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Abstract
Let {Un}n≥0 be the Lucas sequence. For integers x , n and m, we find all solutions to
Ux
n +Ux

n+1 = Um . The equation was studied and claimed to be solved completely in
Ddamulira and Luca (Ramanujan J 56(2):651–684, 2021) but there are some compu-
tational bugs in that publication because of the wrong statement of Mignotte’s bound
from Mignotte (A kit on linear forms in three logarithms. http://irma.math.unistra.fr/
~bugeaud/travaux/kit.pdf, 2008). In this paper, the main result remains the same as
in Ddamulira and Luca (Ramanujan J 56(2):651–684, 2021) but we focus on correct-
ing the computational mistakes in Ddamulira and Luca (Ramanujan J 56(2):651–684,
2021), involving the application of Theorem 2.1 fromMignotte (A kit on linear forms
in three logarithms. http://irma.math.unistra.fr/~bugeaud/travaux/kit.pdf, 2008).
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1 Introduction

1.1 Background

Let r ≥ 1 be an integer, then U := {Un}n≥0 is the Lucas sequence given by U0 =
0,U1 = 1, and

Un+2 = rUn+1 +Un, (1.1)

for all n ≥ 0. Famous examples of Lucas sequences include the Fibonacci numbers,
Mersenne numbers, Pell numbers, Jacobsthal numbers, among others. When r = 1,
U becomes the Fibonacci sequence while when r = 2, U is the Pell sequence, with
the same initial conditions. The first few terms of U are

{0, 1, r , r2 + 1, r3 + 2r , r4 + 3r2 + 1, . . .}.

For the Lucas sequence U, it is well known that

U 2
n +U 2

n+1 = U2n+1, (1.2)

for all n ≥ 0, which tells us that the sum of the squares of any two consecutive terms
of U is also a term of U. Consider the exponential Diophantine equation

Ux
n +Ux

n+1 = Um, (1.3)

in nonnegative integers (n,m, x) which by (1.2), has the parametric solution m =
2n + 1 when x = 2 and for any r > 1, and the parametric solution m = n + 2 when
x = 1 and r = 1. When r = 1, [3] proved that (1.3) has no integer solutions (n,m, x)
with n ≥ 2 and x ≥ 3. Similarly, [6] proved for r = 2, that (1.3) has no positive integer
solutions (n,m, x) with x �= 2, while [7] solved (1.3) with U = {F (k)

n }n≥−(k−2), the
k−generalised Fibonacci sequence.

In [1], it was shown that there exists no positive integer solutions (r , n,m, x) of
the Diophantine equation (1.3) with r ≥ 3 and x �= 2. However, this came with a
big computational mistake in stating and applying Theorem 2.1 in [4]. In this paper,
we restudy [1]. Still, we consider equation (1.3) in nonnegative integers (r , n,m, x)
treating r ≥ 3 as an integer parameter, since the cases r ∈ {1, 2} were treated in [3]
and [6] respectively. Our main result is the following.

1.2 Main Result

Theorem 1.1 There is no positive integer solution (r , n,m, x) to the Diophantine
equation (1.3) with r ≥ 3 and x �= 2.
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2 Methods

2.1 Preliminaries

Subsection 2.1 in [1]was correctlywritten.All results there-in are correct and therefore
we also adopt this subsection as it appears from page 652 to page 654 of [1].

2.2 Linear forms in logarithms and continued fractions

This is Subsection 2.2 and 2.3 in [1]. All the results in these two Subsections 2.2 and
2.3 of [1] are well stated and explained. An exception was that the result of Mignotte
from [4] was wrongly stated as Theorem 2 on page 655 of publication [1].

Here, we restate Theorem 2.1 on linear forms in three logarithms due to Mignotte
from [4]. It will be used to express equations as linear forms, in three logarithms. The
result from [4] is more general, but we quote it in the form we shall use. The following
is Proposition 5.2 in [4]. The reader is also refereed to [5].

Theorem 2.1 (Mignotte, [4]) Consider three algebraic numbers γ1, γ2 and γ3, which
are all real, greater than 1 and multiplicatively independent. Put

D := [Q(γ1, γ2, γ3) : Q].

Let b1, b2, b3 be coprime positive integers and consider

� := b2 log γ2 − b1 log γ1 − b3 log γ3.

Put

d1 := gcd(b1, b2) = b1
b′
1

= b2
b′
2
, d3 := gcd(b2, b3) = b2

b′′
2

= b3
b′′
3
.

Let A1, A2 and A3 be real numbers such that

Ai ≥ max{4, 4.296 log γi + 2Dh(γi )}, i = 1, 2, 3 and � := A1A2A3 ≥ 100.

Put

b′ :=
(
b′
1

A2
+ b′

2

A1

)(
b′′
3

A2
+ b′′

2

A3

)
and logB := max

{
0.882 + log b′, 10D

}
.

Then, either log |�| > −790.95�D2(logB)2, or one of the following conditions
holds:

(i) there exists two positive integers r0 and s0 such that r0b2 = s0b1 with

r0 ≤ 5.61A2(D logB)
1
3 and s0 ≤ 5.61A1(D logB)

1
3 .
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(ii) there exists integers r1, s1, t1 and t2, with r1s1 �= 0, such that (t1b1 + r1b3)s1 =
r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1, which also satisfy

|r1s1| ≤ 5.61δA3(D logB)
1
3 ,

|s1t1| ≤ 5.61δA1(D logB)
1
3 ,

|r1t2| ≤ 5.61δA2(D logB)
1
3 ,

where δ = gcd(r1, s1). Moreover, when t1 = 0, we can take r1 = 1, and when
t2 = 0, we can take s1 = 1.

In the Mignotte bound given in [1], the (D logB)
1
3 term was wrongly written and

applied with (D logD)
1
3 instead and since D is much smaller than B, this resulted in

upper bounds which are smaller than what they should actually have been. This was
the main bug in that paper.
Finally, we present an analytic argument which is Lemma 7 from [2]. It is useful
when obtaining upper bounds on some positive real variable involving powers of the
logarithm of the variable itself.

Lemma 2.1 (Gúzman and Luca [2]) If s ≥ 1, T > (4s2)s and T >
x

(log x)s
, then

x < 2sT (log T )s .

In addition to the above results, and all results stated in Section 2 of [1], we also
perform computations with Mathematica.

3 Proof of Theorem 1.1

In this section, we consider equation (1.3) in nonnegative integers (r , n,m, x) treating
r ≥ 3 as an integer parameter, since the cases r ∈ {1, 2} were treated in [3] and [6]
respectively.

3.1 Trivial solutions

(a) Let n = 0, then (1.3) becomes

Ux
0 +Ux

1 = Um,

0x + 1x = Um,

Um = 1,

so that m = 1. This solution (r , n,m, x) = (r , 0, 1, x) for any r ≥ 3 and x ≥ 1,
is trivial, so we omit it and assume that n is positive.
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(b) Let n ≥ 1 and x = 0, then (1.3) becomes

U 0
n +U 0

n+1 = Um,

Um = 2 /∈ U,

for all r ≥ 3. Therefore this case is not possible.
(c) Let n ≥ 1 and x = 1, then (1.3) becomes

Um = Un +Un+1 < Un+2,

for all r ≥ 3. It follows that the Diophantine equation (1.3) has no solution with
x = 1.

(d) Let n = 1 and x = 2, then (1.3) becomes

U 2
n +U 2

n+1 = Um,

12 + r2 = Um,

Um = 1 + r2,

so that m = 2. This solution (r , n,m, x) = (r , 1, 2, 2) for any r ≥ 3, is trivial, so
we also omit it.

(e) Lastly, if n = 1, then
Um = 1 + r x . (3.1)

From this point, we adopt the solution for this case, from Subsection 3.1, given
on page 657, following equation (18) in [1]. After a simple computer search, we
found no other solutions to equation (3.1) apart from the trivial ones given in (a)
and (d).

3.2 Calculations when n ∈ [2, 100] and x ∈ [3, 100]

This is Subsection 3.2 in [1]. We adopt this section as it appears on pages 658 and 659
in [1]. Subsection 3.2 in [1] was clearly written and Lemma 6 there-in was correctly
stated and proved.
From now on, we assume n ≥ 2, x ≥ 3 and max{n, x} > 100.

3.3 A small linear form in three logarithms

A small linear form in three logarithms was correctly deduced in [1] as equations (26)
and (27). Lemma 7 in [1] summarizes these results, with proof. We therefore adopt
this subsection from Subsection 3.3 in [1].
Next, we intend to apply Theorem 2.1 on equation (26) from [1] with the following
data:

γ1 := α − β =
√
r2 + 4, γ2 := α, γ3 := Un+1, b1 := 1, b2 := m, b3 := x .
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Since r ≥ 3 and n ≥ 2, it is clear that γ1, γ2, γ3 ∈ R>1 and gcd(b1, b2) =
gcd(b1, b3) = gcd(b2, b3) = 1. It remains to show that γ1, γ2, γ3 are multiplica-
tively independent.

3.4 Showing that �1, �2, �3 are multiplicatively independent

To show that γ1, γ2, γ3 are multiplicatively independent, we follow the same explana-
tion given in Subsection 3.4 of [1].

3.5 Applying Theorem 2.1

In Subsection 3.5 of [1], everything is fine and well proved from the start of this
subsection up-to equation (34) in [1]. However, Theorem 2.1 was wrongly applied.
We therefore start from equation (34) on page 662 in [1] and apply Theorem 2.1
correctly. We first restate this equation as

x < 1.38 × 106n

(
1 + 1

r log r

)
(log(r + 1))2

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

))2

.

(3.2)

We now go back to possibilities (i) and (ii) in Theorem 2.1.

(i) In case (i), there are positive integers r0, s0, which may be assumed to be coprime,
such that r0b2 = s0b1. So, we get r0m = s0 and since r0, s0 are coprime, we take
r0 = 1, s0 = m, and we get

m = s0 < 5.61A1(D logB)
1
3 . (3.3)

Since x < (n − 1)x + 1 < m by (19) in [1], and the fact that x ≥ 3, n ≥ 2, then
(3.3) gives

x < 5.61A1(D logB)
1
3 . (3.4)

Now, from (3.4), assuming first that logB = 5, then

x < 5.61 × 8.296 log(r + 1)(2 × 5)
1
3 ,

< 101 log(r + 1). (3.5)

Next, if logB > 5, then

x < 5.61 × 8.296 log(r + 1)

[
2 log

(
0.3mx

(log(r + 1))2

)] 1
3

,

< 59 log(r + 1)

[
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)] 1
3

. (3.6)
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Case (i) of Theorem 2.1 is done.
(ii) In case (ii), we have integers r1, s1, t1 and t2, with r1s1 �= 0, such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1.

Thus, for us, we have

(t1 + r1x)s1 = r1mt2, gcd(r1, t1) = gcd(s1, t2) = 1. (3.7)

Reducing equation (3.7) modulo r1, we get t1s1 ≡ 0 (mod r1) and since
gcd(t1, r1) = 1, we get that r1|s1. So, we put s1 = r1s′

1, and simplify both sides
of (3.7) by r1 to get

(t1 + r1x)s
′
1 = mt2.

Consequently, for us δ = gcd(r1, s1) = r1. Hence,

|r1(r1s′
1)| = |r1s1| ≤ 5.61δA3(D logB)

1
3 ,

= 5.61r1 × 8.296n log(r + 1)(2 logB)
1
3 ,

< 59nr1 log(r + 1)(logB)
1
3 ,

so, |r1s′
1| < 59n log(r + 1)(logB)

1
3 ,

|(r1s′
1)t1| = |s1t1| ≤ 5.61δA1(D logB)

1
3 ,

= 5.61r1 × 8.296 log(r + 1)(2 logB)
1
3 ,

< 59r1 log(r + 1)(logB)
1
3 ,

so, |s′
1t1| < 59 log(r + 1)(logB)

1
3 ,

|r1t2| ≤ 5.61δA2(D logB)
1
3 ,

= 5.61r1 × 6.296 log(r + 1)(2 logB)
1
3 ,

< 45r1 log(r + 1)(logB)
1
3 ,

so, |t2| < 45 log(r + 1)(logB)
1
3 . (3.8)

Assuming first that logB = 5, then

|r1s′
1| < 101n log(r + 1),

|s′
1t1| < 101 log(r + 1), |t2| < 77 log(r + 1). (3.9)

So, if t2 = 0, then by Theorem 2.1, s1 = 1 = r1 = s′
1 and

x = |t1|
|r1| ≤ |s′

1t1| < 101 log(1 + r),
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which is back to the case in (3.5). If t2 �= 0, we return to equation (27) in [1], and
multiply both sides by t2 and get

|mt2 log γ2 − t2 log γ1 − xt2 log γ3| <
2.2|t2|
r x

, but (t1 + r1x)s
′
1 = mt2.

Thus,

∣∣∣∣ log
(

γ
t1s′1
2

γ
t2
1

)
+ x log

(
γ
r1s′1
2

γ
t2
3

)∣∣∣∣ <
2.2|t2|
r x

. (3.10)

Inequality (3.10) is exactly the same inequality (37) in [1].We skip the details of check-
ing the multiplicative independence of the algebraic numbers η1 and η2 in inequality
(37) of [1], since this was done correctly on page 664 of [1].
Sowe are now in position to apply Theorem 3 (in [1]) to the left-hand side of inequality
(38) in [1]. We first compute log B1 and log B2. By properties (15) on page 654 of [1],

h(η1) ≤ |s′
1t1|h(γ2) + |t2|h(γ1),

≤ 101 log(r + 1) · 1
2
log(r + 1) + 77 log(r + 1) · log(r + 1)

< 128(log(r + 1))2,

h(η2) ≤ |r1s′
1|h(γ2) + |t2|h(γ3),

≤ 101n log(r + 1) · 1
2
log(r + 1) + 77 log(r + 1) · n log(r + 1)

< 128n(log(r + 1))2.

By the same argument on page 664 of [1], we can take

log B1 := 128(log(r + 1))2, log B2 := 128n(log(r + 1))2.

Next, we bound

1

2 log B2
+ x

2 log B1
= 1

256(log(r + 1))2

(
1

n
+ x

)
<

x + 1

256(log(r + 1))2
,

and so,

b′ := x + 1

256(log(r + 1))2
.
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Now, Theorem 3 in [1] gives

log |�1| > −24.34 × 24(max{log b′ + 0.14, 10.5, 0.5})2
× (128(log(r + 1))2)(128n(log(r + 1))2)

> −6.4 × 106n(log(r + 1))4M2, (3.11)

where M := max{log b′ + 0.14, 10.5, 0.5}. In case M = 10.5, then

log b′ + 0.14 < 10.5, or b′ < 31572,

which gives

b′ := x + 1

256(log(r + 1))2
< 31572.

Thus,

x + 1 < 31572 × 256(log(r + 1))2;
x < 8.1 × 106(log(r + 1))2. (3.12)

Next, suppose

M = log b′ + 0.14 = log(e0.14b′) < log(1.5b′) = log

(
x + 1

512
3 (log(r + 1))2

)
.

Comparing (3.11) and equation (38) in [1], we get

x log r − log(2.2|t2|) < 6.4 × 106n(log(r + 1))4
(
log

(
x + 1

512
3 (log(r + 1))2

))2

.

Since |t2| < 77 log(r + 1), then

x <
log(170 log(r + 1))

log r

+ 6.4 × 106n

(
log(r + 1)

log r

)
(log(r + 1))3

(
log

(
x + 1

512
3 (log(r + 1))2

))2

. (3.13)

The summand in the right-hand side of (3.13) is less than 5 for all r ≥ 3. Using
inequality (32) in [1], we get

x < 6.41 × 106n

(
1 + 1

r log r

)
(log(r + 1))3

(
log

(
x + 1

512
3 (log(r + 1))2

))2

. (3.14)
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Now, we are done with the case that logB = 5 in (3.8). Next, we go back to (3.8) and
assume that logB > 5. Then

|r1s′
1| < 59n log(r + 1)

(
log

(
0.3mx

(log(r + 1))2

)) 1
3

,

|s′
1t1| < 59 log(r + 1)

(
log

(
0.3mx

(log(r + 1))2

)) 1
3

,

|t2| < 45 log(r + 1)

(
log

(
0.3mx

(log(r + 1))2

)) 1
3

, (3.15)

by the inequality (31) in [1]. So, if t2 = 0, then by Theorem 2.1, s1 = 1 = r1 = s′
1

and

x = |t1|
|r1| ≤ |s′

1t1| < 59 log(r + 1)

(
log

(
0.3mx

(log(r + 1))2

)) 1
3

< 59 log(r + 1)

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

,

where we have used the inequality m < (n + 1)x + 2 < (n + 1)(x + 1) (because
n ≥ 2), and we are back to the case in (3.6). If t2 �= 0, we return to inequality (27) in
[1] and multiply both sides by t2 and get

|mt2 log γ2 − t2 log γ1 − xt2 log γ3| <
2.2|t2|
r x

, but (t1 + r1x)s
′
1 = mt2.

Therefore,

∣∣∣∣ log
(

γ
t1s′1
2

γ
t2
1

)
+ x log

(
γ
r1s′1
2

γ
t2
3

)∣∣∣∣ <
2.2|t2|
r x

. (3.16)

Inequality (3.16) is again of the form

|�2| <
2.2|t2|
r x

, where |�2| := log η1 + x log η2. (3.17)

It was already checked that η1 and η2 are multiplicatively independent. See page
664 in [1], after inequality (38).
So, we are now in position to apply Theorem 3 (in [1]) to the left-hand side of (3.17).
We first compute log B1 and log B2. By properties (15) on page 654 of [1],
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h(η1) ≤ |s′
1t1|h(γ2) + |t2|h(γ1)

≤ 59 log(r + 1)

(
log

(
0.3mx

(log(r + 1))2

)) 1
3 · 1

2
log(r + 1)

+ 45 log(r + 1)

(
log

(
0.3mx

(log(r + 1))2

)) 1
3 · log(r + 1)

< 75(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

, (3.18)

and

h(η2) ≤ |r1s′
1|h(γ2) + |t2|h(γ3)

≤ 59n log(r + 1)

(
log

(
0.3mx

(log(r + 1))2

)) 1
3 · 1

2
log(r + 1)

+ 45 log(r + 1)

(
log

(
0.3mx

(log(r + 1))2

)) 1
3 · n log(r + 1)

< 75n(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

.

Since
| log γi |

2
≤ h(γi ), for all i = 1, 2, 3, it follows, by the absolute value inequality,

that the same inequalities are satisfied by the numbers
| log ηi |

2
for i = 1, 2. Thus,

since D = 2, we can take

log B1 := 75(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

,

log B2 := 75n(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

.

Next, we bound

1

2 log B2
+ x

2 log B1
= 1

150(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

(
1

n
+ x

)

<
x + 1

150(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

,
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and so,

b′ := x + 1

150(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

.

Now, Theorem 3 in [1] gives

log |�2| > −24.34 × 24(max{log b′ + 0.14, 10.5, 0.5})2

× 75(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

× 75n(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

> −2.2 × 106n(log(r + 1))4
(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

M2, (3.19)

where M := max{log b′ + 0.14, 10.5, 0.5}. In case M = 10.5, then

log b′ + 0.14 < 10.5, or b′ < 31572,

which gives

b′ := x + 1

150(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

< 31572.

Therefore,

x + 1 < 31572 × 150(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

,

x < 4.8 × 106(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

. (3.20)

Next, suppose

M = log b′ + 0.14 = log(e0.14b′) < log(1.5b′)

= log

⎡
⎢⎢⎢⎢⎣

x + 1

100(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

⎤
⎥⎥⎥⎥⎦ . (3.21)
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Comparing (3.19) and (3.17), we get

x log r − log(2.2|t2|) < 2.2 × 106n(log(r + 1))4

×

⎛
⎜⎜⎜⎝log

⎡
⎢⎢⎢⎣

x + 1

100(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

2

.

(3.22)

Since

|t2| < 45 log(r + 1)

(
log

(
0.3mx

(log(r + 1))2

)) 1
3

< 45 log(r + 1) ×
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

,

then

x <

log

[
99 log(r + 1)

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3
]

log r

+ 2.2 × 106n

(
log(r + 1)

log r

)
(log(r + 1))3

×

⎛
⎜⎜⎜⎜⎝log

⎡
⎢⎢⎢⎢⎣

x + 1

100(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

2

. (3.23)

Using inequality (32) on page 662 of [1], we get

x <

log

[
99 log(r + 1)

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3
]

log r

+ 2.2 × 106n

(
1 + 1

r log r

)
(log(r + 1))3

×

⎛
⎜⎜⎜⎜⎝log

⎡
⎢⎢⎢⎢⎣

x + 1

100(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

2

. (3.24)

Now, we are done with the case that logB > 5 in (3.8).
To summarize this subsection, we see that inequality (3.5) is contained in inequality

(30) of [1], which is also contained in inequality (3.12). Moreover, inequality (3.6)
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is also contained in inequality (3.20), so we remain to summarize inequalities (3.2),
(3.12), (3.14), (3.20) and (3.24) in the followingLemma3.1whichwe have just proved.

Lemma 3.1 Let n ≥ 2, x ≥ 3 and r ≥ 3 satisfy (1.3), then one of the following
inequalities hold.

x < 8.1 × 106(log(r + 1))2, (3.25)

x < 4.8 × 106(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

, (3.26)

x < 1.38 × 106n

(
1 + 1

r log r

)
(log(r + 1))2

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

))2

,

(3.27)

x < 6.41 × 106n

(
1 + 1

r log r

)
(log(r + 1))3

(
log

(
x + 1

512
3 (log(r + 1))2

))2

, (3.28)

x <

log

[
99 log(r + 1)

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3
]

log r

+ 2.2 × 106n

(
1 + 1

r log r

)
(log(r + 1))3

×

⎛
⎜⎜⎜⎜⎝log

⎡
⎢⎢⎢⎢⎣

x + 1

100(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

2

. (3.29)

3.6 More inequalities in terms of n and x

Here, we adopt the results from Subsection 3.6 of [1] as they are. All results there are
correctly stated and proved.

3.7 Another inequality among r, n,m and x

In this subsection, we adopt Lemma 10 and Lemma 11 from Subsection 3.7 of [1].

3.8 The case n ≤ 100

We first seek bounds on r . Having the bounds in r and n, we get bounds on x using
Lemma 3.1. Finally, for a fixed r , we use Baker-Davenport on estimate (27) in [1] to
lower x . The hope is that in all cases, we get x ≤ 100, a case which has already been
treated.
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Note that Lemma 3.2 is analogous to Lemma 12 in [1]. However, Lemma 3.2 has a
larger bound on r . We reprove it below.

Lemma 3.2 When n ≤ 100, we have r ≤ 1012.

Proof Assume r > 1012. Then

x >
κr2 log r + 1

1 + 5
r

>
κr2 log r

1 + 5
r

>
κr2 log r

1.01
>

nr2 log r

2.02
,

by Lemmas 11 and 9 in [1]. We now go through the possibilities in Lemma 3.1.

(i) We start with case (ii), that is,

nr2 log r

2.02
< x < 8.1 × 106(log(r + 1))2,

r2 <
2.02

2 log 1012
× 8.1 × 106(log(r + 1))2, since n ≥ 2, r > 1012,

r < 545 log(r + 1), or equivalently,
r

log r
≤ 545.

We now apply Lemma 2.1 with the data: x = r , s = 1 and T = 545 > (4s2)s =
4. We get r < 2 × 545 log 545 = 6868, a contradiction.

(ii) Assume we are in case (ii), then

x + 1 < 4.8 × 106(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

. (3.30)

Now,

x + 1 > x >
nr2 log r

2.02
= nr2 log(r + 1)

(
log r

2.02 log(r + 1)

)

>
nr2 log(r + 1)

2.03
, since r > 1012.

Put y := x + 1

n log(r + 1)
. The above inequality becomes y >

r2

2.03
. Inequality

(3.30) can be rewritten in terms of y as

y = x + 1

n log(r + 1)
< x + 1 < 4.8 × 106(log(r + 1))2

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

y < 4.8 × 106(log(r + 1))2
(
log

(
0.3n2(n + 1)y2

)) 1
3

< 4.8 × 106(log(r + 1))2
(
log

(
0.3 · 1002(100 + 1)y2

)) 1
3
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< 4.8 × 106(log(r + 1))2
(
13 + 2 log y

) 1
3 .

We look at the function

f (y) := y(
13 + 2 log y

) 1
3

.

Its derivative is

f ′(y) = 6 log y + 37

3
(
13 + 2 log y

) 4
3

> 0,

so our function is increasing. Since f (y) < 4.8×106(log(r+1))2, and y >
r2

2.03
,

then

f

(
r2

2.03

)
< 4.8 × 106(log(r + 1))2,

(
r2

2.03

)

[
(13 + 2 log

(
r2

2.03

)] 1
3

< 4.8 × 106(log(r + 1))2.

This gives

r

(log r)
3
2

< 5916.

Wenow apply Lemma 2.1with the data: x = r , s = 3
2 and T = 5916 > (4s2)s =

27. We get r < 2
3
2 × 5916(log 5916)

3
2 < 428311, a contradiction.

(iii) Assume we are in case (iii), then we use the same substitution y := x + 1

n log(r + 1)
to get

y = x + 1

n log(r + 1)
<

x + 1

n

< 1.38 × 106
(
1 + 1

r log r

)
(log(r + 1))2

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

))2

< 1.38 × 106 × 1.001(log(r + 1))2
(
log

(
0.3n2(n + 1)y2

))2
= 1.38 × 106 × 1.001(log(r + 1))2

(
log

(
0.3 × 1002(100 + 1)y2

))2
< 1.39 × 106(log(r + 1))2

(
13 + 2 log y

)2
.
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By similar arguments in (ii), the function

f (y) := y(
13 + 2 log y

)2 ,

is also increasing, so we deduce that

(
r2

2.03

)

[
13 + 2 log

(
r2

2.03

)]2 < 1.39 × 106(log(r + 1))2,

or
r

(log r)2
< 77835.

We again apply Lemma 2.1 with the data: x = r , s = 2 and T = 77835 >

(4s2)s = 256.Weget r < 22×77835(log 77835)2 < 3.95×107, a contradiction.
(iv) We go to case (iv) of Lemma 3.1, and still use the same substitution y :=

x + 1

n log(r + 1)
to get

y = x + 1

n log(r + 1)
<

x + 1

n

< 6.41 × 106
(
1 + 1

r log r

)
(log(r + 1))3

(
log

(
x + 1

512
3 (log(r + 1))2

))2

< 6.41 × 106 × 1.001(log(r + 1))3
(
log

(
0.006n2y2

))2
= 6.41 × 106 × 1.001(log(r + 1))3

(
log

(
0.006 × 1002y2

))2
< 6.42 × 106(log(r + 1))3

(
4.1 + 2 log y

)2
.

By similar arguments as in (ii), the function

f (y) := y(
4.1 + 2 log y

)2 ,

is also increasing, so we deduce that

(
r2

2.03

)

[
4.1 + 2 log

(
r2

2.03

)]2 < 6.42 × 106(log(r + 1))3

or
r

(log r)
5
2

< 38757.
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We again apply Lemma 2.1 with the data: x = r , s = 5
2 and T = 38757 >

(4s2)s = 3125. We get r < 2
5
2 × 38757(log 38757)

5
2 < 7.96 × 107, a contra-

diction.
(v) Lastly, we are in case (v) of Lemma 3.1, and still use the same substitution

y := x + 1

n log(r + 1)
to get

y = x + 1

n log(r + 1)
<

x + 1

n

<

log

[
99 log(r + 1)

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3
]

n log r

+ 2.2 × 106
(
1 + 1

r log r

)
(log(r + 1))3

×

⎛
⎜⎜⎜⎜⎝log

⎡
⎢⎢⎢⎢⎣

x + 1

100(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

2

<

1

3
log 99 log(r + 1) log(0.3n2(n + 1)y2)

2 log 1012
+ 2.2 × 106 × 1.01(log(r + 1))3

×
(
log

[
0.01n2y2

(log(0.3n2(n + 1)y2))
1
3

])2

.

Since 2 ≤ n ≤ 100 for this subsection, we have

y <

1

3
log 99 log(r + 1) log(0.3 × 1002(100 + 1)y2)

2 log 1012
+ 2.2

× 106 × 1.01(log(r + 1))3

×
(
log

[
0.01 × 1002y2

(log(0.3 × 22(2 + 1)y2))
1
3

])2

< (13 + 2 log y) log(r + 1) + 2.3 × 106(log(r + 1))3
(
log

[
100y2

(log(3.6y2))
1
3

])2

< (13 + 2 log y)(log(r + 1))3 + 2.3 × 106(log(r + 1))3

× (10 log y − log log 3.6y2)2

< 26 log y log(r + 1) · 2.3 × 106(log(r + 1))3 × (10 log y)2

< 6 × 109(log(r + 1))4(log y)2.
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The function

f (y) := y

(log y)2
,

has derivative

f ′(y) := log y − 2

(log y)3
> 0,

for all y > e2, which is our case. Thus f (y) is also increasing, so we deduce that

(
r2

2.03

)

[
log

(
r2

2.03

)]2 < 6 × 109(log(r + 1))4,

or
r

(log r)3
< 220727.

We again apply Lemma 2.1 with the data: x = r , s = 3 and T = 220727 >

(4s2)s = 46656. We get r < 23 × 220727(log 220727)3 < 3.3 × 109, a contra-
diction.

This completes the proof of Lemma 3.2. �	
Now, having bounds 2 ≤ n ≤ 100 and 3 ≤ r ≤ 1012, the inequalities in Lemma 3.1
become

(i) x < 8.1 × 106(log(r + 1))2

≤ 8.1 × 106(log(1012 + 1))2

< 6.2 × 109.

(ii)
x < 4.8 × 106(log(r + 1))2

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

≤ 4.8 × 106(log(1012 + 1))2
(
log

(
0.3(100 + 1)(x + 1)2

(log(3 + 1))2

)) 1
3

.

x

log x
< 7.4 × 109.

We apply Lemma 2.1 with the data: s = 1 and T = 7.4× 109 > (4s2)s . We get
x < 2 × 7.4 × 109 log 7.4 × 109 < 3.4 × 1011.

(iii)
x < 1.38 × 106n

(
1 + 1

r log r

)
(log(r + 1))2

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

))2

≤ 1.38 × 106 × 100 × 1.01(log(1012 + 1))2
(
log

(
0.3(100 + 1)(x + 1)2

(log(3 + 1))2

))2

.
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x

(log x)2
< 3.3 × 1012.

We apply Lemma 2.1 with the data: s = 2 and T = 3.3 × 1012 > (4s2)s . We
get x < 22 × 3.3 × 1012(log 3.3 × 1012)2 < 1.1 × 1016.

(iv)
x < 6.41 × 106n

(
1 + 1

r log r

)
(log(r + 1))3

(
log

(
x + 1

512
3 (log(r + 1))2

))2

≤ 6.41 × 106 × 100 × 1.01(log(1012 + 1))3
(
log

(
x + 1

512
3 (log(3 + 1))2

))2

.

x

(log x)2
< 1.4 × 1013.

We apply Lemma 2.1 with the data: s = 2 and T = 1.4 × 1013 > (4s2)s . We
get x < 22 × 1.4 × 1013(log 1.4 × 1013)2 < 5.2 × 1016.

(v)

x <

log

[
99 log(1012 + 1)

(
log

(
0.3(100 + 1)(x + 1)2

(log(3 + 1))2

)) 1
3
]

log 3

+ 2.2 × 106 × 100 × 1.01(log(1012 + 1))3

×

⎛
⎜⎜⎜⎝log

⎡
⎢⎢⎢⎣

x + 1

100(log(3 + 1))2
(
log

(
0.3(2 + 1)(x + 1)2

(log(1012 + 1))2

)) 1
3

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

2

< 4400(log(x + 1))
1
3 + 4.7 × 1012(log(x + 1) − (−1) log 458(log(x + 1))

1
3 )2.

x

(log x)3
< 2.9 × 1013.

We apply Lemma 2.1 with the data: s = 3 and T = 2.9 × 1013 > (4s2)s . We
get x < 23 × 2.9 × 1013(log 2.9 × 1013)3 < 7 × 1018.

From all the above inequalities, we have x < 7 × 1018. Now we perform the Baker-
Davenport reduction on relation (27) in [1], for 2 ≤ n ≤ 100, 3 ≤ r ≤ 1012 and
x < 7× 1018. This also gives m < 7.1× 1020 via inequality (19) in [1]. We return to
(27) in [1] and rewrite it as

∣∣∣∣∣x
logUn+1

logα
− m + log

√
r2 + 4

logα

∣∣∣∣∣ <
2.2

r x logα
. (3.31)

We now apply Lemma 5 from [1], with the following data:

M := 7.1 × 1020, τ := logUn+1

logα
, μ := log

√
r2 + 4

logα
, A := 2.2

logα
and B := r .

A computer search in Mathematica reveals that x ≤ 89, which is a contradiction (an
already treated case in Subsection 3.2). This computation lasted for 8 days on an 8GB
RAM laptop.
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3.9 The case n > 100

In this subsection, we adopt relations (54) and (55) on page 674 of [1]. Using bounds
obtained in Lemma 3.1, the statement in Lemma 13 of [1] is correct. Its proof follows
exactly as given in [1], but using relations given here in Lemma 3.1. For this reason,
we adopt the statement of Lemma 13 in [1]. We also adopt relations (56) to (58) in [1],
since they are well derived. However, for us here, we use the fact that for r ≥ 1012,

then we still maintain
log(r + 1)

log r
< 1.0001.

Next, we state and prove Lemma 3.3 below. This is analogous to Lemma 14 in [1],
though it fell short out of the actual ranges.

Lemma 3.3 If r ≥ 4, then r ≤ 3.3 × 1014.

Proof We now use the bounds on x given in Lemma 3.1.

(i) Here,

50r2 log r < x < 8.1 × 106(log(r + 1))2

r2 <

(
8.1 × 106

50

)(
log(r + 1)

log r

)
log(r + 1).

r

log r
< 403.

We apply Lemma 2.1 with the data: s = 1 and T = 403 > (4s2)s = 4. We get
r < 2 × 403 log 403 < 4836, a contradiction.

(ii) In this situation,

x + 1 < 4.8 × 106(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

.

In case
x + 1

log(r + 1)
≤ n, we have

x + 1

log(r + 1)
≤ n < 196 log(r + 1)

(
log

(
2.5x

log(r + 1)

))2

.

x + 1 < 196(log(r + 1))2
(
log

(
2.5x

log(r + 1)

))2

.

Putting y := x

log(r + 1)
, we get y < 196 log(r + 1)(log 2.5y)2. Note that
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y = x

log(r + 1)
>

nr2 log r

2.01 log(r + 1)
≥ 101r2

2.01

(
log(r + 1)

log r

)

>
101r2

2.02
= 50r2.

In the above inequalities, we have used the fact that r ≥ 1012. The function

f (y) = y

(log 2.5y)2
is increasing for all y >

e2

2.5
, which is our case. Hence, the

inequality y < 196 log(r + 1)(log 2.5y)2 should hold when y is replaced with
50r2. This gives

50r2 < 196 log(r + 1)(log 2.5 × 50r2)2.
r

(log r)
3
2

< 91.

Applying Lemma 2.1 with the data: s = 3
2 and T = 91 > (4s2)s = 27. We get

r < 2
3
2 × 91(log 91)

3
2 < 2466, a contradiction.

Thus n <
x + 1

log(r + 1)
. Since 0.3(n + 1) < n <

x + 1

log(r + 1)
, we can conclude

that

x + 1 < 4.8 × 106(log(r + 1))2
(
log

(
(x + 1)3

(log(r + 1))3

)) 1
3

< 7 × 106(log(r + 1))2
(
log

(
x + 1

log(r + 1)

)) 1
3

.

Putting y := x + 1

log(r + 1)
, we get y < 7 × 106 log(r + 1)(log y)

1
3 . The function

f (y) = y

(log y)
1
3

is increasing for all y > 50r2 > 50(1012)2 = 5× 1024, so we

get that the above inequality should hold when y is replaced with 50r2. Thus,

50r2 < 7 × 106 log(r + 1)(log(50r2))
1
3 .

r

(log r)2
< 528.

We again apply Lemma 2.1 with the data: s = 2 and T = 528 > (4s2)s = 256.
We get r < 22 × 528(log 528)2 < 8.4 × 104, a contradiction.

(iii) In the third case, we have

x + 1 < 1.38 × 106n

(
1 + 1

r log r

)
(log(r + 1))2

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

))2
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< 1.39 × 106n(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

))2

.

We have already shown in (ii) that the case
x + 1

log(r + 1)
≤ n is impossible. Thus,

n <
x + 1

log(r + 1)
and still we use the fact that 0.3(n + 1) < n <

x + 1

log(r + 1)
.

We can now write

x + 1 < 1.39 × 106
[
196 log(r + 1)

(
log

(
2.5x

log(r + 1)

))2
]

(log(r + 1))2

×
(
log

(
(x + 1)3

(log(r + 1))3

))2

.

Putting y := x + 1

log(r + 1)
, we get

y < 4.72 × 108(log(r + 1))2(log 2.5y)2(log y)2

< 4.72 × 108(log(r + 1))2(log 2.5y)4.

The function f (y) = y

(log 2.5y)4
is increasing for all y > 50r2 > 50(1012)2 =

5×1025, so we get that the above inequality should hold when y is replaced with
50r2. Thus,

50r2 < 4.72 × 108(log(r + 1))2(log(2.5 × 50r2))4.
r

(log r)3
< 2.9 × 105.

We again apply Lemma 2.1 with the data: s = 3 and T = 2.9× 105 > (4s2)s =
46656. We get r < 23 × 2.9× 105(log 2.9× 105)3 < 4.7× 109, a contradiction.

(iv) In case (iv) of Lemma 3.1, we have

x + 1 < 6.41 × 106n

(
1 + 1

r log r

)
(log(r + 1))3

(
log

(
x + 1

512
3 (log(r + 1))2

))2

< 6.5 × 106n(log(r + 1))3
(
log

(
x + 1

(log(r + 1))2

))2

.
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We have already shown in (ii) that the case
x + 1

log(r + 1)
≤ n is impossible. Thus,

n <
x + 1

log(r + 1)
and we can now write

x + 1 < 6.5 × 106
[
196 log(r + 1)

(
log

(
2.5x

log(r + 1)

))2
]

(log(r + 1))2

×
(
log

(
(x + 1)2

(log(r + 1))2

))2

.

Putting y := x + 1

log(r + 1)
, we get

y < 1.3 × 109(log(r + 1))2(log 2.5y)2(log y2)2

< 5.2 × 109(log(r + 1))2(log 2.5y)4.

The function f (y) = y

(log 2.5y)4
is increasing for all y > 50r2 > 50(1012)2 =

5×1024, so we get that the above inequality should hold when y is replaced with
50r2. Thus,

50r2 < 5.2 × 109(log(r + 1))2(log(2.5 × 50r2))4.
r

(log r)3
< 9.6 × 105.

We again apply Lemma 2.1 with the data: s = 3 and T = 9.6× 105 > (4s2)s =
46656. We get r < 23×9.6×105(log 9.6×105)3 < 2.1×1010, a contradiction.

(v) In the last case of Lemma 3.1, we have

x + 1 <

log

[
99 log(r + 1)

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3
]

log r

+ 2.2 × 106n

(
1 + 1

r log r

)
(log(r + 1))3

×

⎛
⎜⎜⎜⎜⎝log

⎡
⎢⎢⎢⎢⎣

x + 1

100(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

2

.

We have already shown in the previous cases that
x + 1

log(r + 1)
≤ n is impossible.

Thus, n <
x + 1

log(r + 1)
and still we use the fact that 0.3(n+1) < n <

x + 1

log(r + 1)
.
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We can now write

x + 1 < 3 log(r + 1)

(
log

(
x + 1

log(r + 1)

)) 1
3

+ 2.3 × 106
[
196 log(r + 1)

(
log

(
2.5x

log(r + 1)

))2
]

(log(r + 1))3

×
(
log

(
x + 1

log(r + 1)

)
−

(
100 log(r + 1) log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3
)2

.

Putting y := x + 1

log(r + 1)
, we get

y < 3(log y)
1
3 + 4.51 × 108 (log 2.5y)2 (log(r + 1))3

(
log y − (log y3)

1
3

)2

< 3(log y)
1
3 + 4.51 × 108 (log 2.5y)2 (log(r + 1))3 (log y)2

< 1.4 × 109 (log 2.5y)5 (log(r + 1))3.

The function f (y) = y

(log 2.5y)5
is increasing for all y > 50r2 > 50(1012)2 =

5×1024, so we get that the above inequality should hold when y is replaced with
50r2. Thus

50r2 < 1.4 × 109(log(r + 1))3(log(2.5 × 50r2))5.
r

(log r)4
< 1.6 × 108.

We again apply Lemma 2.1 with the data: s = 4 and T = 1.6 × 108 > (4s2)s .
We get r < 24 × 1.6 × 108(log 1.6 × 108)4 < 3.3 × 1014. �	

At this point, having bounds on r makes it easy to find bounds on x . For example,

n < 196 log(r + 1)

(
log

(
2.5x

log(r + 1)

))2

< 196 log(3.3 × 1014 + 1)

(
log

(
2.5x

log(4 + 1)

))2

< 6826(log 2.5x)2.

Next, we go through the five cases of Lemma 3.1.

(i) If x is in case (i), then we have

x < 8.1 × 106(log(r + 1))2

< 8.1 × 106(log(3.3 × 1014 + 1))2

< 9.1 × 109.
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(ii) In the second case,

x < 4.8 × 106(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3

< 4.8 × 106(log(3.3 × 1014 + 1))2
(
log

(
0.3(6827(log 2.5x)2)(x + 1)2

(log(4 + 1))2

)) 1
3

< 1.68 × 1010 log x .

By Lemma 2.1 with the data: s = 1 and T = 1.68 × 1010 > (4s2)s , we get
x < 2 × 1.68 × 1010(log 1.68 × 1010) < 8 × 1011.

(iii) In case (iii),

x < 1.38 × 106n

(
1 + 1

r log r

)
(log(r + 1))2

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

))2

< 1.39 × 106(6826(log 2.5x)2)(log(3.3 × 1014 + 1))2

×
(
log

(
0.3(6827(log 2.5x)2)(x + 1)2

(log(4 + 1))2

))2

< 8.3 × 1015(log x)2.

By Lemma 2.1 with the data: s = 2 and T = 8.3 × 1015 > (4s2)s , we get
x < 22 × 8.3 × 1015(log 8.3 × 1015)2 < 4.5 × 1019.

(iv) Here,

x < 6.41 × 106n

(
1 + 1

r log r

)
(log(r + 1))3

(
log

(
x + 1

512
3 (log(r + 1))2

))2

< 6.42 × 106(6826(log 2.5x)2)(log(3.3 × 1014 + 1))3(log(x + 1))2

< 1.4 × 1015(log x)4.

By Lemma 2.1 with the data: s = 4 and T = 1.4 × 1015 > (4s2)s , we get
x < 24 × 1.4 × 1015(log 1.4 × 1015)4 < 3.32 × 1022.

(v) Lastly, we have

x <

log

[
99 log(3.3 × 1014 + 1)

(
log

(
0.3(6827(log 2.5x)2)(x + 1)2

(log(4 + 1))2

)) 1
3
]

log 4

+ 2.3 × 106(6826(log 2.5x)2)(log(3.3 × 1014 + 1))3

×

⎛
⎜⎜⎜⎜⎝log

⎡
⎢⎢⎢⎢⎣

x + 1

100(log(4 + 1))2
(
log

(
0.3(2 + 1)(3 + 1)2

(log(3.3 × 1014 + 1))2

)) 1
3

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

2
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< 10 log x + 5.9 × 1014(log 2.5x)2(log(x + 1))2

< 6 × 1014(log x)5.

By Lemma 2.1 with the data: s = 5 and T = 6 × 1014 > (4s2)s , we get
x < 25 × 6 × 1014(log 6 × 1014)5 < 8.8 × 1023.

Therefore r < 3.3× 1014 and x < 8.8× 1023 and n < 6826(log 2.5x)2 < 2.2× 107.
Further, by relation (19) in [1], one gets that m < 2 × 1031. Inequality (56) in [1]
gives that

∣∣∣∣∣
log

√
r2 + 4

logα
− x(n + 1) − m

x − 1

∣∣∣∣∣ <
1

rn(x − 1) logα
<

1

16(x − 1)2
, (3.32)

where in the last inequality, we used the fact the rn = r2rn−2 ≥ 16x > 16(x − 1).

In particular, the ratio
x(n + 1) − m

x − 1
is a convergent of

log
√
r2 + 4

logα
. Since x <

8.8 × 1023 < F120, it follows that

x(n + 1) − m

x − 1
= pk

qk
,

for some k ∈ [0, 119]. So, we apply Lemma 4 in [1] on inequality (3.32) with the data:

M := 2 × 1031, τ := log
√
r2 + 4

logα
, u := x(n + 1) − 1, and v := x − 1.

With the help of a computer search in Mathematica, we checked all these possibilities
over all the values for 4 ≤ r ≤ 3.3 × 1014 and found that n ≤ 52, which is a
contradiction. This computation lasted 3.5 days on an 8GB RAM laptop.

3.10 The case r = 3

The case r = 3 is special since we do not know that κ > 0, so some of the inequalities
used for the case r ≥ 4 do not apply.
If n ≤ 100, then Lemma 3.1 gives five possibilities on bounds of x . We go through
the possibilities.

(i) If x is in case (i), then we have

x < 8.1 × 106(log(r + 1))2 = 8.1 × 106(log(3 + 1))2 < 1.6 × 107.

(ii) In the second case,

x < 4.8 × 106(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3
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≤ 4.8 × 106(log(3 + 1))2
(
log

(
0.3(101)(x + 1)2

(log(3 + 1))2

)) 1
3

< 1.63 × 107 log x .

By Lemma 2.1 with the data: s = 1 and T = 1.63 × 107 > (4s2)s , we get
x < 2 × 1.63 × 107(log 1.63 × 107) < 5.42 × 108.

(iii) In case (iii),

x < 1.38 × 106n

(
1 + 1

r log r

)
(log(r + 1))2

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

))2

< 1.8 × 106(100)(log(3 + 1))2
(
log

(
0.3(101)(x + 1)2

(log(3 + 1))2

))2

< 1.1 × 1010(log x)2.

By Lemma 2.1 with the data: s = 2 and T = 1.1 × 1010 > (4s2)s , we get
x < 22 × 1.1 × 1010(log 1.1 × 1010)2 < 2.4 × 1013.

(iv) Here,

x < 6.41 × 106n

(
1 + 1

r log r

)
(log(r + 1))3

(
log

(
x + 1

512
3 (log(r + 1))2

))2

< 8.4 × 106(100)(log(3 + 1))3(log(x + 1))2

< 2.3 × 109(log x)2.

By Lemma 2.1 with the data: s = 2 and T = 2.3 × 109 > (4s2)s , we get
x < 22 × 2.3 × 109(log 2.3 × 109)2 < 4.3 × 1012.

(v) Lastly, we have

x <

log

[
99 log(3 + 1)

(
log

(
0.3(101)(x + 1)2

(log(3 + 1))2

)) 1
3
]

log 3
+ 2.9 × 106(100)(log(3 + 1))3

×

⎛
⎜⎜⎜⎝log

⎡
⎢⎢⎢⎣

x + 1

100(log(3 + 1))2
(
log

(
0.3(2 + 1)(3 + 1)2

(log(3 + 1))2

)) 1
3

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

2

< 4 log x + 7.8 × 108(log(x + 1))2

< 8 × 108(log x)3.

By Lemma 2.1 with the data: s = 3 and T = 8 × 108 > (4s2)s , we get
x < 23 × 8 × 108(log 8 × 108)3 < 5.6 × 1013.

In all cases, x < 5.6 × 1013. Now we perform the Baker-Davenport reduction on
relation (27) in [1] for 2 ≤ n ≤ 100, r = 3 and x < 5.6 × 1013. This also gives
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m < 5.7 × 1015 via inequality (19) in [1]. We return to (27) in [1] and rewrite it as

∣∣∣∣∣x
logUn+1

logα
− m + log

√
r2 + 4

logα

∣∣∣∣∣ <
2.2

r x logα
. (3.33)

We now apply Lemma 5 in [1] with the following data:

M := 5.7 × 1015, τ := logUn+1

logα
, μ := log

√
r2 + 4

logα
, A := 2.2

logα
and B := r .

AMathematica codeperformedBaker-Davenport reduction and revealed that x ≤ 222.
This gives a better bound on x .
If n > 100, then we have relation (60) on page 680 of [1]. We keep the notation

r and α although this Subsection applies to r = 3 for which α = 3 + √
13

2
. Put

� := min{n − 1, x − 1}. The lower bound in inequality (58) of [1] still applies and
gives

� log 3 < − log |�3| < 195

(
max

{
log

(
2.5x

log 4

)
, 10.5

})2

(log 4)2.

If � = n − 1, then

(n − 1) log 3 < 375

(
max

{
log

(
2.5x

log 4

)
, 10.5

})2

.

In case the maximum above is 10.5, then log

(
2.5x

log 4

)
< 10.5 and so x < 20140. This

further implies that (n − 1) log 3 < 4.2 × 104 so that n < 3.9 × 104.

In case the maximum is log

(
2.5x

log 4

)
, then

(n − 1) log 3 < 375

(
log

(
2.5x

log 4

))2

.

This gives n < 120(log x)2. We now go through the five possibilities of Lemma 3.1.

(i) If x is in case (i), then we have

x < 8.1 × 106(log(r + 1))2 = 8.1 × 106(log(3 + 1))2 < 1.6 × 107.

(ii) In the second case,

x < 4.8 × 106(log(r + 1))2
(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

)) 1
3
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≤ 4.8 × 106(log(3 + 1))2
(
log

(
0.3(121(log x)2)(x + 1)2

(log(3 + 1))2

)) 1
3

< 2.1 × 107(log x)2.

By Lemma 2.1 with the data: s = 2 and T = 2.1 × 107 > (4s2)s , we get
x < 22 × 2.1 × 107(log 2.1 × 107)2 < 2.4 × 1010.

(iii) In case (iii),

x < 1.38 × 106n

(
1 + 1

r log r

)
(log(r + 1))2

(
log

(
0.3(n + 1)(x + 1)2

(log(r + 1))2

))2

< 1.8 × 106(120(log x)2)(log(3 + 1))2
(
log

(
0.3(121(log x)2)(x + 1)2

(log(3 + 1))2

))2

< 5.8 × 1010(log x)4.

By Lemma 2.1 with the data: s = 4 and T = 5.8 × 1010 > (4s2)s , we get
x < 24 × 5.8 × 1010(log 5.8 × 1010)4 < 3.51 × 1017.

(iv) Here,

x < 6.41 × 106n

(
1 + 1

r log r

)
(log(r + 1))3

(
log

(
x + 1

512
3 (log(r + 1))2

))2

< 8.4 × 106(120(log x)2)(log(3 + 1))3(log(x + 1))2

< 2.7 × 109(log x)4.

By Lemma 2.1 with the data: s = 4 and T = 2.7 × 109 > (4s2)s , we get
x < 24 × 2.7 × 109(log 2.7 × 109)4 < 9.61 × 1015.

(v) Lastly, we have

x <

log

[
99 log(3 + 1)

(
log

(
0.3(120(log x)2)(x + 1)2

(log(3 + 1))2

)) 1
3
]

log 3

+ 2.9 × 106(120(log x)2)(log(3 + 1))3

×

⎛
⎜⎜⎜⎜⎝log

⎡
⎢⎢⎢⎢⎣

x + 1

100(log(3 + 1))2
(
log

(
0.3(101 + 1)(3 + 1)2

(log(3 + 1))2

)) 1
3

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

2

< 4 log x + 9.3 × 108(log(x + 1))4

< 3.8 × 109(log x)4.

By Lemma 2.1 with the data: s = 4 and T = 3.8 × 109 > (4s2)s , we get
x < 24 × 3.8 × 109(log 3.8 × 109)4 < 1.44 × 1016.
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So, in all instances, x < 1.44×1016, and now n < 120(log x)2 < 1.67×105. Further,
by relation (19) in [1], one gets that m < 2.41 × 1021.
Since Lemma 13 in [1] still applies, then it follows that inequality (60) in [1] gives

∣∣∣∣∣
log

√
r2 + 4

logα
− x(n + 1) − m

x − 1

∣∣∣∣∣ <
1

3n−1(x − 1) logα
<

1

3(x − 1)2
, (3.34)

In particular, the ratio
x(n + 1) − m

x − 1
is a convergent of

log
√
r2 + 4

logα
. Since x <

1.44 × 1016 < F80, it follows that

x(n + 1) − m

x − 1
= pk

qk
,

for some k ∈ [0, 79]. So, we apply Lemma 4 in [1] on inequality (3.34) with the data:

M := 2.41 × 1021, τ := log
√
r2 + 4

logα
, u := x(n + 1) − 1, and v := x − 1.

With the help of a computer search in Mathematica, we checked for r = 3 and found
that n ≤ 37, which is a contradiction.
Next, if � = x − 1, then we adopt the remaining results given on pages 681 − 683 of
[1]. �	
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