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Abstract
Weprove a quantitative result for the number of sign changes of the Fourier coefficients
of a Hermitian cusp form of degree 2. In addition, we prove a quantitative result for
the number of sign changes of the primitive Fourier coefficients. We give an explicit
upper bound for the first sign change of the Fourier coefficients of a Hermitian cusp
form of degree 2 over certain imaginary quadratic extensions.
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1 Introduction and statement of themain results

The distribution of signs of the Fourier coefficients of a non-zero elliptic cusp form
has been a subject of study for several mathematicians over the past years. One aspect
of this problem is the study of number of sign changes of the Fourier coefficients.
Knopp, Kohnen, and Pribitkin in [14] proved that the Fourier coefficients of a non-
zero elliptic cusp form f on a congruence subgroup of the full modular group SL2(Z)

have infinitely many sign changes. They use the Landau’s theorem on Dirichlet series
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with non-negative coefficients and the finiteness of the Hecke L-function attached to
the elliptic cusp form f to prove their result. In addition, one can see that [16] and
[18] are devoted to the study of sign changes of the Fourier coefficients of an elliptic
Hecke eigenform. A more subtle problem is to give an explicit upper bound for the
first sign change. This has been studied for elliptic cusp forms of square-free level by
Choie and Kohnen [2]. Later, their result has been improved by He and Zhao [11]. For
elliptic Hecke eigenforms of level N the problem has been dealt in [13, 16].

The theory of elliptic modular forms has been generalized to several variables.
Hermitian modular forms over an imaginary quadratic field K are one of those gener-
alizations. In this article, we give a quantitative result for the number of sign changes
of the Fourier coefficients of a Hermitian cusp form F of degree 2. Moreover, we also
give a quantitative result for the number of sign changes of the primitive Fourier coef-
ficients. Note that Yamana [22] has established that F is determined by its primitive
Fourier coefficients. Also, we provide an explicit upper bound for the first sign change
of the Fourier coefficients of a Hermitian cusp form over certain imaginary quadratic
fields. To the best of our knowledge, this is the first attempt to study the distribution
of signs of the Fourier coefficients of a Hermitian cusp form. Now, we introduce the
necessary notations to state our results.

Let d > 0 be a square free integer. Throughout the article, let K = Q(
√−d) be a

fixed imaginary quadratic field. Let

DK =
{

−4d if − d ≡ 2, 3 (mod 4),

−d if − d ≡ 1 (mod 4)

be the discriminant of K . Let OK be the ring of integers of K and O#
K = i√|DK |OK

be the inverse different of K over Q. The Hermitian modular group of degree 2 over
K is given by

U2(OK ) = {M ∈ M4(OK ) | Mt
J2M = J2},

where J2 =
(
02 −I2
I2 02

)
, I2 and 02 are the 2 × 2 identity matrix and zero matrix

respectively. The subgroup

SU2(OK ) = U2(OK ) ∩ SL4(OK )

coincides with the full modular group U2(OK ) if DK �= −3,−4. We denote by
Sk(SU2(OK )) the space of Hermitian cusp forms of degree 2 on SU2(OK ) (defined
in Sect. 2.1). Any F ∈ Sk(SU2(OK )) has a Fourier series expansion of the form:

F(Z) =
∑
T∈�+

2

AF (T )e(tr(T Z)) =
∑

n,m∈Z,r∈O#
K

n,m,nm−N (r)>0

AF (n, r ,m)qnζ r1 ζ r2 (q ′)m, (1)
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where

�+
2 =

{
T =

(
n r
r m

) ∣∣∣∣ n,m ∈ Z, r ∈ O#
K , T > 0

}
, Z ∈

(
τ z1
z2 τ ′

)
∈ H2,

q = e(τ ), ζ1 = e(z1), ζ2 = e(z2), q ′ = e(τ ′), e(z) = e2π i z . The first result of this
article gives a quantitative result for the sign changes of the Fourier coefficients of F .

Theorem 1.1 Let F ∈ Sk(SU2(OK )) be a non-zero Hermitian cusp form with real
Fourier coefficients AF (T ). Then AF (T ) changes sign at least once for |DK |det(T ) ∈
(X , X + X3/5] for X � 1.

For any T ∈ �+
2 , we define

μ(T ) = max{l ∈ N | l−1T ∈ �+
2 }.

We say that T is primitive if μ(T ) = 1. The Fourier coefficient of F at a primitive
T is known as primitive Fourier coefficient. The second result of this article gives the
following quantitative result on the number of sign changes of the primitive Fourier
coefficients.

Theorem 1.2 Let F ∈ Sk(SU2(OK )) be non-zero with real Fourier coefficients
AF (T ). Then the primitive Fourier coefficients AF (T ) changes sign at least once
for |DK |det(T ) ∈ (X , X + X3/5] for X � 1.

Theorem 1.1 implies that there are infinitely many sign changes of the Fourier coeffi-
cients of F ∈ Sk(SU2(OK )). Next, we focus our attention on establishing an explicit
upper bound for the first sign of any F ∈ Sk(SU2(OK )). To accomplish this, we first
establish a Sturm bound for Hermitian modular forms of degree 2.

Theorem 1.3 Let K = Q(
√−d) where d ∈ {1, 2, 3, 7, 11, 15}. Also, let

F(τ, z1, z2, τ
′) =

∑
n,m∈Z,r∈O#

K
n,m,nm−N (r)≥0

AF (n, r ,m)qnζ r1 ζ r2 (q ′)m ∈ Mk(SU2(OK )).

If AF (n, r ,m) = 0 for all 0 ≤ n ≤ β and 0 ≤ m ≤ β, where

β =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
k

2(5−d)

]
if d = 1, 2,

[
2k

(19−d)

]
if d = 3, 7, 11, 15,

then

F = 0.
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Finally, using Theorem 1.3, we give an explicit upper bound for the first sign change
of the Fourier coefficients of a Hermitian cusp form of degree 2.

Theorem 1.4 Let K = Q(
√−d) where d ∈ {1, 2, 3, 7, 11, 15}. Suppose F ∈

Sk(SU2(OK )) is non-zero with real Fourier coefficients AF (T ). Then there exist
T1, T2 ∈ �+

2 with

tr(T1), tr(T2) � (4cdk)
2+ε,

for any real ε > 0, where

cd =
{

7+d
5−d if d = 1, 2,
29+d
19−d if d = 3, 7, 11, 15,

such that

AF (T1)AF (T2) < 0.

Remark 1.5 For F ∈ Sk(SU2(OK )) with complex Fourier coefficients AF (T ), the
Fourier series with Re(AF (T )) (respectively Im(AF (T ))) are again in Sk(SU2(OK )).
Therefore, there is an obvious reformulation of Theorems 1.1, 1.2 and 1.4 for arbitrary
F ∈ Sk(SU2(OK )) with AF (T ) replaced by Re(AF (T )) and Im(AF (T )).

The article is organized as follows: In the next section we recall the definition of
three concepts used in this paper; Hermitian modular forms of degree 2, Hermitian
Jacobi forms and Jacobi formswithmatrix index.We show thatHermitian Jacobi forms
occur as the coefficients in the Fourier–Jacobi expansion of a Hermitian modular form
of degree 2. In Sects. 3 and 4, we give the proof of Theorems 1.1 and 1.2 respectively.
Section5 is the largest, and contains the proof of Theorem 1.3. We prove Proposition
5.1, Theorems 5.2, and 5.3 in this section, which may be of interest on their own.
Finally, in Sect. 6, we prove Theorem 1.4.

Notation For any ring R ⊂ C, we write by Rn = {(α1, · · · , αn) | αi ∈ R} the set
of row matrices of size 1 × n with entries in R. We denote by Mn(R) the set of all
n×n matrices with entries in R. Let GLn(R) be the group of matrices in Mn(R) with
non-zero determinant and let SLn(R) be the group of matrices with determinant 1. For
any M ∈ Mn(R), we write by M the complex conjugate of M and by Mt the transpose
of matrix M . We denote by det(M) and tr(M) the determinant and trace of the matrix
M respectively. Also let A[B] denote the matrix B

t
AB for two complex matrices A

and B of appropriate sizes. For α ∈ C, we write e(α) := e2π iα and N (α) := αα. We
denote by O×

K , the group of units in OK .
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2 Preliminaries

2.1 Hermitianmodular forms of degree two

The Hermitian upper-half space of degree 2 is defined by

H2 =
{
Z =

(
τ z1
z2 τ ′

)
∈ M2(C) | 1

2i
(Z − Z

t
) > 0

}
.

The Hermitian modular group U2(OK ) acts on H2 by

M · Z = (AZ + B)(CZ + D)−1 where Z ∈ H2,

(
A B
C D

)
∈ U2(OK ).

For any non-negative integer k, we define the action ofU2(OK ) on the set of functions
fromH2 to C by

(F |k M)(Z) = (det(CZ + D))−k F(M · Z).

For a positive integer N , we define the congruence subgroup 	
(2)
0 (N ) of SU2(OK )

by

	
(2)
0 (N ) =

{ (
A B
C D

)
∈ SU2(OK ) | C ≡ 02 (mod NOK )

}
.

Note that if N = 1 then 	
(2)
0 (1) = SU2(OK ).

Definition 2.1 A holomorphic function F : H2 → C is called a Hermitian modular
form of weight k on 	

(2)
0 (N ) if it satisfies

F |k M = F (2)

for all M ∈ 	
(2)
0 (N ).

We denote by Mk(	
(2)
0 (N )) the space of Hermitian modular forms of degree 2 on the

group 	
(2)
0 (N ). Any F ∈ Mk(	

(2)
0 (N )) possesses a Fourier series expansion of the

form:

F(Z) = F(τ, z1, z2, τ
′) =

∑
T∈�2

AF (T )e(tr(T Z))

=
∑

n,m∈Z,r∈O#
K

n,m,nm−N (r)≥0

AF (n, r ,m)qnζ r1 ζ r2 (q ′)m, (3)
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where q = e(τ ), ζ1 = e(z1), ζ2 = e(z2), q ′ = e(τ ′) and

�2 =
{
T =

(
n r
r m

) ∣∣∣∣ n,m ∈ Z, r ∈ O#
K , T ≥ 0

}
.

Moreover, F is called a cusp form if AF (T ) = 0 whenever det(T ) = 0. We denote
by Sk(	

(2)
0 (N )) the space of cusp form in Mk(	

(2)
0 (N )). We note down the following

result by Yamana [22] which characterizes a Hermitian cusp form by its primitive
Fourier coefficients.

Theorem 2.2 Suppose F ∈ Sk(SU2(OK )) is non-zero with Fourier coefficients
AF (T ). Then there exists a primitive matrix T0 ∈ �+

2 such that AF (T0) �= 0.

The group GL2(OK ) acts on �+
2 by T �→ gt Tg, where g ∈ GL2(OK ). We have the

following lemma.

Lemma 2.3 Let T ∈ �+
2 be a primitive matrix. Then there exists g ∈ SL2(OK ) such

that gt T g =
(∗ ∗

∗ p

)
for some odd prime p.

Proof By [1, Lemma 3.1] there exists a g ∈ GL2(OK ) such that gt Tg =
(∗ ∗

∗ p

)
. Let

g =
(

α β

γ δ

)
∈ GL2(OK ) and T =

(
n r
r m

)
. Then we have

gt Tg =
(∗ ∗

∗ p = N (β)n + δrβ + βrδ + N (δ)m

)
.

We know that det(g) = ε, where ε ∈ O×
K . Therefore, we can take

g1 =
(

α/ε β

γ /ε δ

)
∈ SL2(OK )

such that gt1Tg1 =
(∗ ∗

∗ p

)
. ��

For any g ∈ SL2(OK ), we have

(
(gt )−1 02
02 g

)
∈ SU2(OK ). Applying the trans-

formation (2) on F ∈ Sk(SU2(OK )), we get the following relation on the Fourier
coefficients of F

AF (gT gt ) = AF (T ), for all g ∈ SL2(OK ), T ∈ �+
2 .

Now using Theorem 2.2 and Lemma 2.3 we get the following.

Lemma 2.4 Suppose F ∈ Sk(SU2(OK )) is non-zero with Fourier coefficients AF (T ).

Then, for some odd prime, p there exists a primitive T0 =
(∗ ∗

∗ p

)
∈ �+

2 such that

AF (T0) �= 0.
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On sign changes of fourier coefficients... 1043

2.2 Hermitian Jacobi forms

Let G = SL2(Z) �O2
K be the Hermitian Jacobi group overOK . The Jacobi group G

acts on H × C
2 as follows:

(g, (λ, μ)) · (τ, z1, z2) =
(
aτ + b

cτ + d
,
z1 + λτ + μ

cτ + d
,
z2 + λτ + μ

cτ + d

)
,

where g =
(
a b
c d

)
∈ SL2(Z), τ ∈ H, λ,μ ∈ OK , z1, z2 ∈ C. For any positive integer

N , let

	
(1)
0 (N ) =

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod NZ)

}
.

Definition 2.5 A holomorphic function φ : H × C
2 −→ C is a Hermitian Jacobi

form of weight k and index m on 	
(1)
0 (N ) if for each g =

(
a b
c d

)
∈ 	

(1)
0 (N ), and

λ,μ ∈ OK , we have

φ

(
aτ + b

cτ + d
,

z1
cτ + d

,
z2

cτ + d

)
= (cτ + d)ke

2π imcz1z2
cτ+d φ(τ, z1, z2), (4)

φ
(
τ, z1 + λτ + μ, z2 + λτ + μ

) = e−2π im(N (λ)τ+λz1+λz2)φ(τ, z1, z2) (5)

and φ has a Fourier series expansion of the form

φ =
∑

n∈Z,r∈O#
K

nm−N (r)≥0

c(n, r)qnζ r1 ζ r2 ,

where q = e(τ ), ζ1 = e(z1), ζ2 = e(z2).

We denote by Jk,m(	
(1)
0 (N )) the vector space of all Hermitian Jacobi forms of weight

k and index m on 	
(1)
0 (N ).

2.2.1 Theta decomposition

The invariance of φ under the action of (λ, 0) in (5) yields that the Fourier coefficient
c(n, r) is completely determined by r (mod mOK ) and nm − N (r). We define

cs(L) =
{
c (n, r) if r ≡ s (mod mOK ) and L = |DK |(nm − N (r)),

0 otherwise.
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1044 R. Nandi et al.

The theta decomposition of φ ∈ Jk,m(	
(1)
0 (N )) is given by

φm(τ, z1, z2) =
∑

s∈O#
K /mOK

hsθm,s,

where

hs(τ ) =
∞∑
L=0

L≡−N (s)|DK | (mod m|DK |Z)

cs(L)e

(
L

|DK |m τ

)
,

θm,s =
∑

r≡s (mod mOK )

e

(
N (r)

m
τ + r z1 + r z2

)
.

The theta components hs of φ are elliptic modular forms on the prinicipal congruence
subgroup 	(1)(|DK |Nm) (see [9, 10]).

2.3 Fourier–Jacobi expansion

Let F ∈ Sk(	
(2)
0 (N )) has Fourier series expansion of the form (3). We write the

Fourier series expansion of F as

F(τ, z1, z2, τ
′) =

∞∑
m=1

φme(mτ ′),

where φm =
∑

n∈Z,r∈O#
K

nm−N (r)≥0

AF (n, r ,m)e(nτ + r z1 + r z2). (6)

For

(
a b
c d

)
∈ 	

(1)
0 (N ) and (λ, μ) ∈ O2

K , the matrices

⎛
⎜⎜⎝
a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝
1 0 0 μ

λ 1 μ 0
0 0 1 −λ

0 0 0 1

⎞
⎟⎟⎠

are in 	
(2)
0 (N ). These matrices act on H2 by

(τ, z1, z2, τ
′) �→

(
aτ + b

cτ + d
,

z1
cτ + d

,
z2

cτ + d
, τ ′ − cz1z2

cτ + d

)
,

(τ, z1, z2, τ
′) �→ (τ, z1 + λτ + μ, z2 + λτ + μ, τ ′ + λz1 + λz2 + λ2τ + λμ)

respectively. Because F satisfies the transformation law (2), we can deduce
the two transformation laws of Hermitian Jacobi forms for φm , and therefore,
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φm ∈ Jk,m(	
(1)
0 (N )). We call (6) the Fourier–Jacobi expansion of F and φm’s the

Fourier–Jacobi coefficients of F .

2.4 Jacobi formwithmatrix index

The Jacobi group 	� = SL2(Z) � (Z� × Z
�) acts onH × C

� as follows:

(g, (λ, μ)) · (τ, z1, · · · , z�) =
(
aτ + b

cτ + d
,
z1 + λ1τ + μ1

cτ + d
, · · · ,

z� + λ�τ + μ�

cτ + d

)
,

where g =
(
a b
c d

)
∈ SL2(Z), τ ∈ H, λ = (λ1, · · · , λ�), μ = (μ1, · · · , μ�) ∈ Z

�

and z = (z1, · · · , z�) ∈ C
�.

Definition 2.6 Let M be a symmetric, positive definite, half-integral �×�matrix with
integral diagonal entries. A holomorphic functionψ : H×C

� −→ C is a Jacobi form
of weight k and index M on 	

(1)
0 (N ) if for each g ∈ 	

(1)
0 (N ) and λ,μ ∈ Z

�, we have

ψ

(
aτ + b

cτ + d
,

z1
cτ + d

, · · · ,
z�

cτ + d

)
= (cτ + d)ke2π i

cM[zt ]
cτ+d ψ(τ, z1, · · · , z�), (7)

ψ(τ, z1 + λ1τ + μ1, · · · , z� + λ�τ + μ�) = e−2π i(τM[λt ]+2λMzt )ψ(τ, z1, · · · , z�)

(8)

and ψ has a Fourier series expansion of the form

ψ(τ, z1, · · · , z�) =
∑

n∈Z,r∈Z�

4det(M)n−M#[r t ]≥0

c(n, r)qnζ r , (9)

where τ ∈ H, z = (z1, · · · , z�) ∈ C
�, q = e2π iτ , ζ r = e2π ir z

t
and M# is the adjugate

of M .

3 Proof of Theorem 1.1

Since F �= 0, there exists a m0 such that the Fourier–Jacobi coefficient φm0 �= 0 in
the Fourier–Jacobi expansion of F . Therefore, there exists s0 ∈ O#

K /m0OK such that
the theta component hs0 �= 0 in the theta decomposition of φm0 . The Fourier series
expansion of hs0 is given by

hs0(τ ) =
∞∑
n=1

n≡−N (s0)|DK | (mod m0|DK |Z)

a(n)e

(
n

|DK |m0
τ

)
,
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where

a(n) =

⎧⎪⎨
⎪⎩
AF (T ) if T =

(
n+N (s0)|DK |

|DK |m0
s0

s0 m0

)
∈ �+

2 ,

0 otherwise.

Wehavehs0 ∈ Sk−1(	
(1)(|DK |m0)) andhencehs0(|DK |m0τ) ∈ Sk−1(	

(1)
1 (|DK |2m2

0)).
We know that

Sk−1(	
(1)
1 (|DK |2m2

0)) =
⊕
ψ

Sk−1(	
(1)
0 (|DK |2m2

0), ψ),

where the direct sum is over all Dirichlet charactersmodulo |DK |2m2
0. For eachDirich-

let character ψ mod |DK |2m2
0, let fψ ∈ Sk−1(	

(1)
0 (|DK |2m2

0), ψ) be such that

hs0(|DK |m0τ) =
∑
ψ

fψ(τ).

Suppose the Fourier series expansion of fψ is given by fψ = ∑
n≥1

aψ(n)e(nτ). Then

from the above equation we have

∑
n≥1

a(n)e(nτ) =
∑
ψ

∑
n≥1

aψ(n)e(nτ). (10)

Let λ = k − 1 and

â(n) = a(n)

n(λ−1)/2
and âψ(n) = aψ(n)

n(λ−1)/2
.

Putting these values in (10), we get

∑
n≥1

â(n)n(λ−1)/2e(nτ) =
∑
ψ

∑
n≥1

âψ(n)n(λ−1)/2e(nτ).

From the above we also have

â(n) =
∑
ψ

âψ(n). (11)

Now using the bounds for âψ(n) from [12, Theorem 3.4, Corollary 3.5] and applying
(11) we achieve the following two estimates for â(n)

â(n) � nε,∑
n≤X

â(n) � X1/3+ε .
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Also, applying Rankin–Selberg method [19, p. 357, Theorem 1], [20, Eq. 1.14] to
hs0(|DK |m0τ) and following similar steps as we have in [12, Corollary 3.2], we get
that ∑

n≤X

â2(n) = cX + O(X3/5+ε),

where c is a constant depending on hs0(|DK |m0τ) and ε is any real number greater
than 0. Now applying [12, Theorem 2.1] we get that â(n) changes sign at least once
for n ∈ (X , X + X3/5] for X � 1. This implies that a(n) and hence AF (T ) where

T =
(

n+N (s0)|DK |
|DK |m0

s0
s0 m0

)
, change sign atleast once for |DK | det(T ) ∈ (X , X + X3/5]

for X � 1.

4 Proof of Theorem 1.2

The ring of integers OK of K is Z + ωZ, where

ω =
{√−d if − d ≡ 2, 3 (mod 4),

1+√−d
2 if − d ≡ 1 (mod 4).

We define the following set

J =
{(

x s
s y

)
| x, y ∈ Z, s = α + ωβ ∈ OK , 0 ≤ α, β, x, y < p

}
.

We first prove the following proposition which will be required to prove Theorem 1.2.

Proposition 4.1 Let F = ∑
T∈�+

2
AF (T )e(tr(T Z)) ∈ Sk(SU2(OK )). For any prime

p there exists a G p ∈ Sk(	
(2)
0 (p2)) such that the Fourier coefficients of G p is given

by

G p =
∑
T∈�+

2
p−1T∈�+

2

AF (T )e(tr(T Z)).

Proof Let

G := 1

p4
∑
Y∈J

F |k
(
I2 p−1Y
02 I2

)
.

We claim that G ∈ Sk(	
(2)
0 (p2)). It is enough to show that for any Y ∈ J , we have

G ′ = F |k
(
I2 p−1Y
02 I2

)
∈ Sk(	

(2)
0 (p2)). Let M =

(
A B
C D

)
∈ 	

(2)
0 (p2). It is easy to

123



1048 R. Nandi et al.

check that

(
I2 p−1Y
02 I2

) (
A B
C D

) (
I2 p−1Y
02 I2

)−1

∈ 	
(2)
0 (p2).

This implies that G ′ |k M = G ′, which asserts our claim. Now the Fourier series
expansion of G is given by

G(Z) = 1

p4
∑
Y∈H

F(Z + p−1Y )

= 1

p4
∑
Y∈J

∑
T∈�+

2

AF (T )e(tr(T Z + T p−1Y ))

= 1

p4
∑
T∈�+

2

AF (T )e(tr(T Z))
∑
Y∈J

e(tr(p−1TY )).

Now for any T ∈ �+
2 , we have

∑
Y∈J

e(tr(p−1TY )) =
{
p4 if p−1T ∈ �+

2 ,

0 Otherwise.

Therefore, the Fourier series expansion of G is given by

G =
∑
T∈�+

2
p−1T∈�+

2

AF (T )e(tr(T Z)).

Thus, we get the required Gp. ��

4.1 Proof of Theorem 1.2

Since F �= 0, by Lemma 2.4 there exists a primitive T0 =
(
n0 r0
r0 p

)
∈ �+

2 for some

odd prime p such that AF (T0) �= 0. Applying Proposition 4.1, we construct Gp from

F such that Gp ∈ Sk(	
(2)
0 (p2)) and the Fourier series expansion of Gp is given by

Gp =
∑
T∈�+

2
p−1T∈�+

2

AF (T )e(tr(T Z)).
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Let H = F−Gp. We observe that H ∈ Sk(	
(2)
0 (p2)) and the Fourier series expansion

of H is given by

H =
∑
T∈�+

2
p−1T /∈�+

2

AF (T )e(tr(T Z)).

Since T0 is primitive H �= 0. We consider the Fourier–Jacobi coefficient φp in the
Fourier–Jacobi expansion of H whose Fourier series expansion is given by

φp(τ, z1, z2) =
∑

T=
(
n r
r p

)
∈�+

2

p−1T /∈�+
2

AF (T )e(nτ + r z1 + r z2).

We have φp ∈ Jk,p(	
(1)
0 (p2)). Let s0 ∈ O#

K /pOK be such that s0 ≡ r0 (mod pOK ).
We consider the theta component hs0 �= 0 in the theta decomposition of φp. The
Fourier series expansion of hs0 is given by

hs0(τ ) =
∑
n≥1

n≡−N (s0)|DK | (mod p|DK |Z)

a(n)e

(
nτ

|DK |p
)

,

where

a(n) =

⎧⎪⎨
⎪⎩
AF (T ) if T =

(
n+N (s0)|DK |

|DK |p s0
s0 p

)
∈ �+

2 and p−1T /∈ �+
2 ,

0 Otherwise.

We have hs0 ∈ Sk−1(	
(1)(|DK |p3)). Now doing the similar calculation as we have

done in the proof of Theorem 1.1, we get that AF (T ) where T =
(

n+N (s0)|DK |
|DK |p s0
s0 p

)
,

p−1T /∈ �+
2 , changes sign atleast once for |DK |det(T ) ∈ (X , X + X3/5] for X � 1.

5 Sturm bound

Sturm [21] proved that an elliptic modular form is determined by its first few Fourier
series coefficients. The number of these first fewFourier coefficients is known as Sturm
bound. Sturm’s result has had a significant impact on the study of elliptic modular
forms. In this section we first develop a Sturm bound for Jacobi form with matrix
index. Following this we establish a relation between Jacobi form with matrix index
andHermitian Jacobi forms.We use this relation to derive a Sturmbound forHermitian
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1050 R. Nandi et al.

Jacobi forms. Finally we prove Theorem 1.3 using the Fourier–Jacobi expansion of
Hermitian modular form and Sturm bound of Hermitian Jacobi forms..

5.1 Sturm bound for Jacobi formwithmatrix index

Let

φ =
∑

n∈Z,r∈Zl

4det(M)n−M#[r t ]≥0

a(n, r)qnζ r ∈ Jk,M (	
(1)
0 (N )).

Let

M =

⎛
⎜⎜⎝

α11 α12/2 · · · α1�/2
α12/2 α22 · · · α2�/2
· · · · · · · · · · · ·

α1�/2 · · · · · · α��

⎞
⎟⎟⎠ ,

where αi j ∈ Z for i < j and αi i ≥ 0. We consider the Taylor series expansion of φ at
z1 = z2 = · · · = z� = 0, with Taylor coefficients Xv1,··· ,v�

(τ ),

φ =
∑

v1,··· ,v�≥0

Xv1,··· ,v�
(τ )zv11 · · · zv�

� . (12)

For each

(
a b
c d

)
∈ 	

(1)
0 (N ), using the transformation property (7) of φ and above

equation we get

∑
v1,··· ,v�≥0

Xv1,··· ,v�

(
aτ + b

cτ + d

)
zv11 · · · zv�

�

= (cτ + d)k+v1+···+v� e

(∑
1≤i≤ j≤� cαi j zi z j

cτ + d

) ∑
v1,···v�≥0

Xv1,··· ,v�
(τ )zv11 · · · zv�

�

= (cτ + d)k+v1+···+v�

⎛
⎝ ∑

1≤i≤ j≤�

∑
ti j≥0

1

ti j !
(
2π iαi j c

cτ + d

)ti j
(zi z j )

ti j

⎞
⎠

×
∑

v1,··· ,v�≥0

Xv1,··· ,v�
(τ )zv11 · · · zv�

� .

This implies that

Xv1,··· ,v�

(
aτ + b

cτ + d

)
= (cτ + d)k+v1+···+v�
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×
∑

1≤i≤ j≤�,
ti j≥0,

v j−2t j j−∑ j−1
s=1 ts j−

∑�
s= j+1 t js≥0

(
2π ic

cτ + d

)∑
1≤i≤ j≤� ti j

∏
1≤i≤ j≤�

α
ti j
i j∏

1≤i≤ j≤�

ti j !

× X
v1−2t11−∑�

s=1 t1s ,··· ,v�−∑�−1
s=1 ts�−t��

(τ ).

Following Eichler and Zagier [6, p. 31], we define

ζv1,··· ,v�
(τ ) =

∑
1≤i≤ j≤�, ti j≥0

v j−2t j j−∑ j−1
s=1 ts j−

∑�
s= j+1 t js≥0

(−2π i)(
∑

1≤i≤ j≤� ti j )

× (k + ∑�
i=1 vi − ∑

1≤i≤ j≤� ti j − 2)!
(k + ∑�

i=1 vi − 2)!

∏
1≤i≤ j≤�

α
ti j
i j∏

1≤i≤ j≤�

ti j !

× X
(
∑

1≤i≤ j≤� ti j )

(v1−2t11−∑�
j=2 t1 j ,··· ,v�−∑�−1

i=1 ti�−2t��)
(τ ),

where g(ν)(τ ) = (
∂
∂τ

)ν
g(τ ). It can be readily checked that ζv1,··· ,v�

(τ ) ∈
Mk+v1+···+v�

(	
(1)
0 (N )). The Fourier expansion of ζv1,··· ,v�

(τ ) is given by

ζv1,··· ,v�
(τ ) = (2π i)v1+···+v�

∑
n≥0

⎛
⎜⎜⎜⎝

∑
r=(r1,··· ,r�)∈Z�

4det(M)n−M#[r t ]≥0

κ a(n, r)

⎞
⎟⎟⎟⎠ qn,

where

κ =
∑

1≤i≤ j≤�,
ti j≥0,

v j−2t j j−∑ j−1
s=1 ts j−

∑�
s= j+1 t js≥0

(k + ∑�
i=1 vi − ∑

1≤i≤ j≤� ti j − 2)!
(k + ∑�

i=1 vi − 2)!

×
∏

1≤i≤ j≤�(−nα)ti j
∏�

w=1 r
vw−∑w−1

s=1 tsw−∑�
s=w+1 tws−2tww

w∏
1≤i≤ j≤� ti j !

∏�
w=1

(
vw − ∑w−1

s=1 tsw − ∑�
s=w+1 tws − 2tww

)
!
.

We further define

Dv1,··· ,v�
(φ) = (2π i)−(v1+···+v�)

(k + ∑n
i=1 vi − 2)!(∑�

i=1 vi )!
(k + β − 2)! ζv1,··· ,v�

(τ ),

where we take β =
∑�

i=1 vi
2 , if

∑�
i=1 vi is even and β = 1+∑�

i=1 vi
2 , if

∑�
i=1 vi is odd.
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1052 R. Nandi et al.

Proposition 5.1 We define

D : Jk,M (	
(1)
0 (N )) →

⊕
(v1,··· ,v�)
0≤vi≤2αi i

Mk+v1+···+v�
(	

(1)
0 (N )),

where the map from Jk,M (	
(1)
0 (N )) to Mk+v1,··· ,v�

(	
(1)
0 (N )) is given by

φ �→ Dv1,··· ,v�
(φ).

Then the linear map D is injective.

Proof We will show that if φ �= 0 then D(φ) �= 0. Let us choose a�, a�−1, · · · , a1 in
a minimal way such that Taylor coefficient Xa1,··· ,a�

(τ ) of φ in (12) is non-zero and
for all τ

Xv1,··· ,v�
(τ ) = 0 (0 ≤ ∀v� < a�; ∀v�−1, · · · , v1 ≥ 0),

Xv1,··· ,v�−1,a�
(τ ) = 0 (0 ≤ ∀v�−1 < a�−1; ∀v�−2, · · · , v1 ≥ 0), · · · ,

Xv1,a2··· ,a�
(τ ) = 0 (0 ≤ ∀v1 < a1).

We claim that ai ≤ 2αi i for all 1 ≤ i ≤ �. By [3, Lemma 3.1], we know that the
function

f1(τ, z1) =
∑
v1≥0

Xv1,a2,··· ,a�
(τ )zv11

is a non-zero classical Jacobi cusp form of weight k + a2 · · · + a� and index α11.
Therefore, by Eichler and Zagier result [6, Theorem 1.2, p. 10] we have a1 ≤ 2α11.
Now suppose 2 ≤ i ≤ �. We choose b�, · · · , bi−1, bi+1, · · · , b1, bi in a minimal way
such that Xb1,b2,··· ,b�

(τ ) �= 0 and for all τ

Xv1,··· ,v�
(τ ) = 0 (0 ≤ ∀v� < a�; ∀v�−1, · · · , v1, vi ≥ 0), · · ·

Xv1,b2,··· ,bi−1,vi ,bi+1,··· ,b�
(τ ) = 0 (0 ≤ ∀v1 < b1; ∀vi ≥ 0),

Xb1,··· ,bi−1,vi ,bi+1··· ,b�
(τ ) = 0 (0 ≤ ∀vi < bi ).

Again using minimality condition of b�, · · · , bi−1, bi+1, · · · , b1, bi , we see that

fi (τ, zi ) =
∑
vi≥0

Xb1,··· ,vi ,··· ,b�
(τ )zvii

is a non-zero classical Jacobi form of weight k + b1 + · · · + bi−1 + bi+1 +
· · · + b� and index αi i . Therefore, bi ≤ 2αi i . Since both a�, a�−1, · · · , a1 and
b�, · · · , bi−1, bi+1, · · · , b1, bi are minimal we must have

a� = b�, · · · , ai−1 = bi−1, and, ai ≤ bi .

123



On sign changes of fourier coefficients... 1053

This implies thatai ≤ 2αi i for all 1 ≤ i ≤ n. Sowehave proved that ifφ �= 0 then there
exists a Taylor coefficient Xa1,··· ,a�

(τ ) �= 0 such that ai ≤ 2αi i for all 1 ≤ i ≤ �. Again
using the minimality of a�, a�−1, · · · , a1, we see that Da1,··· ,a�

(φ) = αXa1,··· ,a�
(τ )

for some non-zero α ∈ C. Thus, D(φ) �= 0. ��
In the following theorem we establish a Sturm bound for Jacobi form with matrix

index.

Theorem 5.2 Let γ = [SL2(Z) : 	
(1)
0 (N )]. Let

φ =
∑

n∈Z,r∈Zl

4det(M)n−M#[r t ]≥0

a(n, r)qnζ r ∈ Jk,M (	
(1)
0 (N )).

If a(n, r) = 0, for all

n ≤ 1

12
(k + 2tr(M))γ,

then φ = 0.

Proof If a(n, r) = 0 for all n ≤ 1
12 (k + 2tr(M))γ then using the Fourier expansion

of Dv1,··· ,v�
(φ) and Sturm result for elliptic modular forms we get that

Dv1,··· ,v�
(φ) = 0

for all (v1, · · · , v�) satisfying 0 ≤ vi ≤ 2αi i for all 1 ≤ i ≤ �. This implies that
D(φ) = 0 and hence φ = 0 as D is injective. ��

5.2 Relation between Hermitian Jacobi and Jacobi formwithmatrix index

In [17, Theorem 2.3], Meher and the second author proved a relation between Her-
mitian Jacobi form over Q(i) and Jacobi form with matrix index. In the following
theorem, we generalize their result for an arbitrary imaginary quadratic field.

Theorem 5.3 Let K = Q(
√−d) be an imaginary quadratic field. Suppose

A =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
m 0

0 md

)
if − d ≡ 2, 3 (mod 4),

(
m m

2
m
2 m

( 1+d
4

)
)

if − d ≡ 1 (mod 4).

Then the space Jk,m(	
(1)
0 (N )) is isomorphic to Jk,A(	

(1)
0 (N )) as a vector space over

C.
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Proof First let us consider the case −d ≡ 2, 3 (mod 4). We define a map

η1 : Jk.m(	
(1)
0 (N )) → Jk,A(	

(1)
0 (N ))

by

φ(τ, z1, z2) �→ φ
(
τ, z1 + i

√
dz2, z1 − i

√
dz2

)
.

Let φ̂(τ, z1, z2) = φ
(
τ, z1 + i

√
dz2, z1 − i

√
dz2

)
. Using the transformation prop-

erty of φ mentioned in (4) and (5) we can verify that φ̂ satisfies (7) and (8). Suppose
φ has Fourier series expansion

φ(τ, z1, z2) =
∑

n∈Z,r∈O#
K

nm−N (r)≥0

cφ(n, r)qnζ r1 ζ r2 ,

then

φ̂(τ, z1, z2) =
∑

n∈Z,r∈O#
K

nm−N (r)≥0

cφ(n, r)e
(
nτ + r

(
z1 + i

√
dz2

)
+ r

(
z1 − i

√
dz2

))
.

Any r ∈ O#
K can be written as r = i

2
√
d

(
α + i

√
dβ

)
, where α, β ∈ Z. We now

consider an element ρ ∈ Z
2, where ρ = (−β,−α). Then the correspondence r �→ ρ

is clearly a bijection fromO#
K to Z

2. Now the above Fourier series expansion of φ̂ can
be expressed as

φ̂(τ, z1, z2) =
∑

n∈Z,r∈O#
K

nm−N (r)≥0

cφ(n, r)e(nτ − βz1 − αz2)

=
∑

n∈Z, ρ∈Z2

4det(A)n−A#[ρ]≥0

c
φ̂
(n, ρ)e(nτ + (−β)z1 + (−α)z2),

which is of the form given in (9). This implies that η1 is a well defined linear map. In
a similar manner, one can show that the map

η2 : Jk,A(	
(1)
0 (N )) → Jk,m(	

(1)
0 (N ))

defined by

ψ(τ, z1, z2) �→ ψ

(
τ,

z1 + z2
2

,
z1 − z2

2i
√
d

)
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is also a well-defined linear map. Now consider the composition map η2 ◦ η1,

(η2 ◦ η1)(φ(τ, z1, z2)) = η2

(
φ

(
τ, z1 + i

√
dz2, z1 − i

√
dz2

))

= φ

(
τ,

z1 + i
√
dz2 + z1 − i

√
dz2

2
,
z1 + i

√
dz2 − z1 + i

√
dz2

2i
√
d

)

= φ(τ, z1, z2).

Similarly we can also check that (η1 ◦ η2)(ψ(τ, z1, z2)) = ψ(τ, z1, z2) and hence
η2 ◦ η1 = I1, η1 ◦ η2 = I2, where I1 and I2 are identity maps on the vector spaces
Jk,m(	(OK )) and Jk,A(	2) respectively.
Now consider the case −d ≡ 1 (mod 4). Here we define the maps

η1 : Jk.m(	
(1)
0 (N )) → Jk,A(	

(1)
0 (N ))

by

φ(τ, z1, z2) �→ φ

(
τ,

2z1 + z2 + i
√
dz2

2
,
2z1 + z2 − i

√
dz2

2

)

and

η2 : Jk,A(	
(1)
0 (N )) → Jk,m(	

(1)
0 (N ))

by

ψ(τ, z1, z2) �→ ψ

(
τ,

z1 + z2
2

− z1 − z2

2i
√
d

,
z1 − z2

i
√
d

)
.

Approaching as above we can easily verify that η1 and η2 are well defined linear maps
and also they satisfy

η2 ◦ η1 = I1, η1 ◦ η2 = I2.

��

5.3 Sturm bound for Hermitian Jacobi forms

Using Theorems 5.2 and 5.3, we establish a Sturm bound for Hermitian Jacobi forms.

Theorem 5.4 Let γ = [SL2(Z) : 	
(1)
0 (N )]. Suppose K = Q(

√−d) and

φ =
∑

n≥0,r∈OK
4nm−N (r)≥0

aφ(n, r)qnζ r1 ζ r2 ∈ Jk,m(	
(1)
0 (N )).
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If aφ(n, r) = 0 for all n ≤ β, where

β =
{

1
12 (k + 2m(1 + d))γ if − d ≡ 2, 3 (mod 4),
1
12

(
k + m(5+d)

2

)
γ if − d ≡ 1 (mod 4),

then φ = 0.

Proof We begin with the case −d ≡ 2, 3 (mod 4). The Fourier series expansion of
φ̂(τ, z1, z2) in Theorem 5.3 is given by

φ̂(τ, z1, z2) =
∑

n∈Z,r∈O#
K

nm−N (r)≥0

aφ(n, r)e(nτ − βz1 − αz2)

=
∑

n∈Z, ρ∈Z2

4det(A)n−A#[ρt ]≥0

a
φ̂
(n, ρ)e(nτ + (−β)z1 + (−α)z2),

where r = i
2
√
d

(
α + i

√
dβ

)
, ρ = (−β,−α), α, β ∈ Z. Now, if aφ(n, r) = 0 for

all n ≤ β, then by Theorem 5.2, we see that φ̂ = 0. Since η is an isomorphism, we
get φ = 0. This completes the proof when −d ≡ 2, 3 (mod 4). The case of −d ≡ 1
(mod 4) follows similarly. ��
If we put N = 1 in the above we get the following.

Corollary 5.5 Let K = Q(
√−d), where d > 0 be square free. Let

φ =
∑

n≥0,r∈OK
4nm−N (r)≥0

a(n, r)qnζ r1 ζ r2 ∈ Jk,m(SL2(Z)).

If a(n, r) = 0 for all n ≤ β, where

β =
{

1
12 (k + 2m(1 + d)) if − d ≡ 2, 3 (mod 4),
1
12

(
k + m(5+d)

2

)
if − d ≡ 1 (mod 4),

then φ = 0.

We are now ready to prove Theorem 1.3. We first define some necessary terms. For

φ =
∑

n≥0,r∈OK
4nm−N (r)≥0

a(n, r)qnζ r1 ζ r2 ∈ Jk,m(SL2(Z)),

we define

ord(φ) = min{n | a(n, r) �= 0}.
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FromCorollary 5.5, Sturm bound for Hermtian Jacobi formwhen−d ≡ 2, 3 (mod 4)
is

β = 1

12
(k + 2m(1 + d)).

We put β = m = t in the above and see that it is possible to get a positive value of
t = k

2(5−d)
if d = 1, 2. Similarly, when −d ≡ 1 (mod 4), we will get a positive value

of t = 2k
19−d , if d ∈ {3, 7, 11, 15}. We will use the Fourier–Jacobi expansion and a

transformation of Hermitian modular form F to show that if the Fourier coefficients
AF (n, r ,m) = 0 for all n ≤ t and m ≤ t then F = 0.

5.4 Proof of Theorem 1.3

We will prove the result when d ∈ {1, 2}. The case d ∈ {3, 7, 11, 15} will follow
similarly. We consider the Fourier–Jacobi expansion of F

F =
∑
m≥0

φm(τ, z1, z2)e(mτ ′).

We will show that φm = 0 for all m ≥ 0. We first consider that m ≤ k
2(5−d)

. Then

ord(φm) >
k

2(5 − d)
= k

2(5 − d)

(
1 + d

6
+ 5 − d

6

)
= k

12
+ m(1 + d)

6
.

Therefore, by Corollary 5.5, we have φm = 0. Assume thatm > k
2(5−d)

.We use induc-
tion onm to show that φm = 0. Suppose that φm′ = 0 for allm′ < m. Nowwe consider

φm . For g =
(
0 1
1 0

)
, the matrix M =

(
(gt )−1 02
02 g

)
∈ SU2(OK ). Using the transfor-

mation property (2) of F for M , we get F(τ, z1, z2, τ ′) = (−1)k F(τ ′, z2, z1, τ ),
which shows that AF (n, r ,m) = (−1)k AF (m, r , n) = 0 for all n < m. Therefore,

ord(φm) ≥ m = m

(
1 + d

6
+ 5 − d

6

)
>

m(1 + d)

6
+ k

12
.

Again by Corollary 5.5, we have φm = 0. This completes the proof.

Remark 5.6 (1) The space of cusp form Sk(SU2(OK )) = {0} if k < 2(5 − d) when
d = 1, 2 and if k < 19−d

2 when d = 3, 7, 11, 15.
(2) The bound in Theorem 1.3 is sharp for K = Q(i), Q(

√
2i). We have explained

this in the next Example 5.7.
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Example 5.7 The Hermitian Eisenstien series of even weight k > 4 over a field K =
Q(

√−d) is given by

E (K )
k =

∑
M=

(
A B
C D

)
∈

(∗ ∗
0 ∗

)
\U2(OK )

det(M)−k/2det(CZ + D)−k, Z ∈ H2.

Moreover, Krieg [15] constructed weight 4 Eisenstein series by Maass lift. The Eisen-
stein series E (K )

k has rational Fourier coefficients for k ≥ 4 [7, 8, 15]. There are
Hermitian cusp forms over any imaginary quadratic field [4, Corollary 2], [8],

F (K )
10 = E (K )

10 − E (K )
4 E (K )

6 ∈ S10(SU2(OK )),

F (K )
12 = E (K )

12 − 441

691

(
E (K )
4

)3 − 250

691

(
E (K )
6

)2 ∈ S12(SU2(OK )).

If K = Q(i) then

χ8 = − 61

230400

(
E (K )
8 −

(
E (K )
4

)2) ∈ S8(SU2(OK )).

Let β(k) = [k/8] be the Sturm bound for K = Q(i) in Theorem 1.3. We define

Hk(Z) =
⎧⎨
⎩

(
E (K )
4

)i (
E (K )
6

) j
χ

β(k)
8 (i + j + β(k) = k, i, j = 0, 1) if k �≡ 2 (mod 8),

χ
β(k)−1
8 F (K )

10 if k ≡ 2 (mod 8).

Since χ8 and F (K )
10 are cusp forms, we have Aχ8(n, r ,m) = A

F (K )
10

(n, r ,m) = 0

whenever n = 0 or m = 0. We have

Aχ8

((
1 (1 + i)/2

(1 − i)/2 1

))
= A

F (K )
10

((
1 (1 + i)/2

(1 − i)/2 1

))
= 1.

Therefore, we check that AHk (n, r ,m) = 0 whenever n ≤ β(k)−1 andm ≤ β(k)−1
but Hk �= 0. Hence the bound is sharp for K = Q(i). Similarly, one can check that
the bound in Theorem 1.3 is sharp for K = Q(

√
2i) using E (K )

4 and Hermitian cusp
form φ6 and φ8 of weight 6 and 8 respectively constructed by Dern and Krieg [5].

6 Proof of Theorem 1.4

We will prove the result when d ∈ {1, 2}. The case d ∈ {3, 7, 11, 15} will follow
similarly. We have assumed that F �= 0, therefore, by Theorem 1.3 there exists T0 =
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(
n0 r0
r0 m0

)
such that

tr(T0) ≤ k

(5 − d)
(13)

and AF (T0) �= 0. We consider the Fourier–Jacobi coefficient φm0 �= 0 in the Fourier–
Jacobi expansion of F . The Fourier series expansion of φm0 is given by

φm0(τ, z1, z2) =
∑

n∈Z,r∈O#
K

nm0−N (r)≥0

c(n, r)e(nτ + r z1 + r z2),

where c(n, r) = AF

((
n r
r m0

))
.

We define

φ̂(τ, z1, z2) = φm0(τ, z1 + i
√
dz2, z1 − i

√
dz2).

Using Theorem 5.3, we get that φ̂ ∈ Jk,M0(SL2(Z)), where M0 =
(
m0 0
0 m0d

)
. We

consider

ϕ(τ, z1, z2) =
∏
ε1,ε2

φ̂(τ, ε1z1, ε2z2),

where ε1, ε2 ∈ {1,−1}. We can also check that φ̂(τ, ε1z1, ε2z2) ∈ Jk,M0(SL2(Z)) for
every ε1, ε2 ∈ {1,−1}. The Fourier series expansion of φ̂(τ, ε1z1, ε2z2) is given by

φ̂(τ, ε1z1, ε2z2) =
∑

n∈Z,s=(a,b)∈Z2

4det(M0)n−M#
0 [st ]≥0

cε1,ε2(n, s)e(nτ + az1 + bz2),

where

cε1,ε2(n, s) = AF

((
n r
r m0

))
, r = i

2
√
d

(−ε2b − i
√
dε2a) ∈ O#

K .

Now ϕ(τ, z1, z2) ∈ J4k,4M0(SL2(Z)). Also, by construction, ϕ(τ, z1, z2) is an even
function in the variable z1 and z2. We consider the Taylor series expansion of
ϕ(τ, z1, z2) around z1 = z2 = 0

ϕ(τ, z1, z2) =
∑

α≥0,β≥0

Xv1,v2(τ )zv11 zv22 .
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Since ϕ �= 0 there exists a non-zero Taylor coefficient in the above equation. We
choose a2, a1 in a minimal way such that Xa1,a2 �= 0 and

Xv1,v2(τ ) = 0 (0 ≤ ∀v2 < a2; ∀v1 ≥ 0),

Xv1,a2(τ ) = 0 (0 ≤ ∀v1 < a1).

Then from the proof of Proposition 5.1 we get that a1 ≤ 8m0 and a2 ≤ 8m0d. Also
Da1,a2(ϕ) = αXa1,a2(τ ) in Proposition 5.1, for some non-zero α ∈ C. This implies
that Xa1,a2(τ ) is a non-zero elliptic modular form of weight k1 = 4k + a1 + a2.
Therefore, we have

k1 ≤ 4(k + 2m0(1 + d)). (14)

Suppose the Fourier series expansion of ϕ is given by

ϕ(τ, z1, z2) =
∑

n∈Z,s=(α,β)∈Z2

4det(4M0)n−4M#
0 [st ]≥0

d(n, s)e(nτ + αz1 + βz2).

Let f = a1! a2!
(2π i)a1+a2

Xa1,a2(τ ). It can be easily checked that

f = 1

(2π i)a1+a2

(
∂a1z1 ∂a2z2 ϕ(τ, z1, z2)

)
z1=0,z2=0

.

If the Fourier series expansion of f is given by
∑
n≥1

d(n)e(nτ) then we have

d(n) =
∑

s=(α,β)∈Z2

4det(4M0)n−4M#
0 [st ]≥0

d(n, s)αa1βa2 .

Now by [11, Theorem 2] there exists n1 ≥ 1 such that

n1 � k2+ε
1 , d(n1) < 0.

Therefore, by (14), we have

n1 � (4(k + 2m0(1 + d)))2+ε . (15)

We have

d(n1) =
∑

s=(α,β)∈Z2

4det(4M0)n0−M#
0 [st ]≥0

d(n1, s)α
a1βa2 < 0.
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Since ϕ(τ, z1, z2) is an even function in each variable z1, z2, the integers a1, a2 are
even. Therefore, there exists s0 = (α0, β0) such that d(n1, s0) < 0. Also d(n1, s0) is

a finite sum of product of Fourier coefficients of the form AF

((
nε1,ε2 ∗

∗ m0

))
with∑

nε1,ε2 = n1. Therefore, atleast one of the Fourier coefficient

AF (T1) < 0, T1 =
(
nε1,ε2 ∗

∗ m0

)
.

We have tr (T1) = nε1,ε2 + m0 < n1 + tr(T0). Using (15) and (13) we have

tr(T1) � (4(k + 2(1 + d)tr(T0)))
2+ε + tr(T0)

�
(
4

(
7 + d

5 − d

)
k

)2+ε

.

Now replacing F by −F and proceeding as above, we get a matrix T2 such that

tr(T2) �
(
4

(
7 + d

5 − d

)
k

)2+ε

and −AF (T2) < 0. This proves the result.

Remark 6.1 We note that Theorem 1.1 is true for Hermitian modular forms on the con-
gruence subgroup 	

(2)
0 (N ) of SU2(OK ) with Dirichlet character χ (mod N ), where

χ acts on 	
(2)
0 (N ) by

χ(M) = det(D), M =
(
A B
C D

)
∈ 	

(2)
0 (N ).

Moreover, if the conductor of χ is N then Theorem 1.2 also holds.
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