
7,081 observations that have data missing to calculate control variables or are sin-
gleton observations (Correia 2015). This results in a main sample of 25,604 firm-
year observations.

6 Results
6.1 Descriptive statistics and Pearson correlations

The descriptive statistics for my main sample are presented in Table 2. Three per-
cent of observations in my sample have introduced accounting automation before
the beginning of the firm-year. Further, five percent of firm-years exhibit an inter-
nal control material weakness, consistent with the literature (e.g., Ashraf 2022). All
control variables are also generally consistent with the literature (e.g., Ashbaugh-
Skaife et al. 2007; Doyle et al. 2007).

I plot my test variable AUTOMATON by Fama-French 12 industries in Fig. 2.
While AUTOMATION does, understandably, vary by industry, there does not appear
to be significant outliers relative to the sample mean—industry averages range
between a low of 1.28 percent in the chemicals and allied products industry and a
high of 4.78 percent for manufacturing firms. Importantly, firm fixed effects in my
analyses mitigate concerns about the potentially confounding effect of industry-level
characteristics on my inferences.

® My sample begins in 2009 because CALCBENCH coverage starts in 2008 and I require at least one
prior period to calculate my test variable.
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Table 2 Descriptive Statistics for Internal Controls Sample (N =25,604)
Variable Mean Std. Dev 25% Median 75%

Test Variable

AUTOMATION (binary) 0.03 0.17 0.00 0.00 0.00
Dependent Variable

MATERIAL_WEAKNESS (binary) 0.05 0.22 0.00 0.00 0.00
Control Variables

AC_IT_EXPERTISE (binary) 0.08 0.28 0.00 0.00 0.00
ACQUISITION (binary) 0.11 0.32 0.00 0.00 0.00
ANNOUNCE_RESTATEMENT (binary) 0.02 0.12 0.00 0.00 0.00
AUDITOR_RESIGN (binary) 0.00 0.07 0.00 0.00 0.00
BIG4 (binary) 0.83 0.37 1.00 1.00 1.00
FIRM_AGE 26.50 16.87 14.00 21.00 35.00
FOREIGN (binary) 0.56 0.50 0.00 1.00 1.00
INST_OWNERSHIP 0.71 0.29 0.54 0.79 0.92
INV 0.09 0.12 0.00 0.04 0.14
LOSS 0.26 0.44 0.00 0.00 1.00
NEW_IT (binary) 0.12 0.33 0.00 0.00 0.00
RESTRUCTURE (binary) 0.37 0.48 0.00 0.00 1.00
SALES_GROWTH 0.13 0.56 -0.03 0.05 0.16
SEGMENTS 1.92 1.57 1.00 1.00 3.00
SIZE (logged) 7.31 1.72 6.05 7.25 8.43
IT_COMMITTEE (binary) 0.04 0.21 0.00 0.00 0.00
Z_SCORE 1.52 3.33 0.75 1.64 2.66

This table presents descriptive statistics for the internal controls sample. Continuous variables are win-
sorized at the Ist and 99th percentiles. All variables are defined in Appendix A.

Pearson correlations for my main sample are presented in Table 3. AUTOMA-
TION is positively and significantly (p-value <0.01) correlated with MATERIAL _
WEAKNESS, suggesting that automation harms financial reporting vis-a-vis a
weaker internal control environment. However, this univariate correlation is likely
affected by confounds that muddy inferences, particularly time: as show in Fig. 3,
there is a clear positive time trend in both AUTOMATION and MATERIAL_WEAK-
NESS in my sample. I further explore the relation between my test and dependent
variables in subsequent multivariate analyses that allow me to control for confound-
ing factors, such as time. I also graph the yearly percentage of firms that newly intro-
duce automation in their financial reporting process in Fig. 4.

6.2 Main analysis
I present the results of my main analysis in Panel A of Table 4. The coefficient

on AUTOMATION is negative and significant (p-value<0.01), and the coeffi-
cient remains negative and significant (p-value <0.01) if I calculate all my control
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Average AUTOMATION and MATERIAL WEAKNESS by Fama-French 12 Industries
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Fig.2 Average AUTOMATION and MATERIAL_WEAKNESS by Fama—French 12 Industries

variables in year #-1 instead of year ¢ (see Table OA.3 in the online appendix). The
data suggests that firms who introduce automation in their financial reporting pro-
cess subsequently possess 61.80 percent lower odds of experiencing a material
weakness in internal control over financial reporting.'? Inferences remain consistent
when I rerun the analysis using an analogous changes model in Panel B of Table 4
(p-value <0.01) rather than the levels analysis in Panel A.

I further conduct a propensity score matched difference-in-differences analysis in
Panel C of Table 4. I regress BEGIN_AUTOMATION (equals one if firm i has intro-
duced automation in its financial reporting process during year t; zero otherwise) on
all the control variables from Eq. (1), consistent with the recommendations of Ship-
man et al. (2017). I then match the propensity score of treated firms (i.e., BEGIN_
AUTOMATION=1) to control firms (i.e., firms that never automated during my sam-
ple) within the same year of treatment, the same industry of treatment, and a caliper
distance of 0.01 (without replacement). As noted in Table OA.4 in the online appen-
dix, the covariates are perfectly balanced between these treatment and control firms.

I graph in Fig. 5 the trends in MATERIAL_WEAKNESS for the treatment and
control groups in a window of [#-5, #+2] around year ¢, where year ¢ is either the
year that the treatment firm has introduced automation or the year where the con-
trol firm’s matched treatment firm has introduced automation. Visually, the inci-
dence rate of MATERIAL_WEAKNESS clearly drops for the treatment group after
treatment. I confirm this inference in a difference-in-differences regression analysis

10 T calculate economic significance by re-estimating Eq. (1) in an analogous fixed effects logistic regres-
sion and then calculating the odds ratio for the coefficient on AUTOMATION (odds ratio=0.3820) (see
Table OA.2 in the online appendix).
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Average AUTOMATION and MATERIAL WEAKNESS by Year
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Fig.3 Average AUTOMATION and MATERIAL_WEAKNESS by Year

Percentage of Firms that Newly Introduce Automation in Their Financial Reporting
Process by Year
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Fig.4 Percentage of Firms that Newly Introduce Automation in Their Financial Reporting Process by
Year
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Table 4 The Association Between Accounting Automation and Internal Controls

Panel A: Levels Analysis

Independent Variables Pr. Dependent Variable: MATE-
RIAL_WEAKNESS
(€Y)

Test Variable:

AUTOMATION - -0.0745 ok
[t-stat] (p-value) [-3.30] (<0.01)
Control Variables:

IT_COMMITTEE - -0.0335 w*

AC_IT_EXPERTISE - -0.0043

NEW_IT - -0.0153 wE

SIZE - -0.0130 HkE

SEGMENTS + -0.0003

FOREIGN + 0.0068

ACQUISITION + 0.0104 ok

RESTRUCTURE + 0.0010

FIRM_AGE - 0.0002

SALES_GROWTH + 0.0046 *

INV + -0.0848

LOSS + 0.0271 ok

Z_SCORE - -0.0030 wE

AUDITOR_RESIGNED + 0.1411 ok

ANNOUNCE_RESTATEMENT + 0.1657 ook

INST_OWNERSHIP - -0.0115 *

BIG4 ? 0.0346 ok
Firm Fixed Effects YES
Year Fixed Effects YES
N 25,604
Adjusted R-squared 22.24%

Panel B: Changes Analysis

Independent Variables Pr. Dependent Variable: AMATE-
RIAL_WEAKNESS
1)

Test Variable:

AAUTOMATION - -0.0971 wkE
[t-stat] (p-value) [-2.64] (<0.01)
Control Variables:

AIT_COMMITTEE - -0.0334 *

AAC_IT_EXPERTISE - -0.0072

ANEW_IT - -0.0993 ok

ASIZE - -0.0044

ASEGMENTS + -0.0021
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Table 4 (continued)

Panel B: Changes Analysis

Independent Variables Pr. Dependent Variable: AMATE-
RIAL_WEAKNESS

(¢))

AFOREIGN + 0.0152
AACQUISITION + 0.0120 ok
ARESTRUCTURE + -0.0086 *
AFIRM_AGE - -0.0169 ok
ASALES_GROWTH + 0.0031
AINV + 0.0360
ALOSS + 0.0241 ok
AZ_SCORE - -0.0023 *
AAUDITOR_RESIGNED + 0.0373
AANNOUNCE_RESTATEMENT + -0.0672 ok
AINST_OWNERSHIP - -0.0179 *
ABIG4 ? 0.0666 ok

Firm Fixed Effects NO

Year Fixed Effects YES

N 21,905

Adjusted R-squared 1.48%

Panel C: Propensity Score Matched Difference-in-Differences

Independent Variables Pr. Dependent Variable: MATE-

RIAL_WEAKNESS
1

Test Variable:

POST*TREAT - -0.1718 Hokk
[t-stat] (p-value) [-5.01] (<0.01)
Control Variables:

TREAT ? 0.2176 ok

POST ? 0.0088

IT_COMMITTEE - -0.0670 *

AC_IT_EXPERTISE - 0.0069

NEW_IT - 0.1006 Ak

SIZE - -0.0274 ok

SEGMENTS + 0.0104 ok

FOREIGN + 0.0136

ACQUISITION + 0.0080

RESTRUCTURE + -0.0103

FIRM_AGE - -0.0013 ok

SALES_GROWTH + 0.0288 *

INV + -0.0884

LOSS + 0.0643 oAk
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Table 4 (continued)

Panel C: Propensity Score Matched Difference-in-Differences

Independent Variables Pr. Dependent Variable: MATE-
RIAL_WEAKNESS
(eY)
Z_SCORE - 0.0011
AUDITOR_RESIGNED + 0.3894 ok
ANNOUNCE_RESTATEMENT + 0.4638 ok
INST_OWNERSHIP - -0.0813 *
BIG4 ? -0.0251
Firm Fixed Effects NO
Year Fixed Effects NO
N 1,623
Adjusted R-squared 19.08%

This table presents the analysis of the association between accounting automation and internal control
material weaknesses. Panel A is a levels analysis. Panel B is a changes analysis. Panel C is a propen-
sity score matched difference-in-differences analysis, where treatment observations are matched within
treatment industry and within treatment year to the nearest control neighbor within a caliper distance of
0.01; the sample in Panel C consists of years -2 to years 7+ 2, where year ¢ is the year that the treatment
observation introduces automation. All variables are defined in Appendix A. The models in Panels A
and C are linear probability models with robust standard errors clustered by firm. The model in Panel B
is an ordinary least squares regression model with robust standard errors clustered by firm. ***, ** and
* indicate significance at the 0.01, 0.05, and 0.10 levels, respectively, using one-tailed tests if the coef-
ficient sign is consistent with the predicted direction (if a directional prediction is made) and two-tailed
tests otherwise.

Pre-Treatment and Post-Treatment Trends in MATERIAL WEAKNESS for Treatment
and Control Groups in Table 4 Panel C’s Propensity Score Matched Difference-in-
Differences Analysis (Year = Year of Treatment)

0.4
0.35

0.3 }
Treatment Group i

0.25 H
\ :

0.2 ;
015 Control Grofup
|
0.05

0 i

Fig.5 Pre-Treatment and Post-Treatment Trends in MATERIAL_WEAKNESS for Treatment and Control
Groups in Table 4 Panel C’s Propensity Score Matched Difference-in-Differences Analysis (Year r= Year
of Treatment)
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using a window of [#-2, #+2]. Tabulated in Panel C of Table 4, the coefficient on
POST*TREAT is negative and significant (p-value <0.01).!!

Taken together, the results of Table 4 suggest accounting automation improves
the internal control environment and, by association, financial reporting. However, to
reinforce my inferences, I go a step further and identify the specific areas of account-
ing that are being automated by firms. I then study the association between automa-
tion of a specific area of accounting and internal control material weaknesses in that
same specific area. Using the categorizations shown in Fig. 1, I create five new test
variables: AUTOMATION_GROUP_1, AUTOMATION_GROUP_2, AUTOMATION _
GROUP_3, AUTOMATION_GROUP_4, and AUTOMATION_GROUP_1&2&3&4."*
I also create five new analogous dependent variables: MATERIAL_WEAKNESS_
GROUP_I,  MATERIAL_WEAKNESS_GROUP_2, @ MATERIAL_WEAKNESS_
GROUP_3, MATERIAL_WEAKNESS_GROUP_4, and MATERIAL_WEAKNESS_
GROUP_1&2&3&4."> The association between my test and dependent variables
remain generally negative and significant (p-values <0.10 or lower) in Table 5.'*

"' TREAT equals one if firm i is part of the treatment group and zero if firm i is part of the control group.
POST equals one if year ¢ is after the year that firm i is treated (for treatment observations) or after the
year that firm i’s matched treatment firm is treated (for control observations) (zero otherwise).

12 AUTOMATION_GROUP_I equals one when AUTOMATION equals one but only for observations
that introduced automation into the {expenses & payables} area of accounting; equals zero when AUTO-
MATION equals zero; and all other observations are discarded. AUTOMATION_GROUP_2, AUTOMA-
TION_GROUP_3, and AUTOMATION_GROUP_4 are calculated similarly except for the {consolida-
tions, reconciliations, and journal entries}, {revenue & receivables}, and {segregation of duties, user
access and monitoring, and IT} areas of accounting, respectively. AUTOMATION_GROUP_I1 &2&3&4
equals one when either of AUTOMATION_GROUP_I1, AUTOMATION_GROUP_2, AUTOMATION_
GROUP_3, or AUTOMATION_GROUP_4 equals one; equals zero when AUTOMATION equals zero;
and all other observations are discarded.

13 MATERIAL_WEAKNESS_GROUP_I equals one when MATERIAL_WEAKNESS equals one but
only for observations that Audit Analytics categorizes as {code 29 [expense recording (payroll, SG&A)
issues], code 14 [capitalization of expenditures issues], code 32 [inventory, vendor and cost of sales
issues], code 27 [deferred, stock-based or executive comp issues], code 33 [liabilities, payables, reserves
and accrual estimation failure issues], code 80 [pension and other post-retirement benefit issues], or code
41 [tax expense/benefit/deferral/other (FAS 109) issues]}; equals zero when MATERIAL_WEAKNESS
equals zero; and all other observations are discarded. MATERIAL_WEAKNESS_GROUP_2, MATE-
RIAL_WEAKNESS_GROUP_3, and MATERIAL_WEAKNESS_GROUP_4 are calculated similarly
except for observations that Audit Analytics categorizes as {code 76 [journal entry control issues], code
24 [consolidation, (Fin46r/Off BS) & foreign currency translation issues], code 8 [intercompany/invest-
ment w/ subsidiary/affiliate issues], code 12 [untimely or inadequate account reconciliations], or code 38
[foreign, related party, affiliated and/or subsid issues]}, {code 39 [revenue recognition issues] or code
15 [accounts/loans receivable, investments & cash issues]}, and {code 42 [segregations of duties/design
of controls issue] or code 22 [information technology, software, security & access issue]}, respectively.
MATERIAL_WEAKNESS_GROUP_1&2&3&4 equals one when either of MATERIAL_WEAKNESS_
GROUP_1, MATERIAL_WEAKNESS_GROUP_2, MATERIAL_WEAKNESS_GROUP_3, or MATE-
RIAL_WEAKNESS_GROUP_4 equals one; equals zero when MATERIAL_WEAKNESS equals zero; and
all other observations are discarded.

4 The sample size varies between columns in Table 5 because in each column I exclude (i) observations
that automated but did not specify the area of accounting that the automation was introduced in, (ii) obser-
vations that automated an area of accounting that is different than the focal area being studied, and (ii)
observations that have a material weakness but in an area that is other than the focal accounting area being
studied. In other words, the zeroes for each test variable are observations that did not introduce automation,
and the zeroes for each dependent variable are observations that do not possess any material weaknesses.
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6.3 Sensitivity analyses

I next address six concerns with my main analysis. One concern is that firms may
only introduce automation when they have existing internal control material weak-
nesses, and thus my test variable AUTOMATION may be noisily proxying for firms
that are correcting existing weaknesses. The second concern is whether AUTOMA-
TION is capturing the effect of a firm’s upgrades to its information technology that
involve non-automation changes rather than the effect of automation per se. A third
concern with my inferences is whether AUTOMATION is capturing the effect of
firms that make changes to their internal controls rather than the effect of automa-
tion per se. The fourth concern with my main analysis is whether AUTOMATION
is capturing the effect of automation use by external audit firms (e.g., Commerford
et al. 2022; Fedyk et al. 2022; Law and Shen 2022) rather than automation use by
public firms. The fifth concern with my inferences is whether my inferences are
driven by my choice to study SOX 404b internal control material weaknesses rather
than SOX 404a. The sixth concern with my main analysis is whether my observed
effect is concentrated in the later years in my sample, given the surge in adop-
tion of automation-related technologies during that time.I address all six concerns
with empirical analyses tabulated and discussed in the online appendix. Inferences
remain consistent.

7 Additional analyses

For my final set of tests, I conduct six additional analyses. First, I study how a firm’s
use of automation impacts monitoring over the financial reporting process, focusing
on the auditor (an external monitor) and the audit committee (an internal monitor).
These analyses are motivated by the fact that the effect automation has on monitor-
ing is ex ante ambiguous. On one hand, monitoring may increase because automa-
tion is new information technology used by the firm and enhances a firm’s infor-
mation technology complexity—and this requires oversight. On the other hand, the
primary argument in favor of automation is that it helps prevent human-driven errors
and fraud—a notion that is borne out in the data (see main analysis in Sect. 6). Con-
sequently, oversight over the financial reporting process may decrease if monitors
perceive there is less of a need for monitoring, given the lower risk of errors and
fraud vis-a-vis automation.

I empirically test these assertions by studying the association of AUTOMA-
TION with AUDIT_FEES (log of audit fees paid by firm i to its external auditor in
year f) as a proxy for external auditor monitoring and with AC_MEETINGS (log
of the number of meetings held by firm i’s audit committee in year f) as a proxy
for audit committee monitoring. For these tests, AUTOMATION is interacted with
YEARS_SINCE_AUTOMATION (a count variable that represents the number of
years since firm i introduced accounting automation, where zero represents the first
year where AUTOMATION = 1; this variable is always zero for observations where
AUTOMATION =0). For ease of interpretation of the interaction term, I normalize
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Table 6 The Association Between Accounting Automation and External Audit Fees

Independent Variables Pr Dependent Variable:
AUDIT_FEES
@
Test Variables:
AUTOMATION ? 0.0464 *
[t-stat] (p-value) [1.83] (0.068)
AUTOMATION*YEARS_SINCE_AUTOMATION ? -0.2245 Hokok
[t-stat] (p-value) [-3.06] (£0.01)
Control Variables:
IT_COMMITTEE ? 0.0251
AC_IT_EXPERTISE ? 0.0136
NEW_IT ? 0.0770 ook
SIZE + 0.3120 okok
LEVERAGE + 0.0791 ok
LOSS + 0.0516 ok
ROA - -0.0282 ok
CURRENT_ASSETS ? 0.0379
QUICK_RATIO ? -0.0110 ok
FOREIGN + 0.0890 ok
SEGMENTS + 0.0110 ook
DECEMBER + 0.0874 *
GOING_CONCERN + 0.0984 ok
BIG4 + 0.4348 oAk
Firm Fixed Effects YES
Year Fixed Effects YES
N 36,315
Adjusted R-squared 96.12%
AUTOMATION + AUTOMATION*YEARS_SINCE_ ? -0.1781 wAE
AUTOMATION =0
[t-stat] (p-value) [-2.58] (£0.01)

This table presents the analysis of the association between accounting automation and external audit fees.
All variables are defined in Appendix Table 14. The model is an ordinary least squares regression with
robust standard errors clustered by firm. ***, ** and * indicate significance at the 0.01, 0.05, and 0.10
levels, respectively, using one-tailed tests if the coefficient sign is consistent with the predicted direction
(if a directional prediction is made) and two-tailed tests otherwise.

YEARS_SINCE_AUTOMATION so that the variable ranges between 0 and 1 (inclu-
sive), where 1 represents observations that are in their 11th year of automation
(which is the maximum that is possible in my sample). The main effect of AUTO-
MATION captures the association for the first year where AUTOMATION=1 and
the interaction term AUTOMATION*YEARS_SINCE_AUTOMATION captures the
incremental association for each year thereafter.
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Table 7 The Association Between Accounting Automation and Audit Committee Meetings

Independent Variables Pr Dependent Variable:
AC_MEETINGS
@
Test Variables:
AUTOMATION ? 0.0639 *%
[t-stat] (p-value) [2.06] (0.039)
AUTOMATION*YEARS_SINCE_AUTOMATION ? -0.2612 *k
[t-stat] (p-value) [-2.32] (0.020)
Control Variables:
IT_COMMITTEE ? -0.0057
AC_IT_EXPERTISE ? 0.0252
NEW_IT ? 0.0343 ok
SIZE + -0.0041
SEGMENTS - 0.0002
FOREIGN - 0.0161
ACQUISITION - -0.0201 wE
RESTRUCTURE - 0.0250 ok
FIRM_AGE + 0.0241 *F
SALES_GROWTH - -0.0072 ok
INV - 0.0649
LOSS - 0.0250 Ak
Z_SCORE + 0.0006 wok
AUDITOR_RESIGNED - 0.0489 *
ANNOUNCE_RESTATEMENT - 0.2161 ok
INST_OWNERSHIP + 0.0758 HAk
BIG4 ? 0.0671 Ak
Firm Fixed Effects YES
Year Fixed Effects YES
N 13,583
Adjusted R-squared 68.05%
AUTOMATION + AUTOMATION*YEARS_SINCE _ ? -0.1973 wE
AUTOMATION =0
[t-stat] (p-value) [-1.96] (0.050)

This table presents the analysis of the association between accounting automation and audit committee
meetings. All variables are defined in Appendix Table 14. The model is an ordinary least squares regres-
sion with robust standard errors clustered by firm. ***, ** and * indicate significance at the 0.01, 0.05,
and 0.10 levels, respectively, using one-tailed tests if the coefficient sign is consistent with the predicted
direction (if a directional prediction is made) and two-tailed tests otherwise.
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As shown in Table 6 and 7 respectively, the coefficient on AUTOMATION for
both AUDIT_FEES and AC_MEETINGS is positive and significant (p-value <0.10
or lower) in the initial years after a firm introduces automation in its financial report-
ing process.'> This suggests that both monitors enhance oversight when automation
is new to the firm. However, this relation flips as the auditors and audit commit-
tees become more comfortable with the technology, as evidenced by the negative
and significant (p-value <0.05 or lower) coefficient on AUTOMATION*YEARS_
SINCE_AUTOMATION.'® This suggests that both monitors decrease their oversight
over the financial reporting process as they observe stronger internal control envi-
ronment after automation, and the significantly (p-value <0.05 or lower) negative
‘total effect’ of AUTOMATION +AUTOMATION*YEARS_SINCE_AUTOMATION
suggests that the monitoring is overall lower after automation compared to before.

Second, an extensive extant literature has documented the financial reporting bene-
fits of greater monitoring by the audit committee and external auditor (see DeFond and
Zhang 2014). Also, although my evidence suggests that overall internal control envi-
ronment is stronger after automation, automation cannot perfectly prevent weaknesses
in internal controls. Given that auditor and audit committee oversight is beneficial and
that automation is not perfect, a byproduct of less oversight by the auditor and the audit
committee may be that internal control weaknesses are more material when they do
happen. I test this assertion by studying the association between AUTOMATION and
CAR (which captures a firm’s cumulative abnormal market return in the [-1,1] window
around the disclosure date of its internal control material weakness; this variable repre-
sents the percent return in decimal form) in a subsample of observations that disclose
internal control material weaknesses in their 10-K filings. Tabulated in Table 8, there is
no significant association between AUTOMATION and CAR in the initial years a firm
introduces automation (p-value=0.37). However, the association of AUTOMATION
with CAR is negative and significant in the later years (p-value <0.05). Taken together,
these results suggest that internal control material weaknesses are more material for
firms with AUTOMATION—but only in the later years after automation, which is con-
sistent with the pattern of lower monitoring documented in Table 6 and 7.

Third, one concern with my main analysis is that my findings may be driven by
my research design choice to study material weaknesses in internal controls. There-
fore, as my next additional analysis, I reinforce my main inferences by studying an
alternative proxy of financial reporting quality: RESTATEMENT (equals one if firm
i restates the financial statements for year ¢ [zero otherwise]) (e.g., Dechow et al.
2010). I present the results in Table 9. While controlling for firm and year fixed
effects and other documented determinants of restatements following Badolato et al.

15 1 obtain data on audit committee meetings from Ashraf, Deore, and Krishnan (2024), who pro-
grammatically extract data on audit committee meetings from firms’ proxy statement filings (firms are
required to make such disclosures, see 17 CFR §229.407(b)). The sample size in Table 7 is relatively
smaller than other analyses due to the fact that the audit committee meetings data is unstructured in
proxy filings and therefore it is not possible to programmatically extract meetings data from every proxy
filing. Observations with missing data on AC_MEETINGS are excluded from the analysis.

16 The ‘main effect’ of YEARS_SINCE_AUTOMATION is omitted from Table 6 and 7 due to collinear-
ity: AUTOMATION*YEARS_SINCE_AUTOMATION and YEARS_SINCE_AUTOMATION are effectively
the same variables and therefore both cannot be included in the same regression analysis.
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Table 8 The Association Between Accounting Automation and Materiality of Internal Control Material
Weaknesses

Independent Variables Pr Dependent Variable:

CAR

M
Test Variables:
AUTOMATION ? -0.0196
[t-stat] (p-value) [-0.89] (0.372)
AUTOMATION*YEARS_SINCE_AUTOMATION ? -0.1741 wE
[t-stat] (p-value) [-2.17] (0.031)
Control Variables:
IT_COMMITTEE ? -0.0162
AC_IT_EXPERTISE ? 0.0014
NEW_IT ? 0.0094
SIZE ? -0.0167 *
SEGMENTS ? -0.0022
FOREIGN ? 0.0206
ACQUISITION ? 0.0000
RESTRUCTURE ? -0.0001
FIRM_AGE ? 0.0424
SALES_GROWTH ? 0.0002
INV ? -0.0151
LOSS ? -0.0096
Z_SCORE ? 0.0004
AUDITOR_RESIGNED ? -0.0373
ANNOUNCE_RESTATEMENT ? 0.0015
INST_OWNERSHIP ? 0.0028
BIG4 ? -0.0049
Firm Fixed Effects YES
Year Fixed Effects YES
N 731
Adjusted R-squared 12.42%
AUTOMATION + AUTOMATION*YEARS_SINCE_ ? -0.1937 *k

AUTOMATION =0

[t-stat] (p-value) [-2.52] (0.012)

This table presents the analysis of the association between accounting automation and abnormal returns
around the disclosure date of internal control material weaknesses. The sample is restricted to observa-
tions that disclose an internal control material weakness in their 10-K filing. All variables are defined in
Appendix Table 14. The model is an ordinary least squares regression with robust standard errors clus-
tered by firm. ***, ** and * indicate significance at the 0.01, 0.05, and 0.10 levels, respectively, using
one-tailed tests if the coefficient sign is consistent with the predicted direction (if a directional prediction
is made) and two-tailed tests otherwise.

(2014) restatements model, I find AUTOMATION is significantly negatively asso-
ciated with RESTATEMENT (p-value <0.05). As fewer restatements is representa-
tive of stronger financial reporting quality similar to fewer internal control material
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Table9 The Association Between Accounting Automation and Restatements

Independent Variables Pr Dependent Variable: RESTATE-

MENT

@
Test Variable:
AUTOMATION - -0.0332 *%
[t-stat] (p-value) [-2.16] (0.016)
Control Variables:
IT_COMMITTEE - 0.0030
AC_IT_EXPERTISE - 0.0067
NEW_IT - -0.0124 ok
AUDIT_COMM_SIZE - 0.0029 *
BOARD_INDEPENDENCE - -0.0429 ok
BOARD_SIZE - -0.0017 *
CEO_CHAIRMAN + 0.0087 HEE
SIZE - 0.0062 ok
MTB ? 0.0000
ROA ? -0.0001
LEVERAGE - 0.0086
ISSUANCE ? 0.0011
INST_OWNERSHIP - -0.0147 ok
MATERIAL_WEAKNESS + 0.0552 ok
Firm Fixed Effects YES
Year Fixed Effects YES
N 27,236
Adjusted R-squared 36.76%

This table presents the analysis of the association between accounting automation and restatements. All
variables are defined in Appendix Table 14. The model is a linear probability model with robust standard
errors clustered by firm. ***, ** and * indicate significance at the 0.01, 0.05, and 0.10 levels, respec-
tively, using one-tailed tests if the coefficient sign is consistent with the predicted direction (if a direc-
tional prediction is made) and two-tailed tests otherwise.

weaknesses, this analysis provides reassurance that my findings are not driven by my
choice of dependent variable.

I also conduct an analysis similar to Table 5 (where I study the effects of automa-
tion in specific areas of accounting), except I now focus on restatements instead of
material weaknesses.!” The results of this analysis are tabulated in Table 10. The

17 RESTATEMENT_GROUP_I equals one when RESTATEMENT equals one but only for observations
that Audit Analytics categorizes as {code 7 [expense (payroll, SGA, other) recording issues], code 12
[liabilities, payables, reserves and accrual estimate failures], code 23 [capitalization of expenditures
issues], code 20 [inventory, vendor and/or cost of sales issues], code 17 [deferred, stock-based and/or
executive comp issues], code 48 [deferred, stock-based options backdating only], code 39 [deferred,
stock-based SFAS 123 only], code 69 [pension and other post-retirement benefit issues], or code 18 [tax
expense/benefit/deferral/other (FAS 109) issues]}; equals zero when RESTATEMENT equals zero; and
all other observations are discarded. RESTATEMENT_GROUP_2 and RESTATEMENT_GROUP_3 are
calculated similarly except for observations that Audit Analytics categorizes as {code 13 [consolidation
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aggregate evidence is consistent with lower restatements, albeit the evidence is
weaker than previously—Ilikely due to lack of statistical power, as the variation in
the test and dependent variables is very low in Table 10.

As my fourth additional analysis, I focus on an external indicator of financial
reporting quality—securities class action lawsuits by investors. These lawsuits are
allegations by investors that firms violated federal securities laws, and the allega-
tions are usually centered on improper financial reporting or disclosure (Kim and
Skinner 2012). This analysis allows me to study whether investors perceive the
financial reporting for firms has improved after automation, as there should be fewer
allegations of misconduct in such a scenario. Empirically, I regress SUED, which
equals one if firm 7 is sued for year ¢ in a securities class action lawsuit by investors
(zero otherwise), on AUTOMATION while controlling for firm and year fixed effects
and other common control variables, which are based on Kim and Skinner (2012).
The results, presented in Table 11, are consistent with my prior findings: the coef-
ficient on AUTOMATION is negative and significant (p-value <0.01).

Fifth, I study whether automation impacts another aspect of financial reporting—
timeliness (e.g., FASB 1980; Ashraf et al. 2020). I proxy for timeliness with the time
it takes for a firm to disclose its annual 10-K filing, which I capture with the variable
DAYS_TO_I0K (log of one plus the number of days between firm i’s year #’s fiscal-
year end date and the date of 10-K filing for the same firm-year). The results of
this analysis are presented in Table 12. I find a negative and significant association
between AUTOMATION and DAYS_TO_I0K (p-value<0.01).'® This suggests that
automation enables reporting efficiencies, which is one of the proposed benefits of
automation (e.g., Cooper et al. 2019).

Finally, I study the association of AUTOMATION with demand for audit committee
directors. This analysis is important because the literature disagrees on the effect that
automation has on demand for rank-and-file auditor employees (e.g., Fedyk et al. 2022;
Law and Shen 2022). Studying the effect on the board is a different—but important—
perspective on how automation affects demand for accounting jobs. The results of this
analysis, tabulated in Table 13, suggest that audit committees shrink after a firm intro-
duces automation in its financial reporting process: the coefficient on AUTOMATION
is negative and significant (p-value <0.05) when the dependent variable is AUDIT _
COMM_SIZE (the number of directors on firm i’s audit committee in year ).

Footnote 17 (continued)

issues incl Fin 46 variable interest & off-B/S], code 37 [consolidation, foreign currency/inflation issue],
code 24 [intercompany, investment in subs./affiliate issues], code 43 [intercompany, only—accounting
issues], code 11 [foreign, related party, affiliated, or subsidiary issues], or code 44 [foreign, subsidiary
only issues]} and {code 6 [revenue recognition issues] or code 14 [accounts/loans receivable, invest-
ments & cash issues]}, respectively. RESTATEMENT_GROUP_1&2&3 equals one when either of
RESTATEMENT_GROUP_I, RESTATEMENT _GROUP_2, or RESTATEMENT _GROUP_3; equals zero
when RESTATEMENT equals zero; and all other observations are discarded. I do not conduct any analy-
sis of AUTOMATION_GROUP_4 for restatements because there are no analogous restatement catego-
ries.

18 Following the advice of extant literature (e.g., Chan, Chen, Chen, and Yu 2012; Jha and Chen 2015;
Ashraf et al. 2020), the control variables in Table 12 are based on DeFond and Zhang’s (2014) audit fees
model.
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Table 11 The Association Between Accounting Automation and Securities Class Action Lawsuits by
Investors

Independent Variables Pr Dependent Variable: SUED

@
Test Variable:
AUTOMATION - -0.0343 wEE
[t-stat] (p-value) [-3.06] (£0.01)
Control Variables:
IT_COMMITTEE - -0.0114
AC_IT_EXPERTISE - -0.0118 ok
NEW_IT - -0.0029
FPS + 0.0172 *
SIZE + 0.0314 ok
SALES_GROWTH + 0.0023
STOCK_RETURN - 0.0109 ook
RET_SKEW - 0.0027 Hkk
RET_STD + -0.4979 ok
TURNOVER + 0.0000 *
Firm Fixed Effects YES
Year Fixed Effects YES
N 39,058
Adjusted R-squared 22.68%

This table presents the analysis of the association between accounting automation and securities class
action lawsuits by investors. All variables are defined in Appendix Table 14. The model is a linear prob-
ability model with robust standard errors clustered by firm. ***, ** and * indicate significance at the
0.01, 0.05, and 0.10 levels, respectively, using one-tailed tests if the coefficient sign is consistent with the
predicted direction (if a directional prediction is made) and two-tailed tests otherwise.

8 Conclusion

In this study, I investigate whether automation improves financial reporting, specifi-
cally focusing on the internal control environment. This research question is moti-
vated by the fact that both practitioners and regulators argue that automation will
play a material role in accounting and financial reporting going forward (Deloitte
2018a; AICPA 2020; PCAOB 2020; PCAOB 2021; PwC 2021; Roose 2021)—but
there is practitioner concern that automation may harm internal controls and finan-
cial reporting (McCann 2019; Gartner 2020; EY 2021). However, I argue that auto-
mation will improve financial reporting by preventing human-related reporting
errors or fraudulent behavior (Lanza 2007; Blue Lance 2012; Deloitte 2015; Deloitte
2018b; WNS 2020).
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Table 12 The Association Between Accounting Automation and the Number of Days Needed to File the
10-K

Independent Variables Pr Dependent Variable: DAYS_TO_I10K
@

Test Variable:

AUTOMATION - -0.0366 ok

[t-stat] (p-value) [-3.08] (£0.01)

Control Variables:

IT_COMMITTEE - -0.0131 *

AC_IT_EXPERTISE - -0.0042

NEW_IT - -0.0077 *

SIZE - -0.0288 ok

LEVERAGE + -0.0073

LOSS + 0.0332 okok

ROA ? -0.0006

CURRENT_ASSETS ? -0.0550 oAk

QUICK_RATIO ? 0.0003

FOREIGN + -0.0028

SEGMENTS + 0.0029 Ak

DECEMBER ? 0.0406 ok

GOING_CONCERN + 0.0896 oAk

BIG4 - -0.0009

Firm Fixed Effects YES

Year Fixed Effects YES

N 36,214

Adjusted R-squared 74.19%

This table presents the analysis of the association between accounting automation and the number of
days needed to file the 10-K after year-end. All variables are defined in Appendix Table 14. The model is
an ordinary least squares regression with robust standard errors clustered by firm. *** **_ and * indicate
significance at the 0.01, 0.05, and 0.10 levels, respectively, using one-tailed tests if the coefficient sign is
consistent with the predicted direction (if a directional prediction is made) and two-tailed tests otherwise.

I identify firms that introduce automation in their financial reporting process
through textual analysis of mandated disclosures in periodic accounting SEC fil-
ings. I find that automation is significantly associated with a lower incidence rate of
internal control material weaknesses, suggesting that firms that introduce automa-
tion benefit from higher quality financial reporting due to a stronger internal control
environment. This association holds in (i) a levels analysis with firm and year fixed
effects, (ii) a changes analysis, and (iii) a propensity score matched difference-in-
differences analysis. Inferences are consistent when focusing on the specific area
of accounting that is automated, and results are robust to a battery of sensitivity
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Table 13 The Association Between Accounting Automation and Size of the Audit Committee

Independent Variables Pr Dependent Variable: AUDIT_
COMM _SIZE
@
Test Variable:
AUTOMATION ? -0.1155 *%
[t-stat] (p-value) [-2.30] (0.022)
Control Variables:
IT_COMMITTEE ? -0.1035 wE
AC_IT_EXPERTISE ? 0.3661 ok
NEW_IT ? 0.0197
SIZE + 0.0531 Ak
SEGMENTS - 0.0079
FOREIGN - -0.0467 *
ACQUISITION - 0.0162
RESTRUCTURE - 0.0246 *
FIRM_AGE + 0.0168
SALES_GROWTH - -0.0095 ok
INV - 0.2720 wE
LOSS - 0.0323 ok
Z_SCORE + 0.0008 ik
AUDITOR_RESIGNED - 0.0318
ANNOUNCE_RESTATEMENT - 0.0598 *
INST_OWNERSHIP + -0.0046
BIG4 ? 0.0273
Firm Fixed Effects YES
Year Fixed Effects YES
N 32,025
Adjusted R-squared 60.78%

This table presents the analysis of the association between accounting automation and the size of the
audit committee. All variables are defined in Appendix Table 14. The model is an ordinary least squares
regression with robust standard errors clustered by firm. **%, ** and * indicate significance at the 0.01,
0.05, and 0.10 levels, respectively, using one-tailed tests if the coefficient sign is consistent with the pre-
dicted direction (if a directional prediction is made) and two-tailed tests otherwise.

analyses. I further find that automation is associated with decreased monitoring over
the financial reporting process and with more material weaknesses when they do
happen. Finally, I find that inferences remain consistent when studying restatements
and securities class action lawsuits by investors (instead of internal control mate-
rial weaknesses); firms with accounting automation are associated with more timely
financial reporting; and automation appears to be associated with weaker demand
for audit committee directors.
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Overall, my evidence furthers the literature on how automation affects financial
reporting, and I provide empirical support for the push by firms to introduce automa-
tion in their financial reporting process. However, my analyses also provide nuanced
inferences in that firms appear to decrease oversight of the financial reporting pro-
cess after they introduce automation, which can be costly when failures do happen.
My study is related to but distinct from extant and concurrent research (e.g., Chen
and Srinivasan 2023; Schoenfeld 2022; Fedyk et al. 2022; Commerford et al. 2022;
Law and Shen 2022; Choudhary, Ramadas, and Sigler 2023), and it is unclear from
extant and concurrent evidence whether automation improves financial reporting
and internal controls. My aggregate findings should be informative to the myriad of
stakeholders (including academics, managers, shareholders, board members, practi-
tioners, and regulators) that are interested in how the use of accounting automation
impacts financial reporting.

My findings should be taken within the context of two caveats. First, automa-
tion is not costless. Due to data limitations, I am unable to observe how much firms
invest in automation. I speak only to the financial reporting benefits of automation
and cannot speak to the whether automation is beneficial overall when consider-
ing both costs and benefits. Second, my textual methodology for identifying firms
that introduce automation is designed to capture the wide range of technologies that
firms may use when adding automation to their financial reporting process. How-
ever, while firms disclose when they introduce automation, they typically do not
specify in their disclosures the specific type of automation technology they use.
Thus, I speak to the effects of automation, but I am unable to differentiate between
the different types of automation technologies—such as artificial intelligence,
machine learning, and robotic process automation.
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