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Abstract
The paper gives characterizations of the supernorm statistic ̂N : P → N

+ for par-
titions, where P is the set of integer partitions and N

+ is the positive integers. The
supernorm statistic map is a bijection onto N+ that defines a total order on partitions,
the supernorm ordering, obtained by pulling back the additive total order on N+. The
supernorm ordering refines two partial orders on partitions: the multiset inclusion
order, whose image under ̂N is the divisibility lattice on N

+, and the Young’s lattice
order. The paper shows that it is characterized by these two properties, additionally
with the requirement of an order-isomorphism from the multiset inclusion order to the
divisibility order. It is also characterized by these two properties, additionally with the
requirement of mapping the partitions with exactly one part bijectively to the prime
numbers. It presents a construction showing that the latter additional conditions are
necessary for the characterization to hold.

Keywords Integer partitions · Partial orders · Young’s lattice

Mathematics Subject Classification Primary 05A17 · Secondary 11P81 · 06A06

1 Introduction

Let P denote the set of all integer partitions λ. We denote a partition λ :=
(λ1, λ2, · · · λr ) using part notation, requiring λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1, having r
nonzero parts. Alternatively, we denote a partition λ using part-multiplicity notation,
λ = [1m12m2 · · · jm j · · · ], where m j = m j (λ) ≥ 0, is the multiplicity of j as a part
of λ, with finitely many m j (λ) nonzero. We write |λ| to indicate the size of λ, which
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196 J. C. Lagarias

is the sum of its parts, so that |λ| := ∑

i λi = ∑

j jm j . We let Par(n) denote the set
of all partitions of size n, so that P = ⋃

n≥0 Par(n), with the empty partition λ = ∅
having |λ| = 0. The length �(λ) := r = ∑

j m j (λ) of a partition λ is the number of
its parts. We let Pr denote the set of all partitions of length r , so that P = ⋃

r≥0 Pr ,
with P0 containing the empty partition.

Dawsey, Just and Schneider [2] recently introduced a new partition statistic, the
supernorm ̂N (λ) of a partition λ ∈ P . It is defined by ̂N (∅) = 1 and, for nonempty
partitions,

̂N (λ) =
∏

1≤i≤�(λ)

pλi ,

where pk denotes the k th prime in increasing order, for k ≥ 1, and we set p0 = 1.
The paper [2] proves that the supernorm map ̂N : P → N

+ is a bijection onto N
+.

The pullback from N
+ to P of the additive total ordering on N

+ under this bijection
̂N then defines a total ordering ≤S on partitions P , which we term the supernorm
ordering.

The supernorm ordering refines two natural partial orders on the set of integer
partitions P .

(1) Themultiset inclusion order, denoted⊆M , is the ordering on partitions given by
inclusion of parts (counted with multiplicity). That is, λ ⊆M μ if there is a matching
of all the parts of λ with a subset of the parts of μ, i.e., the multiset of parts of λ is a
sub-multiset of themultiset of parts ofμ, e.g., λ = (3, 2, 1) ⊆M μ = (5, 3, 3, 2, 2, 1).
This partial order was denoted ≤ by George Andrews in [1, Chap. 8].

(2) TheYoung’s lattice order, denoted⊆Y , is the ordering havingλ ⊆Y μ, whenever
the Young diagram for λ fits inside the Young diagram for μ, see [12, Sect. 1.7]. That
is, λ ⊆Y μ holds when λ j ≤ μ j for 1 ≤ j ≤ �(λ) (parts enumerated in decreasing
order), e.g., λ = (3, 2, 1) ⊆Y μ = (4, 3, 1, 1).TheYoung’s lattice ordering is denoted
⊂ in Stanley [11, Chap. 7], see also [12, Example 3.4.4].

This object of this paper is to characterize the supernorm ordering in terms of
compatibility conditionswith these orderings.We show that the supernormmap N̂ (·) is
the unique bijectivemapM : P → N

+ which has suitable order-preserving conditions
for these two natural partial orderings onP with respect to two partial orderings onN+,
the multiplicative (divisibility) partial order and the additive total order, respectively.
We give two different characterizations and also supply a complementary result on
the necessity of an extra hypothesis in the second characterization.

We note that the supernorm ordering is not compatible with some other natural
orderings on partitions. It does not refine the reverse lexicographic ordering on par-
titions Par(n) of size n (a total ordering), nor does it refine the majorization partial
ordering on partitions of size Par(n), as defined in Stanley [11, Vol. II, Chap. 7].
Counterexamples exist starting at n = 6.

2 Main results

This section states three results, two characterization theorems and a complementary
theorem; proofs follow in sections 3 to 5.
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Characterizing the supernorm partition statistic 197

The first result characterizes the supernormmap by a strong compatibility condition
on the multiset inclusion order and a weaker one on the Young’s lattice order. We say
that a map M : (A,�1) → (B,�2) between two partially ordered sets A and B
is order-preserving if a �1 a2 ⇒ M(a1) �2 M(a2). We say that it is an order-
isomorphism if it is bijective and if a �1 a2 ⇔ M(a1) �2 M(a2).

Theorem 2.1 (Strong compatibility characterization of supernorm map) The super-
norm map ̂N is the unique bijection M : P → N

+ that has the following two
properties:

(i) The mapping M gives an order-isomorphism of the multiset inclusion ordering on
partitions, written λ1 ≤M λ2, onto the divisibility partial order relation on N

+.
That is,

λ ⊆M μ ⇐⇒ M(λ) |M (μ).

(ii) The mapping M gives an order-preserving map of the Young’s lattice partial
ordering, written λ ⊆Y μ into the additive ordering on N+. That is,

λ ⊆Y μ �⇒ M(λ) ≤ M(μ).

The multiset inclusion order is refined by the Young’s lattice order, i.e., λ ⊆M μ

implies λ ⊆Y μ. Thus Theorem 2.1 implies the well-known fact that the divisor order
is refined by the additive total order, i.e., m | n implies m ≤ n for m, n ∈ N

+.
There are many maps M : P → N

+ that have properties (i) and (ii) if one weakens
the bijective hypothesis onM(·) to require only surjectivity. The “norm” statistic N (λ),
which is the product of the parts of a partition, satisfies both conditions (i) and (ii).
The “norm” statistic was named and studied in [10]; it appears earlier without being
given a name, e.g., Lehmer [9]. The “norm” map is surjective but not bijective to N+.
More generally, if we require one-part partitions P1 to map on to a set of integers S
in increasing order that includes the set P of all prime numbers, and we extend its
definition to all partitions multiplicatively, then we will get a map MS(·) that satisfies
properties (i) and (ii) and is surjective on N

+.
The second result gives a characterization of the supernorm map in terms of a

weakening of condition (i) to require the map M to be an order-preserving map of the
multiset inclusion ordering ⊆M into the divisibility order; we call this condition (i’).
The characterization then requires an extra condition (iii) specifying the range M(P1)

of the set of one-part partitions under the bijective map M .

Theorem 2.2 (Weak compatibility characterization of supernormmap)The supernorm
map ̂N is the unique bijection M : P → N

+ that has the following three properties:

(i’) The mapping M gives an order-preserving map of the ordering on partitions given
by inclusion of multisets of parts, written λ ⊆M μ, into the divisibility partial
order relation on N

+. That is,

λ ⊆M μ �⇒ M(λ) |M (μ).
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198 J. C. Lagarias

(ii) The mapping M gives an order-preserving map of the Young’s lattice partial
ordering, written λ ⊂Y μ to the additive ordering on N+. That is, λ ⊆ μ implies

λ ⊆Y μ �⇒ M(λ) ≤ M(μ).

(iii) The image M(P1) of the set of partitions P1 having exactly one part is the set P
of all prime numbers.

The third result shows the condition (iii) is necessary in Theorem 2.2 to obtain
a characterization of the supernorm map. A set S ⊂ N

+ is admissible it there is a
bijective map M : P → N

+ satisfying properties (i’) and (ii) above, having the image
of one-part partitions M(P1) = S. The following result shows that the hypothesis
S = P imposed in Theorem 2.2 may be understood as a minimality condition on
admissible S.

Theorem 2.3 (Uncountability of admissible sets)

(1) There are uncountably many admissible sets S ⊂ N
+, which are sets S ⊂ N

+
such that there is a bijective map M : P → N

+ having S = M(P1), and that has
the following two properties:

(i’) The mapping M gives an order-preserving map of the ordering on partitions
given by inclusion of multisets of parts, written λ ⊆M μ into the divisibility
partial order relation on N+. That is,

λ ⊆M μ �⇒ M(λ) |M (μ).

(ii) The mapping M gives an order-preserving map of the Young’s lattice partial
ordering, written λ ⊆Y μ, into the additive ordering on N+. That is, λ ⊆Y λ2
implies

λ ⊆Y μ �⇒ M(λ) ≤ M(μ).

(2) Any admissible set S necessarily contains the set P of all prime numbers.

Theorem 2.3 is proved by an inductive set-theoretic construction which is effective
at each step. The allowed admissible sets S are not arbitrary; the composite numbers
appearing in S have to satisfy the local constraints of a combinatorial number-theoretic
nature. In Sect. 6, we exhibit some local constraints of this kind.

3 Strong characterization Theorem 2.1

Theorem 2.1 characterizes the supernorm statistic in terms of compatibility with two
partial orders on the set of all partitions P with two orders on N+, one partial and one
total. The order compatibility condition (i) is “multiplicative” and (ii) is “additive.”

In the following proof, the “direct direction” of property (i) of refers to the direction
⇒, and the “converse direction” of (i) refers to ⇐. Property (i’) in Theorem 2.2 is the
“direct direction” ⇒ of property (i).
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Characterizing the supernorm partition statistic 199

Proof of Theorem 2.1 We must show existence and uniqueness.
Existence. By definition, ̂N (·) has ̂N (∅) = 1. For one-part partitions λ = [m], the

supernorm has ̂N ([m]) = pm , the mth prime in increasing order, with p1 = 2. For a
general partition λ = [1e12e2 · · · ] of size n = ∑

j≥1 je j , it is given by

̂N (λ) =
∏

j≥1

(p j )
e j .

The map ̂N (·) is bijective to its range N+by the fundamental theorem of arithmetic
that asserts unique prime factorization of integers n ≥ 2, and all prime factorizations
occurring.

To show property (i) holds, take λ = [1e12e2 · · · ] and μ = [1 f12 f2 · · · ] (allowing
multiplicities e j ≥ 0, f j ≥ 0). One has λ ≤M μ if and only if e j ≤ f j for all j ≥ 1,
which holds if and only if

̂N (λ) =
∏

j

(p j )
e j |

∏

j

(p j )
f j = ̂N (μ).

Thus ̂N (·) satisfies the property (i).
To show property (ii) holds, wewrite λ = (λ1, λ2, ...)with parts given in decreasing

order λ1 ≥ λ2 ≥ · · · and setting λ j = 0 for j > r , the number of parts in λ. We write
μ = (μ1, μ2, · · · ) similarly. Then λ ⊂Y μ if and only if λ j ≤ μ j for all j ≥ 1. Now,
using the convention that p0 = 1, we have, since j ≤ k implies p j ≤ pk ,

̂N (λ) =
∏

j≥1

pλ j ≤
∏

j≥1

pμ j = ̂N (μ).

where we take the products over all j up to the maximum of the number of nonzero
parts of λ and μ. Thus ̂N (·) satisfies the property (ii).

Uniqueness. We show M(∅) = 1. Since ∅ ⊆M λ for all partitions λ, by property
(i) M(∅)|M(λ). Since the range of M(λ) is N+, M(∅) must be an integer that divides
all positive integers, necessarily M(∅) = 1.

Since themapM(·) is injective, it follows thatM(λ) ≥ 2 for all nonempty partitions
λ.

To state the following claim, let P� denote the set of all partitions having exactly
� parts. Let �(m) count the number of prime factors of m, with multiplicity. Set
Q� = {m : �(m) = �}. The proof of this claim uses only the direct direction (i’) of
property (i).

Claim 1 For each � ≥ 1,
�

⋃

j=1

Q j ⊆
�

⋃

j=1

M(P j ). (3.1)

To prove Claim 1, start with � = 1. The claim says that all primes are images of
partitions with one part. If a prime p = M(λ) where λ = (λ1, λ2, ...) had two or

123



200 J. C. Lagarias

more parts, then since M(λ1) ≥ 2, and M(λ1) | M((λ1, λ2)) by injectivity (i’), and
since M((λ1, λ2)) is an integer distinct from M((λ1)),it must have at least two prime
factors. But now M((λ1, λ2)) | M(λ), hence M(λ) is not a prime, a contradiction.

The claim asserts that all integers having at most � prime factors, counted with
multiplicity, must appear as images under M(·) of partitions with at most � parts. We
show the contrapositive: no partition with � parts is an image under M(·) of a partition
with �+1 ormore parts. For any partition � having �+1 ormore parts, using injectivity
(i’), we may form a chain of divisibilities

M(λ1) | M((λ1, λ2)) | · · · | M((λ1, ..., λ�)) | M((λ1, .., λ�+1)).

All these integers are distinct, by injectivity (i’) of M(·), hence each one includes an
additional prime factor (proceeding left to right), and therefore, the last one has at least
� + 1 prime factors (counted with multiplicity). Using only the direct direction (i’)
of property (i), the last term M((λ1, ..., λ�+1)) divides M(λ), which therefore cannot
have � or fewer prime factors, a contradiction. This proves Claim 1.

Claim 2 For each � ≥ 1,
Q� = M(P�). (3.2)

To prove Claim 2, we proceed by induction on �. We start with the base case � = 1
and must show Q1 = M(P1). Suppose for a contradiction that there is a composite
number n with prime factorization n = p1 p2 · · · pk with k ≥ 2 such that n = M(λ)

for some one-part partition λ = [m]. We have Q1 ⊆ M(P1) by Claim 1, so each
pk = M(λk) for some one-part partition λk := [mk], and necessarily each mk 
= m.
By the converse direction of property (i), since p1 | n, the partition λ must contain the
part λ1 = m1. But it also contains the part m 
= m1 by hypothesis, so it contains at
least two parts, contradiction.

The induction hypothesis will be that the claim Q j = M(P j ) holds for all 1 ≤ j ≤
� and we are to prove Q�+1 = M(P�+1). Claim 1 asserts

⋃�+1
j=1 Q j ⊆ ⋃�+1

j=1 M(P j ).

The induction hypothesis yields

�
⋃

j=1

Q j =
�

⋃

j=1

M(P j ).

Since M(·) is a bijection, and Q�+1 is disjoint from
⋃�

j=1 Q j , we conclude

Q�+1 ⊆ M(P�+1). (3.3)

To show that Q�+1 = M(P�+1), suppose for a contradiction that some λ ∈ P�+1 has
M(λ) = n with n a composite number with r ≥ � + 2 prime factors n = p1 p2 · · · pr .
Then n will be strictly divisible by some n′ having exactly � + 1 prime factors (with
multiplicity), and by (3.3),there exists λ′ ∈ P�+1 with M(λ′) = n′, with n′ 
= n. Since
n′ | n, by the converse direction of property (i), λ′ ⊆M λ in the part inclusion order.
But n′ 
= n so by the bijective property λ′ 
= λ. It follows that λ has at least one more
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Characterizing the supernorm partition statistic 201

part than λ′, so it is not in P�+1, contradiction. This completes the induction step and
proves Claim 2.

We have not yet used the Young’s lattice partial order property (ii). This property
suffices to order the elements to establish that M(λ) = ̂N (λ) for all λ.

Claim 3 For all partitions λ,

M(λ) = ̂N (λ) :=
∏

λ j>0

pλ j , (3.4)

where pn denotes the n th prime in increasing order, setting p1 = 2.

To prove Claim 3, we have M(∅) = N (∅) = 1. For nonempty partitions λ, we have
by definition

̂N (λ) =
∏

λ j>0

pλ j .

We prove (3.4) by induction on the number � of nonzero parts of the partition.
The base case is � = 1. By Claim 2,we have Q1 = M(P1). Now Q1 = P is the

set of prime numbers, and the Young’s lattice ordering property (ii) requires them
to be listed in increasing order, e.g., for one-part partitions M((k)) ≤ M((k + 1)),
whence M([k]) < M([k + 1]) by distinctness. Hence for k ≥ 1, we must have (by a
sub-induction on k ≥ 1) that M([k]) = pk , where pk is the kth prime number. This
completes the base case.

Before proceeding to the general induction step, we first show directly that for a
rectangular partition

λ = [km] = (k, k, · · · , k) (m times)

consisting of m copies of a single part [k], that

M([km]) = ̂N ([km]) = (pk)
m .

We first note that if a partition λ contains a part k′ 
= k, then by the direct direction of
property (i), pk′ = M([k′]) | M(λ) and therefore M(λ) cannot be a power of pk . It
follows that the set M(λ) whose images are powers (pk)m of pk must consist only of
partitions of the form λ = [k j ] for various j . However,the map M(·) is surjective and
by Claim 2,we know Q� = M(P�), so the only possibility to have M([k�]) = (pk)m

is to have � = m, because [m]� ∈ P� while the right side is in Qm . In this way, we
must have M([km]) = (pk)m for all m ≥ 1.

For the induction step, we suppose (3.4) has been proved for all λ having at most �
parts, and we must prove it for each λ ∈ P�+1. In the case that λ = [k�+1] has all �+1
parts equal, we have shown above that M([k�+1]) = ̂N ([k�+1])) = (pk)�+1. We are
reduced to the case that λ has parts of multiplicity at most �, i.e., m j parts of size k j
with each m j ≤ �, for 1 ≤ j ≤ r (the number of distinct parts), and

∑

j m j = � + 1.
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202 J. C. Lagarias

By the induction hypothesis, using only the direct direction (i’) of property (i), we
have

M([km j
j ]) = ̂N ([km j

j ]) = (pk j )
m j | M(λ).

These factors M([km j
j ]) of M(λ) are pairwise relatively prime for different j , so we

conclude (by the Chinese remainder theorem) the divisibility relation

r
∏

j=1

(pk j )
m j | M(λ).

The left side is exactly ̂N (λ) and the multiplicity of its prime divisors is
∑r

j=1m j =
� + 1. Since λ ∈ P�+1, by Claim 2,we have M(λ) ∈ Q�+1, i.e., it also has exactly
� + 1 prime factors (with multiplicity) in its factorization into primes. Therefore,
M(λ) = ̂N (λ). This completes the induction step and proves Claim 3, which gives
the theorem. ��

4 Weak characterization Theorem 2.2

Proof of Theorem 2.2 Existence follows by Theorem 2.1, so it remains to show
uniqueness.

Recall that P� is the collection of all partitions having exactly � parts, and that Q�

is the set of all integers with exactly � prime divisors, counted with multiplicity. We
prove by induction on � ≥ 1 that Q� = M(P�), and at the same time that M(·) agrees
with the supernorm map ̂N (·) on P�.

For the base case � = 1, by hypothesis (iii),we have Q1 = M(P1). The Young’s
lattice ordering property (ii) then gives M([k]) = pk , the kth prime, for all k ≥ 1.
This proves the base case.

For the induction step, we suppose � ≥ 2 and that the induction hypothesis holds
for all 1 ≤ j ≤ � − 1. We know by the proof of Claim 1 of Theorem 2.1 that
⋃�

j=1 ⊂ ⋃�
j=1 Q� ⊆ M(P�) (whose proof used only property (i’)). By the induction

hypothesis, we have Q j = M(P j ) for 1 ≤ j ≤ � − 1, so since the map M(·) is a
bijection, we deduce the inclusion

Q� ⊆ M(P�).

We first observe that the only place that powers of a prime pk can appear as M(λ),
using property (i’), is as images of some rectangular partitions M([k�]), for some
� ≥ 1. To see this, suppose λ contains some part j other than k, then using the
base case M([ j]) = p j for j 
= k, property (i’) gives divisibility of M(λ) by p j , a
contradiction. The Young’s lattice partial order has [k�] ⊆Y [k�+1], which by property
(ii) now forces the assignment M([k�]) = (pk)� for � ≥ 1, by induction on � ≥ 1.
Therefore, the values of M(·) must agree with the supernorm map values ̂N (·) on all
rectangular partitions λ = [k�].
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Characterizing the supernorm partition statistic 203

The aim of the remainder of the induction step will show that property (i’) implies
that M(P�) is sufficient to exhaust all of Q�, so there is no room to insert at level
� any element mapping to an integer with �(m) ≥ � + 1, where �(m) counts the
number of primes dividing m, with multiplicity. In the process,we will also show that
all elements of P� must fall in position to agree with ̂N on P�, which will complete
the induction step for P�+1.

We have shown above that ̂N agrees with M on P� on rectangular partitions, and it
remains to treat nonrectangular partitions. By property (i’), if λ = [1m12m2 · · · ] having
� = ∑

i mi parts,withλ not a rectangular partition [k�], thenwe assert that∏ j (p j )
m j |

M(λ). To see this, for each fixed j with m j ≥ 1, we can find a subpartition λ
′
having

� − 1 parts that contain jm j , which by the induction hypothesis has (p j )
m j | M(λ′).

Since by property (i’) M(λ′) | M(λ), we conclude each (p j )
m j | M(λ), hence we

conclude
∏

j (p j )
m j | M(λ) by the Chinese remainder theorem, proving the assertion.

Now for any given λ = [1m12m2 · · · ] ∈ P� that is not a rectangular partition,
consider the integer ñ = ∏

j≥1(p j )
m j ∈ Q�. Since Q� ⊆ M(P�), there must exist

some nonrectangular μ ∈ P� with M(μ) = ñ. But for all nonrectangular μ ∈ P� with
μ 
= λ,we can showM(μ) 
= ñ. Ifμ = [1n12n2 · · · ] thenwe have n′ = ∏

j≥1(p j )
μ j |

M(μ) so M(μ) is already divisible by a number n′ with exactly � prime factors, with
n′ different from ñ, hence M(μ) 
= ñ. It follows that we must have M(λ) = n, so

M(λ) = ̂N (λ) =
∏

j≥1

(p j )
m j .

Thus, we have established the agreement of M(·) with ̂N (·) for all λ ∈ P�, and the
image of the map is Q�. This completes the induction step from P�−1 to P�. ��

5 Uncountable admissible set Theorem 2.3

Proof of Theorem 2.3 (1) We construct bijective maps M : P → N
+ satisfying prop-

erties (i’) and (ii) for uncountably many admissible sets S by a recursive set-theoretic
construction, by induction on n ≥ 1.

The construction makes use of the genuine supernorm map, as an indexing device.
We have shown ̂N (·) is a bijection from P to N

+ which refines the Young’s lattice
ordering with the additive ordering and refines the subset ordering with the divisibility
ordering on N

+.
We will assign the integers n one at a time, in order, to partitions, maintaining a

bijection at each step, and maintaining compatibility with the two partial orders on the
finite number of integers assigned so far. The partitions with one part will be ordered
by increasing order of n’s that we assign to the set S as we construct it, preserving the
Young’s lattice order on one-part partitions. The inclusion order divisibility condition
is vacuous on one-part partitions. The difficulty is to assign all partitions having two
or more parts correctly.

The supernorm map induces a total order on all the partitions with two or more
parts. We want to assign M(λ) for such partitions (having at least two parts), and we
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204 J. C. Lagarias

do the assignments in increasing order of supernorm value. Since the supernorm order
respects the subset order and the Young’s lattice order, for the partition λ ∈ P≥2 that
we are currently considering, all subpartitions of it, or partitions that it dominates in
the Young’s lattice order, have already been assigned values. The conditions thatM(λ)

must satisfy are as follows:

(1) by property (i’), to be divisible by all M(μ) for all μ ⊆M λ,
(2) by property (ii), to be larger than M(μ) for all μ ⊆Y λ.

These comprise a finite set of conditions, and we have not yet assigned all sufficiently
large integers past some point, hence all of the divisibility conditions and all of the size
conditions can simultaneously be satisfied, with infinitely many choices of an output
value. One only needs n divisible by the least common multiple of all the divisibility
conditions, and larger than all the bounds from property (ii).

So suppose we have bijectively assigned all integers≤ n, where n is given, and that
λ is the first partition with two or more parts (in the supernorm total order) to which
we have not yet assigned an integer M(λ).

We consider the two smallest legal choices we can make, call them n1 and n2,
that are larger than n. In the first case, we assign M(λ) = n1, and then for all not
yet assigned integers m with n < m < n1,we assign them one-part partitions (in
increasing order, of the one-part partitions not yet assigned.) After doing this, we
have assigned M(·)-values having output values all the integers up to n1, and we have
assigned M(λ) consistently with satisfying all constraints of type (i’) and (ii) up to
n1. So we may continue the construction.

In the second case,we assignM(λ) = n2 and assign all integersmwith n < m < n2
to one-part partitions. Again,we have extended the assignment to M(λ) consistently
yielding outputs of all integers up to n2, so we may continue the construction.

After this step,the original finite set S is replaced by two larger finite sets S′ and S′′,
and we have assigned values to all λ′ having two or more parts and having supernorm
̂N (λ′) < ̂N (λ), as well as values for one-part partitions taking values up to n1 − 1
(resp. n2 − 1).

In this construction, in which we preserve bijectivity at each step, we exhaust all
integers, because all integers up to n are assigned by the nth step of this construction.
The tree of constructions is a complete infinite binary tree with countably many levels.
Therefore,it has uncountably many leaves, which comprise a set of admissible infinite
sets S for which the construction works.

(2) The assertion P ⊆ S holds by Claim 1 of the proof of Theorem 2.1. Claim 1
was proved using only property (i’). ��

6 Combinatorial restrictions on admissible sets

Recall that a set S = M(P1) for which there is a bijection M satisfying the conditions
(i’) and (ii) of Theorem 2.3 is called admissible.

Suppose now that P is strictly contained in S. We first note that the condition
that the map M(·) be bijective implies that it cannot be multiplicative, i.e., M(λ)

cannot always be a product of the values of its one-part subpartitions (counted with
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multiplicity). Given a composite number n ∈ S, if M(·) were multiplicative, then n
would have two representations, one in P1 and another partition built of out the P1
pre-images of its prime divisors, all of which occur as images of P1.

We show admissible sets S in Theorem 2.3 must satisfy “local” combinatorial
restrictions on their form, ruling out various finite configurations of their composite
values. The next two lemmas exhibit such restrictions.

Lemma 6.1 If S is admissible and contains n = 4, then S must contain at least one of
n = 6 or n = 8.

Proof Let S = M(P1) and suppose M([1)]) = 2, M([2]) = 3 but that M([3]) = 4,
which is not a prime number. We then have M([4]) = 5, since 5 ∈ S because S
contains all primes. Suppose that S does not contain 6, so that M(λ) = 6 requires λ to
have at least two parts. We are to show that S contains 8. Where can n = 6 be placed
for a bijection? Now M((1, 1)) is divisible by 2 and it cannot be 4, so M((1, 1)) ≥ 6.
We must choose M((1, 1)) = 6 by property (ii) because M((1, 1)) is smaller in the
Young’s lattice order than any other partition with two or more parts, and all numbers
less than 6 are already assigned. Now by property (i’), M((2, 1)) is divisible by M(1)
and M(2), hence by 6, and by bijectivity of M(·), we must have M((2, 1)) ≥ 12.

Set M(λ) = 8, and suppose for a contradiction that 8 /∈ S, so that λ has at least two
nonzero parts. By property (i’),all the parts of λ must be 1 or 3, so λ contains either
(1, 1) or (3, 1), or (3, 3) as a subpartition. But (3, 1) and (3, 3) both dominate (2, 1) in
the Young’s lattice partial order, whence M(λ) ≥Y M((2, 1)) ≥ 12, a contradiction.
And if λ contains (1, 1) then, by property (i’), M(1, 1) | M(λ) whence M(λ) will be
divisible by 6, a contradiction.

We conclude that there is some one-part partition M(λ) = 8. In fact, we must have
M([5] = 7 and M([6]) = 8. ��
Lemma 6.2 If S is admissible, does not contain n = 4, and does contain n = 6, then
S must also contain n = 10.

Proof Let S = M(P1) and suppose M([1]) = 2, M([2]) = 3, M([3]) = 5, while by
hypothesisM([4]) = 6 ∈ S is not a prime number. ThenM((1, 1)) = 4 using property
(ii), because M((1, 1)) is lower in the Young’s lattice order than all partitions with two
or more nonzero parts, so M((1, 1)) = 4 is necessary for M(·) to be a bijection. By
property (i’), M((2, 1)) must be divisible by 6, and since M([4]) = 6, the injectivity
of M(·) forces M((2, 1)) ≥ 12.

Next we observe M((3, 1)) is divisible by 10, by property (i’). If M((3, 1)) = 10
(as occurs for the supernorm ̂N (·)), then since (2, 1) ⊆Y (3, 1), property (ii) implies
M((2, 1)) ≤ M((3, 1)), and M((2, 1)) ≥ 12, giving a contradiction. Now injectivity
of the mapping M(·) shows that M((3, 1)) ≥ 20.

Suppose now, for a contradiction that S does not contain 10. Letting M(λ) = 10,
then λ must have at least two nonzero parts. These parts can only take values 1 and 3,
otherwise a prime other than 2 or 5would divideM(λ), or it would have a non-maximal
divisor bigger than 5. We have three cases:

(1) λ cannot contain both a part 1 and a part 3 since, by property (i’), M(λ) would
then be divisible by M((3, 1)) and M((3, 1)) ≥ 20, a contradiction.
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(2) λ cannot contain (3, 3) since, byproperty (ii), (3, 1) ⊆Y (3, 3) impliesM((3, 3)) ≥
M((3, 1)) ≥ 20. Additionally,M((3, 3)) | M(λ) by property (i), so we get a
contradiction.

(3) λ = [1 j ] for some j ≥ 2. But M((1, 1)) = 4 and all λ = [1 j ] for j ≥ 2 are
divisible by M((1, 1)) by property (i’), contradicting M(λ) = 10.

We conclude that there is a one-part partition λ = [m] having M([m]) = 10 so
10 ∈ S. ��

There will evidently be an infinite number of such local restrictions. The examples
above suggest further questions about such local restrictions.

(1) Does the set of all local restrictions have a simply describable structure?
(2) The local restrictions above suggest that once S contains a composite number,

it must contain more composite numbers. How many more composite numbers
are forced, in a density sense? Might this number grow faster than the number of
primes? Could it be that all admissible S strictly larger than P necessarily have a
counting function, call it πS(x), of the integers in S up to and including x , that has
arbitrarily large x with πS(x) > cx for some c = c(S) > 0?

7 Concluding remarks

(1) The characterizations given in Theorem 2.1 and 2.2 show that compatibility with
both the multiset inclusion order and Young’s lattice order on partitions produces,
in an intrinsic way, the prime indexing function P : N → P sending k �→ pk , with
P(0) = 1, P(1) = 2, P(2) = 3, P(3) = 5, . . . as it lists the images of the partitions
with one part. A functional inverse P−1(·) of the prime indexing function P(·) is
related to the prime counting function π(x), via

P−1(y) =
{

π(y) when π(y) > π(y − 1),

0 otherwise.

The characterization theorems here exhibit a natural place where the function P(x)
occurs.

(2) The prime indexing function P(·) has received limited attention in the literature,
in the context of other number-theoretic functions. There is no known algorithmwhich,
given k as input, computes P(k) in polynomial time in the bit-length of k, which is
�log2 k�. However, computing the whole ensemble {P(k) : 1 ≤ k ≤ x} up to a given
input bound x can be done in amortized polynomial time O(log x) per individual
P(k); for a sharp bound, see Helfgott [8]. The function P−1(y) also appears to be
hard to compute.

8 Afterword

This paper is dedicated to the memory of Ronald L. Graham. Ron had a great interest
in partitions of all kinds. He wrote papers on integer partitions [4], partitions of sets
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[5], partitions of graphs [3] (with Erdős), partitions of the planeE2 [6], and on Ramsey
theory, concerning unavoidable patterns on finite partitions of the positive integersN+
[7].
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