Skip to main content
Log in

A High-Power Planar W-Band Čerenkov Maser with Two-Dimensional Distributed Feedback: Design Elements and Modeling Results

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The project of a high-power, spatially developed, planar surface-wave W-band generator with two-dimensional distributed feedback is developed jointly by the Institute of Applied Physics of the Russian Academy of Sciences and the Institute of Nuclear Physics of the Russian Academy of Sciences on the basis of the ELMI accelerator (an electron beam with a particle energy of 1 MeV, a current of 2–5 kA, and a pulse duration of 5 μs). The electrodynamic system of the generator is based on the use of a two-dimensional Bragg structure that combines the properties of a slow-wave system, which ensures efficient ˇ Cerenkov interaction with a rectilinear ribbon electron beam, and a high-Q cavity, which ensures selective excitation of the operating mode in the conditions of a significant value of the oversize parameter. The paper discusses design elements and parameters of the generator and presents the modeling results that demonstrate the possibility to achieve a stable narrow-band generation regime with a gigawatt level of the output radiation power. To ensure a mainly one-directional output of the radiation, a planar Bragg reflector was designed, which is installed in the channel for transportation of the relativistic ribbon electron beam on the cathode side of the interaction space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S.Ginzburg, N.Yu.Peskov, and A. S. Sergeev, Pis’ma Zh. Tekh. Fiz., 18, No. 9, 23–28 (1992).

    Google Scholar 

  2. N. S.Ginzburg, N.Yu.Peskov, A. S. Sergeev, et al., Nuclear Instr. and Meth. in Phys. Res. A, A358, 189–192 (1995). https://doi.org/10.1016/0168-9002(94)01422-1

  3. A. V. Arzhannikov, N. S. Ginzburg, V.Yu. Zaslavskii, et al., JETP Lett., 87, No. 11, 715–719 (2008). https://doi.org/10.1134/S0021364008110052

    Article  Google Scholar 

  4. A. V. Arzhannikov, N. S. Ginzburg, P. V.Kalinin, et al., Phys. Rev. Lett., 117, No. 11, 114801 (2016). https://doi.org/10.1103/PhysRevLett.117.11480

    Article  ADS  Google Scholar 

  5. N. S. Ginzburg, V.Yu. Zaslavskii, A. M. Malkin, et al., Tech. Phys. Lett., 36, No. 1, 83–87 (2010). https://doi.org/10.1134/S1063785010010268

    Article  ADS  Google Scholar 

  6. N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, and V.Yu. Zaslavsky, Appl. Phys. Lett., 100, No. 14, 143510 (2012). https://doi.org/10.1063/1.3701580

    Article  ADS  Google Scholar 

  7. N. S.Ginzburg, E.V. Ilyakov, I. S. Kulagin, et al., Phys. Rev. Accel. and Beams, 21, No. 8, 080701 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.080701

    Article  ADS  Google Scholar 

  8. N. F.Kovalev, M. I.Petelin, M.D.Raizer, et al., JETP Lett., 18, No. 4, 138–140 (1973).

    ADS  Google Scholar 

  9. F. S. El’chaninov, F.Ya. Zagulov, S.D. Korovin, et al., Pis’ma Zh. Tekh. Fiz., 7, No. 19, 1168–1171 (1981).

    Google Scholar 

  10. N. I. Zaitsev, N. F.Kovalev, G. S.Korablev, et al., Pis’ma Zh. Tekh. Fiz., 7, No. 14, 879–882 (1981).

    Google Scholar 

  11. S.P. Bugaev, V. I.Kanavets, A. I.Klimov, et al., Pis’ma Zh. Tekh. Fiz., 9, No. 22, 1385–1389 (1983).

    Google Scholar 

  12. A. N. Vlasov, A. G. Shkvarunets, J.C.Rodgers, et al., IEEE Trans. Plasma Sci., 28, 550–560 (2000). https://doi.org/10.1109/27.887671

    Article  ADS  Google Scholar 

  13. A. I.Klimov, I.K.Kurkan, S. D. Polevin, et al., Tech. Phys. Lett., 34, No. 3, 235–237 (2008). https://doi.org/10.1007/s11455-008-3017-z

    Article  ADS  Google Scholar 

  14. A.V.Arzhannikov and S. L. Sinitsky, Kiloampere Electron Beams for Oscillation Pumping in Vacuum and Plasmas [in Russian], Novosibirsk State Univ. Publ., Novosibirsk (2016).

    Google Scholar 

  15. A.V.Arzhannikov, D.A. Samtsov, S. L. Sinitsky, and V.D. Stepanov, Sibirskiy Fiz. Zh., 15, No. 1, 24–42 (2020). https://doi.org/10.25205/2541-9447-2020-15-1-24-41

  16. N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, and V.Yu. Zaslavsky, J. Appl. Phys., 113, 104504 (2013). https://doi.org/10.1063/1.4794008

    Article  ADS  Google Scholar 

  17. N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, and V.Yu. Zaslavsky, Phys. Plasmas, 20, 113104 (2013). https://doi.org/10.1063/1.4826221457

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.Yu. Peskov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 5–6, pp. 499–508, March 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peskov, N., Vikharev, A.A., Ginzburg, N.S. et al. A High-Power Planar W-Band Čerenkov Maser with Two-Dimensional Distributed Feedback: Design Elements and Modeling Results. Radiophys Quantum El 63, 449–457 (2020). https://doi.org/10.1007/s11141-021-10070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10070-2

Navigation