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Abstract
We introduce a new family of hyperplane arrangements inspired by the homogenized
Linial arrangement (which was recently introduced by Hetyei), and show that the
intersection lattices of these arrangements are isomorphic to the bond lattices of Fer-
rers graphs. Using recent work of Lazar and Wachs we are able to give combinatorial
interpretations of the characteristic polynomials of these arrangements in terms of per-
mutation enumeration. For certain infinite families of these hyperplane arrangements,
we are able to give generating function formulas for their characteristic polynomials.
To do so, we develop a generalization of Dumont’s surjective staircases, and introduce
a polynomial which enumerates these generalized surjective staircases according to
several statistics.We prove a recurrence for these polynomials and show that in certain
special cases this recurrence can be solved explicitly to yield a generating function.
We also prove refined versions of several of these results using the theory of complex
hyperplane arrangements.

Keywords Genocchi numbers · Hyperplane arrangements · Characteristic
polynomials · Ferrers graphs · Surjective staircases

Mathematics Subject Classification 52C35 (Primary) · 05A05 · 05A15 · 05B35 ·
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1 Introduction

The aim of this paper is to generalize recent results of Lazar andWachs [12, 14] on the
combinatorics of the homogenized Linial arrangement in several different directions.

The homogenized Linial arrangement, which was introduced by Hetyei in [10], is
the real hyperplane arrangement H2n−1 in
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392 A. Lazar

{(x1, . . . , xn+1, y1, . . . , yn) | xi , yi ∈ R} = R
2n+1

given by

H2n−1 = {xi − x j = yi | 1 ≤ i < j ≤ n + 1}.

Hetyei showed that the number of regions of H2n−1 is equal to the median Genocchi
number hn . The median Genocchi numbers and their partner sequence the Genocchi
numbers gn are classical sequences that appear in several areas of combinatorics (see
[8, 10, 14, 16, 18, 22], among others) and number theory (e.g., [1]).

Intersecting H2n−1 with the subspace y1 = y2 = · · · = yn = 0 yields the braid
arrangement

{xi − x j = 0 | 1 ≤ i < j ≤ n + 1}

in R
n+1, while intersecting it with y1 = y2 = · · · = yn = 1 yields the Linial

arrangement

{xi − x j = 1 | 1 ≤ i < j ≤ n + 1}

in R
n+1. We can therefore think of H2n−1 as being defined by a particular choice of

homogenization of the defining equations for the hyperplanes in the braid or Linial
arrangements.

In [14], Lazar and Wachs studied this arrangement further. They showed that the
intersection lattice ofH2n−1 is isomorphic to the bond lattice of a bipartite graph �2n

and used that interpretation to give a combinatorial interpretation of the coefficients
of the characteristic polynomial χL(H2n−1)(t) of H2n−1 in terms of a new class of
permutations they called D-permutations.

Lazar and Wachs showed that the D-permutations on [2n] are in bijection with
certain elements of the class of surjective staircases (due to Dumont [8]). Using
a generating function result of Randrianarivony [16] and Zeng [22] for surjective
staircases, Lazar and Wachs proved [14, Theorem 5.5] a generating function formula
for χL(H2n−1)(t):

∑

n≥1

χL(H2n−1)(t) xn =
∑

n≥1

(t − 1)n−1(t − 1)n xn
∏n

k=1(1 − k(t − k)x)
, (1)

where (a)n denotes the falling factorial a(a − 1) · · · (a − (n − 1)).
The various perspectives used in [14]—hyperplane arrangements, �2n and D-

permutations, and surjective staircases—suggest several possible avenues to gener-
alize the results of that paper. In this paper, we consider three of them.

In the course of [14], the authors found it useful to consider a larger class of graphs
�V where V ⊆ [2n] for any n. One possible direction for generalizing the results of
[14] would therefore be to study the combinatorics of �V for arbitrary V . The study
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Ferrers graphs, D-permutations, and surjective staircases 393

of these �V was initiated in [14], where the authors showed that the coefficients of
the characteristic polynomial of the bond lattice of �V can be interpreted in terms of
the D-permutations on V . The authors also noted that �2n belongs to a class of graphs
known as Ferrers graphs, and remarked that the same was true for all �V .

Another possible direction for generalizing [14] is suggested by the theory of hyper-
plane arrangements. Beyond the braid and Linial arrangements, there are a number of
other deformations of the braid arrangement (studied in detail in [15]), such as the Shi
arrangement

{xi − x j = 0, 1 | 1 ≤ i < j ≤ n},

semiorder arrangement

{xi − x j = ±1 | 1 ≤ i < j ≤ n},

and Catalan arrangement

{xi − x j = −1, 0, 1 | 1 ≤ i < j ≤ n}.

Therefore, one might wish to study the combinatorics of homogenizations of these
deformations. Let ν = (ν1, . . . , νn) be a weak composition of m. That is, ν is an
ordered n-tuple of nonnegative integers whose sum is m. For all such ν, we define the
homogenized ν-arrangement Hν to be

{xi − x j = y(�)
i | 1 ≤ i < j ≤ n + 1, 1 ≤ � ≤ νi }.

For instance, taking ν = (2, 2, . . . , 2) gives us the arrangement

{xi − x j = y(1)
i , y(2)

i | 1 ≤ i < j ≤ n + 1}.

Intersecting this arrangement with the subspace where y(1)
1 = y(1)

2 = · · · = y(1)
n = 0

and y(2)
1 = y(2)

2 = · · · = y(2)
n = 1 yields the Shi arrangement.

The third possible direction is to generalize the notion of surjective staircases.
Surjective staircases are surjective functions F : [2n] → {2, 4, . . . , 2n} that satisfy
F(x) ≥ x . A key tool used in [14] to prove Eq. (1) is the generalized Dumont–Foata
polynomial �2n , which enumerates the surjective staircases with domain [2n] with
respect to six statistics. Randrianarivony [16] and Zeng [22] proved a recurrence and
a generating function formula for the �2n , and it is this formula which eventually
yields Eq. (1). One natural generalization would be to consider surjective functions
F : V → {even elements of V } which satisfy F(x) ≥ x for any finite V ⊂ Z>0.
Given the role that the generalized Dumont–Foata polynomials play in [14], we also
wish to define analogous polynomials for domains other than [2n].

The pleasant surprise of these three generalizations is that they remain very closely
related. In this paper, we show that for any ν the intersection lattice ofHν is isomorphic
to the bond lattice of some�V . Hence, the coefficients of the characteristic polynomial
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of Hν have an interpretation in terms of the D-permutations on V . We then develop
the theory of surjective staircases with domain V : we define a generalization �V of
the generalized Dumont–Foata polynomials �2n and prove a recurrence for the �V

generalizing the Randrianarivony–Zeng recurrence for �2n .
For certain infinite families of homogenized ν-arrangements, we are able to solve

our new recurrence explicitly to obtain generating function formulas for their corre-
sponding �V .

For one such family that we denote Hn,k , this new machinery lets us prove an
analog of Eq. (1):

∑

n≥1

χL(Hn,k )(t)u
n =

∑

n≥1

(t − 1)n−1 ((t − 1)n)k un

∏n
i=1

(
1 − i(t − i)ku

) , (2)

where (a)n = a(a − 1) · · · (a − (n − 1)).
These techniques also let us derive a generating function for the chromatic polyno-

mial of the complete bipartite graph Kn,k :

∑

n≥1

ch(Kn,k)(t)u
n =

∑

n≥1

(t)n
[
(t − n)k + (n − 1)(t − (n − 1))k−1

]
un

∏n−1
i=0 (1 − iu)

. (3)

The rest of this paper is structured as follows.

• In Section 2 we state some preliminary definitions and results.
• In Section 3 we give a detailed proof of the equivalence between Ferrers graphs
and the graphs�V (remarkedwithout proof in [14, Remark 3.1]). This equivalence
is interesting in its own right, but the language of Ferrers graphs is also convenient
for many of our later results.

• In Section 4we formally introduce the hyperplane arrangementsHν .We that show
each such arrangement is isomorphic to the graphic arrangement of a Ferrers graph,
and moreover that the arrangement of any Ferrers graph can be obtained in this
way.

• In Section 5 we give generating function formulas for the characteristic polyno-
mials of two infinite families of Ferrers graphs, and also give refined versions of
these generating functions arising from complex hyperplane arrangements (à la
[12]).

• In Section 6 we develop the theory of surjective staircases with arbitrary domains,
as well as the generalization �V of the generalized Dumont–Foata polynomial
�2n . We state and prove a recurrence for �V that extends the Randrianarivony–
Zeng recurrence for �2n .

• In Section 7 we prove the generating function formulas from Section 5.
• In Section 8 we outline an extension of the results of Sections 6 and 7 to complex
hyperplane arrangements, and prove the refined generating function formulas of
Section 5.

• In Section 9 we give some final remarks and questions for further study.
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Ferrers graphs, D-permutations, and surjective staircases 395

Many of the results of this paper were first announced in the extended abstract [13]
and appeared in detail in the author’s Ph.D. dissertation [11, Chapter 5].

2 Preliminaries

2.1 Hyperplane arrangements and geometric lattices

A real hyperplane arrangement is a finite collection H of hyperplanes in R
d . The

complement Rd \H consists of finitely many connected components, which are called
the regions of H. The combinatorial data of H can be collected into the intersection
poset L(H), which consists of the intersections of hyperplanes inH (viewed as affine
subspaces ofR

d ) ordered according to reverse containment. We define the rank rk(H)

of H to be the length of L(H).
If all of the hyperplanes in H have a nonempty common intersection, we say H is

central. The intersection poset of a central arrangement is a geometric lattice, and if
H is non-central its intersection poset is a geometric semilattice (in the sense of [20]).

One important invariant of a hyperplane arrangement is the characteristic polyno-
mial χL(H)(t) of its intersection poset. If P is any ranked poset with bottom element
0̂, its characteristic polynomial is defined by

χP (t) =
∑

X∈P

μP (0̂, X)t rk(P)−rk(X),

where μP is the Möbius function of P .
A well-known formula of Zaslavsky [21] relates the number of regions r(H) ofH

to the characteristic polynomial of L(H):

r(H) = (−1)rk(H)χL(H)(−1). (4)

2.2 Graphs and bond lattices

Associated to any finite graph G with vertex set V and edge set E is the graphic
hyperplane arrangement HG , which is given by

HG = {xi − x j = 0 | {i, j} ∈ E}.
The intersection lattice of HG is called the bond lattice of G and is denoted �G .

An equivalent description of �G can be given as a subposet of the lattice �V of set
partitions of V . A set partition π = B1|B2| · · · |Bk of V belongs to �G if and only if
the induced subgraph G|Bi is connected for all i .

The bond lattice of G also determines the chromatic polynomial ch(G)(t) in the
sense that

ch(G)(t) = t · χ�G (t).
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396 A. Lazar

2.3 The homogenized linial arrangement and D-permutations

In [14], Lazar and Wachs considered a family of bipartite graphs �V for V a finite
subset ofZ>0. Given such a V ,�V is the graph on vertex set V with an edge {2i−1, 2 j}
whenever 2i − 1 < 2 j . If V = [2n], we omit the brackets and write �2n .

A permutation σ ∈ SV is a D-permutation if σ(i) ≥ i whenever i is odd and
σ(i) ≤ i whenever i is even. We write DV for the set of D-permutations of V .

Example 1 The elements of D4 are given below.

(1)(2)(3)(4) (1, 2)(3)(4) (1, 2)(3, 4) (1, 4)(2)(3)
(1, 4, 2)(3) (1, 3, 4)(2) (3, 4)(1)(2) (1, 3, 4, 2)

In [14], the authors compute the coefficients of χ��V
in terms of D-permutations:

Theorem 1 [14, Theorem 3.5] Let V be a finite subset of Z>0. For all π ∈ ��V ,

(−1)|π |μ��V
(0̂, π) = |{σ ∈ DV | cyc(σ ) = π}|,

where cyc(σ ) is the set partition whose blocks are comprised of the elements of the
cycles of σ . Consequently,

χ��V
(t) =

2n∑

k=1

sD(V , k)tk−1, (5)

where (−1)ksD(V , k) is equal to the number of D-permutations on A with exactly k
cycles.

2.4 Ferrers graphs

In [9], Ehrenborg and van Willigenburg introduced a family of graphs called Ferrers
graphs. Since their introduction, they have been studied in a variety of contexts such
as combinatorial commutative algebra [3], chip-firing [17], matroid theory [4], and
in terms of graph invariants like their Boolean complexes [2]. A Ferrers graph is a
bipartite graph on vertex partition R = {r1, . . . , rn} and C = {c1, . . . , cm} such that if
{ri , c j } is an edge, then {r�, ck} is an edge for all i ≤ � ≤ n and 1 ≤ k ≤ j , and {r1, c1}
and {rn, cm} are edges.1 To any Ferrers graph G, we can associate an integer partition
λ = (λn, . . . , λ1), where λi is the degree of ri in G. Note that we are distinguishing
between R and C in this definition.

If we draw the Ferrers diagram for λ, label the rows r1 through rn from bottom to
top, and label the columns c1 through cm from left to right, then the Ferrers diagram

1 Ehrenborg and van Willigenburg’s definition is slightly different from ours—they reverse the indexes of
the r ’s.
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Ferrers graphs, D-permutations, and surjective staircases 397

for λ will have a square in the row labeled ri and column labeled c j if and only if
{ri , c j } is an edge of G.

Example 2 The graph �6 on vertex set R = {2, 4, 6} and C = {1, 3, 5} is shown
below:

It is not hard to see that �6 is a Ferrers graph with associated partition λ = (3, 2, 1),
whose Ferrers diagram is seen below:

The following proposition is an immediate consequence of the Ferrers diagram
description of the edges of a Ferrers graph.

Proposition 1 If G and H are Ferrers graphs, then G ∼= H if and only if G and H
have the same associated partition, or have conjugate associated partitions.

3 Ferrers graphs and 0V

Let V be a finite subset ofZ>0. Let O(V ) be the set of odd elements of V and let E(V )

be the set of even elements of V . Suppose that O(V ) = {2i1 − 1 < · · · < 2in − 1}
and E(V ) = {2 j1 < · · · < 2 jm}. We define the partition type of V , denoted λ(V ), as
follows. For each k ∈ [m], let λk := #{a | 2ia − 1 < 2 jk}. Then λm ≥ · · · ≥ λ1, so
λ = (λm, . . . , λ1) is an integer partition.

Example 3 Suppose that V = {1, 3, 7, 9} 	 {2, 4, 6, 10}. Then λ(V ) = (4, 2, 2, 1).
The Ferrers diagram of (4, 2, 2, 1) is shown below, with the rows labeled by the even
elements of V and the columns labeled by the odd elements of V :

The following theorem explains our choice of labeling in the previous example.

Theorem 2 Let V be a finite subset of Z>0 such that max V is even and min V is odd.
Then �V is a Ferrers graph with R = E(V ) and C = O(V ). Moreover the partition
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398 A. Lazar

associated to �V is λ(V ). Conversely, given a Ferrers graph G, there is a finite subset
V of Z>0 such that �V ∼= G.

Proof Recall that �V has an edge between 2i − 1 and 2 j if and only if 2i − 1 < 2 j .
We see that {2i1−1, 2 j1} is an edge of�V (since min V = 2i1−1), and {2im −1, 2 jn}
is an edge (since 2 jn = max V ). Moreover, if {2ia − 1, 2 jb} is an edge of �V then
{2ik − 1, 2 j�} is an edge of �V for all 1 ≤ k ≤ a and all b ≤ � ≤ n, since 2ik − 1 ≤
2ia − 1 < 2 jb ≤ 2 j�. Hence, �V is a Ferrers graph with R = E(V ) and C = O(V ),
and moreover the associated partition of �V is λ(V ) by the definition of λ(V ).

Conversely, suppose that G is a Ferrers graph on vertex set R = {r1, . . . , rn} and
C = {c1, . . . , cm}. Associated to G is the integer partition λ given by λi = deg ri . We
construct a set Vλ from the Ferrers diagram of λ as follows. Let V0 = {0}.
(1) Start at the southwest corner of the Ferrers diagram for λ, and walk the path along

the lower border of the Ferrers diagram.
(2) If the i th step is to the east, label the edge we have just traversed with the smallest

odd integer 2k − 1 larger than max Vi−1 and let Vi := Vi−1 ∪ {2k − 1}.
(3) If the i th step is to the north, label the edge we have just traversed with the smallest

even integer 2k larger than max Vi−1 and let Vi := Vi−1 ∪ {2k}.
(4) Stop when the northeast corner of the Ferrers diagram is reached, after m + n

steps. We define Vλ := Vn+m \ {0}.
Note that min Vλ is odd and max Vλ is even, since our walk must start with a step

to the east and end with a step north. Thus, �Vλ is a Ferrers graph by our previous
argument. By Proposition 1, to show that �Vλ

∼= G, it suffices to show that λ(Vλ) = λ.
Indeed, λi is the number of squares in the i th row from the bottom of the Ferrers
diagram for λ. By construction, the number of squares in the i th row from the bottom
of the Ferrers diagram is equal to the number of odd elements of Vλ that are smaller
than the i th smallest even element 2 ji of V . But by definition, this quantity is equal
to λ(Vλ)i . Hence, λ(Vλ) = λ. �	

Our construction of Vλ is very similar to the ab-word construction in [9], which
Ehrenborg and van Willigenburg use to give a formula for the chromatic polynomial
of Gλ.

The following corollary is an immediate consequence of Proposition 1 andTheorem
2.

Corollary 1 Let V and W be finite sets of positive integers such that min V , min W
are odd and max V , max W are even. Then �V ∼= �W if and only if λ(V ) = λ(W ).

Remark 1 Let G be a Ferrers graph. By [14, Theorem 4.10] we see that

chG(t) =
∑

σ∈DV

(−t)c(σ ),

where c(σ ) is the number of cycles of σ , and V is the set constructed from G in our
proof of Theorem 2.
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4 Homogenized �-arrangements

Let ν = (ν1, ν2, . . . , νn) be a weak composition of m. We define the homogenized
ν-arrangement in

(x1, x2, . . . , xn+1, y(1)
1 , y(2)

1 , . . . , y(ν1)
1 , y(1)

2 , . . . , y(ν2)
2 , . . . , y(1)

n , . . . , y(νn)
n ) = R

m+n+1

to be

Hν = {xi − x j = y(�)
i | 1 ≤ i < j ≤ n + 1, 1 ≤ � ≤ νi }.

Notice that when ν = (1, 1, . . . , 1), Hν = H2n−1. Our goal for this section is to
study these homogenized ν-arrangements by relating them to Ferrers graphs.

Let λ(ν) be the partition (ν1 + · · · + νn, . . . , ν1 + ν2, ν1). We construct a Ferrers
graph Gν from ν by labeling the columns of the Ferrers diagram for λ(ν) from left to
right by

1(1), 1(2), . . . , 1(ν1), 3(1), 3(2), . . . , 3(ν2), . . . , (2n − 1)(1), (2n − 1)(2), . . . , (2n − 1)(νn)

and labeling the rows of the Ferrers diagram from bottom to top by

2, 4, 6, . . . , 2n.

Then Gν is the Ferrers graph on vertex set C 	 R, where

C = {1(1), . . . , 1(ν1), 3(1), . . . , 3(ν2), . . . , (2n − 1)(1), . . . , (2n − 1)(νn)}

and

R = {2, . . . , 2n},

whose edges are {(2i − 1)(�), 2 j} for all 2i − 1 < 2 j and 1 ≤ � ≤ νi .

Example 4 Let ν = (3, 3, 3). The Ferrers diagram for λ(ν) = (9, 6, 3), together with
the labels described above, is shown below.

Theorem 3 For all weak compositions ν = (ν1, . . . , νn) of m, there is an invertible
Z-linear transformation from R

m+n+1 to itself that takesHν to the graphic hyperplane
arrangement AGν . Consequently, L(Hν) ∼= �Gν .
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400 A. Lazar

Proof Let (e1, . . . , em+n+1) be the standard basis for R
m+n+1. For notational conve-

nience, we define vectors ui and u( j)
i by setting

(u(1)
1 , u(2)

1 , . . . , u(ν1)
1 ,u2, u(1)

3 , . . . , u(ν2)
3 , u4, . . . , u(1)

2n−1, . . . , u(νn)
2n−1, u2n, um+n+1)

= (e1, . . . , em+n+1),

and also define vi and v
( j)
i by setting

(v1, v2, . . . , vn+1, v
(1)
n+2, . . . , v

(ν1)
n+2,v

(1)
n+3, . . . , v

(ν2)
n+3, . . . , v

(1)
2n+1, . . . , v

(νn)
2n+1)

= (e1, . . . , em+n+1).

For all 1 ≤ i ≤ j ≤ n and all 1 ≤ � ≤ νi , we define the hyperplane

K (�)
i, j = {w ∈ R

m+n+1 | (u(�)
2i−1 − u2 j ) · w = 0},

and the arrangement

K = {K �
i, j | 1 ≤ i ≤ j ≤ n, 1 ≤ � ≤ νi }.

We observe that K ∼= AGν . Indeed, K is the graphic hyperplane arrangement of
the graph on m + n + 1 vertices obtained from Gν by adjoining an isolated vertex
m + n + 1.

Now, for all 1 ≤ i ≤ j ≤ n and 1 ≤ � ≤ νi , we write

H �
i, j = {w ∈ R

m+n+1 | (vi − v j+1 − v
(�)
n+i+1) · w = 0}.

Clearly,

Hν = {H �
i, j | 1 ≤ i ≤ j ≤ n, 1 ≤ � ≤ νi }.

Now, consider the linear transformation φ from R
m+n+1 to itself, given by

• φ(u�
2i−1) = vi − v

(�)
n+i+1,• φ(u2 j ) = v j+1,

• φ(um+n+1) = v1.

To show that this Z-linear transformation is invertible, we define the linear transfor-
mation φ̃ from R

m+n+1 to itself on the standard basis as follows:

• φ̃(v1) = um+n+1,
• φ̃(vi ) = u2i−2 for 2 ≤ i ≤ n + 1,
• φ̃(v

(�)
n+2) = uλn+n+1 − u(�)

1 for � ∈ [ν1],
• φ̃(v

(�)
n+i+1) = u2i−2 − u(�)

2i−1 for 1 < i ≤ n and � ∈ [νi ].
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We see that

• φ(φ̃(v1)) = φ(um+n+1) = v1,

• φ(φ̃(vi )) = φ(u2i−2) = vi for 2 ≤ i ≤ n + 1,
• φ(φ̃(v

(�)
n+2)) = φ(um+n+1 − u(�)

1 ) = v1 − (v1 − v
(�)
n+2) = v

(�)
n+2 for � ∈ [ν1],

• φ(φ̃(v
(�)
n+i+1)) = φ(u2i−2−u(�)

2i−1) = vi − (vi −v
(�)
n+i+1) = v

(�)
n+i+1 for 2 ≤ i ≤ n,

� ∈ [νi ].
Hence, φ is invertible, so let A be the matrix of φ with respect to the standard basis

and let ψ be the linear operator on R
m+n+1 whose matrix in the standard basis is

(A−1)T .
We claim that ψ takes each hyperplane K �

i, j to the corresponding hyperplane H �
i, j .

Indeed, suppose w ∈ K �
i, j so (u(�)

2i−1 − u2 j ) · w = 0. Then

φ(u(�)
2i−1 − u2 j ) · ψ(w) = (vi − v

(�)
n+i+1 − v j+1) · ψ(w),

and

φ(u(�)
2i−1 − u2 j ) · ψ(w) = A(u(�)

2i−1 − u2 j ) · ((A−1)T w)

= (A−1A(u(�)
2i−1 − u2 j )) · w

= (u(�)
2i−1 − u2 j ) · w

= 0,

so (vi − v
(�)
n+i+1 − v j+1) ·ψ(w) = 0. Hence, ψ(w) ∈ H (�)

i, j , which proves the claim. �	

5 New generating function formulas

In this section we present generating function formulas for two infinite families of
Ferrers graphs. The proofs of these formulas rely on techniques that we develop in
Sect. 6, so we defer the proofs to Sects. 7 and 8.

5.1 k-Staircases

For any n, k ≥ 1, we define the k-staircase with n steps to be the partition λ
(n)
k =

(nk, (n − 1)k, . . . , k). The case n = 4 and k = 3 is shown below.
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402 A. Lazar

Theorem 4 Fix k ≥ 1. For any sequence of subsets V k
1 , V k

2 , . . . of Z>0 with λ(V k
n ) =

λ
(n)
k , we have the following generating function formula for χ��

V k
n

(t):

∑

n≥1

χ��
V k

n

(t)un =
∑

n≥1

(t − 1)n−1 ((t − 1)n)k un

∏n
i=1

(
1 − i(t − i)ku

) ,

where (x)n = x(x − 1) · · · (x − (n − 1)).

This generating function formula (and equivalently the formula in Corollary 3)
reduces to [14, Eq. (1.9)] when k = 1; notice that when k = 1, �V k

n
∼= �2n . Applying

Theorem 2 and the fact that tχ�G (t) is the chromatic polynomial of G, we can restate
Theorem 4 as follows:

Corollary 2 For each n, k ≥ 1, let Gn,k be a Ferrers graph whose associated partition

is λ
(n)
k . Then we have the following generating function formula for the chromatic

polynomial chGn,k (t):

∑

n≥1

chGn,k (t)u
n =

∑

n≥1

(t)n ((t − 1)n)k un

∏n
i=1

(
1 − i(t − i)ku

) .

As a consequence of Theorem 3, we can view the generating function formula of
Theorem 4 as a generating function formula for the characteristic polynomials of the
homogenized (k, k, . . . , k)-arrangements, as seen in Eq. (2):

Corollary 3 Let Hn,k := H(k,k,...,k). Then

∑

n≥1

χL(Hn,k )(t)u
n =

∑

n≥1

(t − 1)n−1 ((t − 1)n)k un

∏n
i=1

(
1 − i(t − i)ku

) .

If we define an appropriate complex hyperplane arrangement Hm
n,k , then by com-

bining the techniques from this paper and [11, Chapter 4] (see also the forthcoming
paper [12]), we can compute an m-analog of the generating function from Theorem 4:

Theorem 5 Let Hm
n,k be the hyperplane arrangement in

{(x1, . . . , xn, y(1)
1 , . . . , y(k)

1 , . . . , y(1)
n , . . . , y(k)

n ) | xi , y(�)
j ∈ C} = C

nk+n

given by

Hm
n,k ={xi − ωpx j = y(�)

i | 1 ≤ i < j ≤ n, 0 ≤ p ≤ m − 1, 1 ≤ � ≤ k}
∪ {xi = y(�)

i | 1 ≤ i ≤ n, 1 ≤ � ≤ k},
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where ω = e
2π i
m . Then

∑

n≥1

χL(Hm
n,k )

(t)un−1 =
∑

n≥1

(t − 1)n−1,m
(
(t − 1)n,m

)k
un−1

∏n−1
i=0

(
1 − (im + 1)(t − (im + 1))ku

) , (6)

where (x)n,m = x(x − m) · · · (x − (n − 1)m).

Note that this equation specializes to [11, Eq. (1.11)], [12] when k = 1.

5.2 Complete bipartite graphs

Let T k
n := {1, 3, 5, . . . , 2k − 1} 	 {2k, . . . , 2(k + n − 1)}. We note that λ(T k

n ) = μ
(n)
k

where μ
(n)
k is the rectangular shape (k, k, . . . , k︸ ︷︷ ︸

n

). The partition μ
(4)
3 is shown below.

It is clear that the Ferrers graph �T k
n
is the complete bipartite graph Kn,k . The

chromatic polynomial of Kn,k has been well-studied (Swenson gives a closed form
expression for it in [19], and Ehrenborg and van Willigenburg give a different proof
in [9]). Using our techniques, we give a generating function formula for its chromatic
polynomial.

Theorem 6 For all k ≥ 1, we have

∑

n≥1

ch(Kn,k)(t)u
n =

∑

n≥1

(t)n
[
(t − n)k + (n − 1)(t − (n − 1))k−1

]
un

∏n−1
i=0 (1 − iu)

.

We can also give an m-analog of the generating function for the characteristic
polynomial of the complete bipartite graph.

Theorem 7 Let J m
n,k be the hyperplane arrangement in

{(x1, . . . , xn, y(1), . . . , y(k)) | xi , y( j) ∈ C} = C
n+k

given by

J m
n,k = {x1 − ωpx j = y(�) | 1 < j ≤ n, 0 ≤ p ≤ m − 1, 1 ≤ � ≤ k}

∪{x1 = y(�) | 1 ≤ � ≤ k},

where ω = e
2π i
m .
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Then χJ m
1,k

(t) = (t − 1)k and
∑

n≥2

χJ m
n,k

(t)un−1

=
∑

n≥2

(t − 1)n−1,m
[
(t − 1 − m(n − 1))k + (m(n − 2) + 1)(t − 1 − m(n − 2))k−1

]
un−1

∏n−2
i=0 [1 − (mi + 1)u]

.

6 General techniques

In this section we will state and prove several technical results generalizing the theory
of surjective staircases, which were introduced by Dumont in [8] (this theory was used
in [14] to study the homogenized Linial arrangement). These results will be used in
Sects. 7 and 8 to prove the results of Sect. 5.

6.1 Generalized surjective staircases

Let S be a finite subset of the positive integers with largest element 2n. We define the
staircase diagram of S to be the Ferrers diagram whose rows are labeled from bottom
to top with the even elements of S in increasing order and whose columns are labeled
from left to right with all of the elements of S in increasing order, with a cell in the
row labeled 2i and column labeled j if and only if j ≤ 2i . Note that the staircase
diagram of S is not the same as the Ferrers diagram of the partition λ(S) defined in
Sect. 3—we can recover λ(S) from the staircase diagram of S by deleting the columns
labeled with the even elements of S.

Let S′ be the subset of S obtained by removing 2n and all odd elements between
2m and 2n from S, where 2m is the second-largest even element of S (if S contains
only one even element, S′ = ∅). We can view S′ as the set whose staircase diagram is
obtained by deleting the top row of the staircase diagram of S. Similarly, let S′′ be the
set whose staircase diagram is obtained from the staircase diagram of S′ by deleting
the top row of its staircase diagram.

Example 5 Suppose that S = {1, 2, 4, 5, 7, 8}. The staircase diagram for S is seen
below.

In this case, S′ = {1, 2, 4}. The staircase diagram for S′ is seen below.
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Finally, S′′ = {1, 2}. The staircase diagram for S′′ is seen below.

We say a function F : S → S is excedent if F(x) ≥ x for all x ∈ S. A generalized
sujective staircase is a surjective excedent map F from S to the set of even elements
of S. Let XS be the set of all excedent functions F : S → S and ES be the set of all
generalized surjective staircases with domain S.

For all F ∈ ES , we define

w(F) = xmo(F)yfd(F)zsi(F) x̄me(F) ȳfi(F) z̄sd(F),

and

�S(x, y, z, x̄, ȳ, z̄) =
∑

F∈ES

w(F),

where the statistics are defined as follows:

• 2i −1 ∈ S′ is a surfixed point of F if F(2i −1) is the least even element of S larger
than 2i−1.A surfixed point 2i−1 is isolated if there is no j with F( j) = F(2i−1)
and doubled otherwise. We write si(F) and sd(F) for the numbers of isolated and
doubled surfixed points, respectively.

• 2i ∈ S′ is a fixed point of F if F(2i) = 2i . A fixed point 2i is isolated if there is
no j with F( j) = 2i and is doubled otherwise. We write fd(F) and fi(F) for the
numbers of isolated and doubled fixed points, respectively.

• 2i − 1 ∈ S′ is an odd maximum of F if F(2i − 1) = 2n and 2i ∈ S′ is an even
maximum of F if F(2i) = 2n. We write mo(F) and me(F) for the numbers of
odd and even maxima of F , respectively.

Note that elements of S \ S′ do not count as maxima or (sur)fixed points.
Generalized surjective staircases can be visualized using fillings of staircase dia-

grams of S.

Example 6 The following surjective staircase has weight zx̄ ȳ:

When S = [2n], these polynomials specialize to the generalized Dumont–Foata
polynomials �2n . The generalized Dumont–Foata polynomials were introduced by
Dumont in [6], and Randrianarivony [16] and Zeng [22] independently proved a gen-
erating function formula for them.
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Remark 2 It is clear to see that �S depends only on λ(S). That is, if S and T are two
finite sets of integers with λ(S) = λ(T ), then the polynomials �S and �T are also
equal.

Theorem 8 Let S be a finite set of positive integers whose largest element is even.
Suppose that S′ \ S′′ contains � odd elements. Then,

(1) If |S′| = 0, �S = 1.
(2) If |S′| ≥ 1,

�S(x, y, z, x̄, ȳ, z̄) =(y + x̄)(x + z̄)��S′(x + 1, y, z, x̄ + 1, ȳ, z̄)

+ x�−1[x(ȳ − y) + �x̄(z − z̄) − x x̄]�S′(x, y, z, x̄, ȳ, z̄).

When � = 1, this is the same as the recurrence for�2n in terms of�2n−2 from [16,
Theorem 3] and [22, Theorem 4]. Indeed, our proof generalizes the techniques used
in Zeng’s proof of [22, Theorem 4]. Our proof requires the following lemma.

Lemma 1 Given a surjective staircase F ∈ ES′ construct a surjective staircase F̂X ∈
ES by choosing a proper subset X of F−1(2m), where 2m = max S′, and defining F̂X

by

F̂X (a) =
{
2n, a ∈ X ∪ (S \ S′),
F(a), otherwise.

This map (F, X) �→ F̂X is a well-defined bijection from the set of pairs (F, X) where
F ∈ ES′ and X � F−1(2m) to ES.

Proof Diagramatically, F̂X is obtained from F by adding a new top row to the staircase
diagram for F , moving a proper subset of the filled squares in the top row of F to this
new top row, and filling all of the squares corresponding to the elements of S \ S′. �	
Example 7 Let S = {1, 2, 4, 5, 7, 8}. Then S′ = {1, 2, 4}. Suppose that F ∈ ES′ is the
surjective staircase pictured below, and X = {2}.

Then F̂X ∈ ES is the surjective staircase from Example 6.

Proof of Theorem 8 If |S′| = 0, then |�S| = 1 and the weight of that surjective stair-
case must be 1.

Now, suppose |S′| ≥ 1. We proceed by using Lemma 1 to compute �S in terms of
�S′ .

Given a pair (X , F), we wish to compute w(F̂X ) in terms of w(F) and X . Let
MO(F) and ME(F) be the sets of odd and even maxima of F , respectively (so
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|MO(F)| = mo(F) and |ME(F)| = me(F)). Furthermore, let O(X) and E(X) be
the numbers of odd and even elements of X , respectively.

Case 1. Suppose that 2m /∈ X .
If X = F−1(2m) \ {2m}, then

w(F̂X ) = xmo(F)+�yfd(F)zsi(F) x̄me(F) ȳfi(F)+1 z̄sd(F)

= x� ȳw(F).

Thus, the set of all such F̂X contribute x� ȳ�S′ to �S .
Now, suppose that X contains exactly k of the � odd elements of S′ \ S′′ for 0 ≤

k ≤ �, but that X � F−1(2m) \ {2m}. Then O(X) ≥ k, since the new maxima of
F̂X consist of some subset of the odd maxima of F along with the k odd elements of
|T \ U |. Hence we have

w(F̂X ) = x O(X)yfd(F)+1zsi(F) x̄ E(X) ȳfi(F) z̄sd(F)+(�−k)

= xk yz̄�−k
(

x O(X)−k yfd(F)zsi(F) x̄ E(X) ȳfi(F) z̄sd(F)
)

.

Any such X can be obtained by choosing subsets A and B of the odd and even
maxima of F , respectively, and then choosing k elements of S′ \ S′′ in

(
�
k

)
ways. Thus,

when k < � we see

∑

F∈ES′

∑

X�F−1(2m)\{2m}
|X∩(S′\S′′)|=k

w(F̂X )

=
∑

F∈ES′

∑

X�F−1(2m)\{2m}
|X∩(S\S′′)|=k

xk yz̄�−k
(

x O(X)−k yfd(F)zsi(F) x̄ E(X) ȳfi(F) z̄sd(F)
)

= y
∑

F∈ES′
yfd(F)zsi(F) ȳfi(F) z̄sd(F)

(
�

k

)
xk z̄�−k

∑

A×B⊆MO(F)×ME(F)

x |A| x̄ |B|

= y

(
k

�

)
xk z̄�−k

∑

F∈ES′
yfd(F)zsi(F) ȳfi(F) z̄sd(F)(x + 1)mo(F)(x̄ + 1)me(F)

= y

(
k

�

)
xk z̄�−k�S′(x + 1, y, z, x̄ + 1, ȳ, z̄).

Meanwhile, when k = �, X must consist of the � odd elements of S′ \ S′′ along
with a proper subset of the maxima of F (we considered the case when X contained
all of F−1(2m) \ {2m} already). This yields
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∑

F∈ES′

∑

X�F−1(2m)\{2m}
|X∩(S′\S′′)|=k

w(F̂X )

=
∑

F∈ES′

∑

X�F−1(2m)\{2m}
|X∩(S′\S′′)|=�

x�y
(

x O(X)−�yfd(F)zsi(F) x̄ E(X) ȳfi(F) z̄sd(F)
)

= y
∑

F∈ES′
yfd(F)zsi(F) ȳfi(F) z̄sd(F)x�

∑

A×B�MO(F)×ME(F)

x |A| x̄ |B|

= yx�
∑

F∈ES′
yfd(F)zsi(F) ȳfi(F) z̄sd(F)

(
(x + 1)mo(F)(x̄ + 1)me(F) − xmo(F) x̄me(F)

)

= yx� (�S′(x + 1, y, z, x̄ + 1, ȳ, z̄) − �S′(x, y, z, x̄, ȳ, z̄)) .

Summing over all k between 0 and � (including the case when X = F−1(2m) \
{2m}), we obtain a total contribution of

y

(
�∑

k=0

(
�

k

)
xk z̄�−k

)
�S′(x + 1, y, z, x̄ + 1, ȳ, z̄) − x�(ȳ − y)�S′(x, y, z, x̄, ȳ, z̄)

= y(x + z̄)��S′(x + 1, y, z, x̄ + 1, ȳ, z̄) + x�(ȳ − y)�S′(x, y, z, x̄, ȳ, z̄)

to �S .
Case 2. Suppose that 2m ∈ X .
Again, suppose that X contains exactly k of the � odd elements of T \ U for

0 ≤ k ≤ �.
When k = �, X consists of S′ \ S′′ (which consists of � odd elements and one even

element) along with some proper subset of the maxima of F . In this case,

w(F̂X ) = x O(X)yfd(F)zsi(F) x̄ E(X) ȳfi(F) z̄sd(F)

= x� x̄
(

x |A|yfd(F)zsi(F) x̄ |B| ȳfi(F) z̄sd(F)
)

,

where A and B are subsets of MO(F) and ME(F), respectively, such that A × B �=
MO(F) × ME(F).

Hence,
∑

F∈ES′

∑

X⊆F−1(2m)
(S′\S′′)⊆X

w(F̂X )

=
∑

F∈ES′
x� x̄

∑

A×B�MO(F)×ME(F)

x |A|yfd(F)zsi(F) x̄ |B| ȳfi(F) z̄sd(F)

= x� x̄
∑

F∈ES′
yfd(F)zsi(F) ȳfi(F) z̄sd(F)

∑

A×B�MO(F)×ME(F)

x |A| x̄ |B|

= x� x̄
∑

F∈ES′
yfd(F)zsi(F) ȳfi(F) z̄sd(F)
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×
(
(x + 1)mo(F)(x̄ + 1)me(F) − xmo(F) x̄me(F)

)

= x� x̄ (�S′(x + 1, y, z, x̄ + 1, ȳ, z̄) − �S′(x, y, z, x̄, ȳ, z̄)) .

When k = � − 1, there are two possibilities. If X = F−1(2m) \ {2i − 1} for some
2i − 1 ∈ S′ \ S′′, then

w(F̂X ) = xmo(F)+(�−1)yfd(F)zsi(F)+1 x̄me(F)+1 ȳfi(F) z̄sd(F)

= x�−1zx̄w(F).

This can happen in � ways, so such F̂X give a contribution of �x�−1zx̄�S′ to �S .
On the other hand, if there is at least one maximum of F that is not in X , then X

consists of 2m, (�−1) odd elements of S′ \ S′′, and some proper subset of the maxima
of F . In this case,

w(F̂X ) = x |A|+(�−1)yfd(F)zsi(F) x̄ |B|+1 ȳsi(F) z̄sd(F)+1

= x�−1 x̄ z̄
(

x |A|yfd(F)zsi(F) x̄ |B| ȳsi(F) z̄sd(F)
)

,

where A and B are subsets of the odd and even maxima of F , respectively, such that
A × B �= MO(F)×ME(F). Note that for any such pair of A and B, there are exactly
� such sets X .

Thus,

∑

F∈ES′

∑

X�F−1(2m)
2m∈X

X∩(S′\S′′)=�

w(F̂X )

= �x�−1 x̄ z̄
∑

F∈ES′
yfd(F)zsi(F) ȳsi(F) z̄sd(F)

∑

A×B�MO(F)×ME(F)

x |A| x̄ |B|

= �x�−1 x̄ z̄
∑

F∈ES′
yfd(F)zsi(F) ȳsi(F) z̄sd(F)

×
(
(x + 1)mo(F)(x̄ + 1)me(F) − xmo(F) x̄me(F)

)

= �x�−1 x̄ z̄ (�S′(x + 1, y, z, x̄ + 1, ȳ, z̄) − �S′(x, y, z, x̄, ȳ, z̄)) .

When 0 ≤ k ≤ �−2 X consists of: 2m, k odd elements of S′ \ S′′, and some subset
(not necessarily proper) of the maxima of F . Hence,

w(F̂X ) = x |A|+k yfd(F)zsi(F) x̄ |B|+1 ȳfi(F) z̄sd(F)+(�−k)

= xk x̄ z̄�−k
(

x |A|yfd(F)zsi(F) x̄ |B| ȳfi(F) z̄sd(F)
)

,

where A and B are subsets of the odd and even maxima of F , respectively. As before,
given any pair A and B, there are

(
�
k

)
such sets X .
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Therefore,

∑

F∈ES′

∑

X�F−1(2m)
2m∈X

X∩(S′\S′′)=k+1

w(F̂X )

=
(

�

k

)
xk x̄ z̄�−k

∑

F∈ES′
yfd(F)zsi(F) ȳfi(F) z̄sd(F)

∑

A×B⊆MO(F)×ME(F)

x |A| x̄ |B|

=
(

�

k

)
xk x̄ z̄�−k

∑

F∈ES′
yfd(F)zsi(F) ȳfi(F) z̄sd(F)(x + 1)mo(F)(x̄ + 1)me(F)

=
(

�

k

)
xk x̄ z̄�−k�S′(x + 1, y, z, x̄ + 1, ȳ, z̄).

Summing over all 0 ≤ k ≤ �, this gives a total contribution of

x̄

(
�∑

k=0

(
�

k

)
xk z̄�−k

)
�S′(x + 1, y, z, x̄ + 1, ȳ, z̄)

+ x̄(�x�−1z − x� − �x�−1 z̄)�S′(x, y, z, x̄, ȳ, z̄)

= x̄(x + z̄)��S′(x + 1, y, z, x̄ + 1, ȳ, z̄)

+ x�−1(�x̄(z − z̄) − x x̄)�S′(x, y, z, x̄, ȳ, z̄)

to �S .
Finally, we combine the contributions from Cases 1 and 2 to obtain:

�S(x, y, z, x̄, ȳ, z̄) =(y + x̄)(x + z̄)��S′(x + 1, y, z, x̄ + 1, ȳ, z̄)

+ x�−1[x(ȳ − y) + �x̄(z − z̄) − x x̄]�S′(x, y, z, x̄, ȳ, z̄).

�	

6.2 D-permutations and generalized surjective staircases

The following lemma was proved in [14, Lemma 5.2]:

Lemma 2 There is a bijection

φ : D2n → { f ∈ E2n+2 : f has no even maxima}

such that for all σ ∈ D2n and j ∈ [2n], the following properties hold:

(1) j is an even cycle maximum of σ if and only if it is a fixed point of φ(σ),
(2) j is an even fixed point of σ if and only if it is an isolated fixed point of φ(σ),
(3) j is an odd fixed point of σ if and only if it is an odd maximum of φ(σ).
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Our next goal is to generalize Lemma 2. Let V be a finite set of positive integers
whose maximum is even, and let Rk be a finite set of k +1 positive integers consisting
of:

• k odd numbers larger than max V , and
• one even number that is larger than the odd numbers.

We will show that the D-permutations on V are in bijection with certain of the
surjective staircases with domain V ∪ Rk .

Lemma 3 For any k, let V and Rk be as above. There is a bijection

φ̃ : DV → { f ∈ EV ∪Rk | f has no even maxima},

such that for all σ ∈ DV and all j ∈ V

(1) j is an even cycle maximum of σ if and only if j is a fixed point of φ(σ),
(2) j is an even fixed point of σ if and only if j is an isolated fixed point of φ(σ),
(3) j is an odd fixed point of σ if and only if j is an odd maximum of φ(σ).

Proof Let σ ∈ DV . We wish to apply Lemma 2. Let 2m = max V , 2n = max Rk and
let σ ′ be the permutation in S2n−2 defined by

σ ′(i) =
{

σ(i), i ∈ V ,

i, otherwise.

Notice that the map ψ : {σ ∈ SV } → {σ ∈ S2n−2 | σ(i) = i ∀ i /∈ V } given by
σ �→ σ ′ is a bijection.

We apply the map φ from Lemma 2 to σ ′ to obtain a surjective staircase f ′ ∈ E2n

with no even maxima. Our next goal is to show that the restriction of f ′ to V ∪ Rk is
a surjective staircase.

First, recall that for all i ∈ [2n − 2] \ V , σ ′(i) = i . Hence, if i ∈ [2n − 2] \ V
is even, i is an isolated fixed point of f ′, and if i ∈ [2n − 2] \ V is odd, i is an odd
maximum of f ′. This tells us immediately that for all i ∈ V , f ′(i) ∈ [2n] \ ([2n −
2] \ V ) = V ∪ {2n − 1, 2n}. Since the image of f ′ contains no odd numbers, we see
that f ′(i) ∈ V ∪ {2n} for all i ∈ V . In other words,

f ′(V ) ⊆ {even elements of V } ∪ {2n}.

Conversely, we claim that {even elements of V } ⊆ f ′(V ). Indeed, every element
of [2n − 2] \ V is either a fixed point or a maximum of f ′, so if i ∈ [2n − 2] \ V ,
f ′(i) /∈ V . By definition, f ′(2n −1) = f ′(2n) = 2n. Hence, {even elements of V } �

f ′([2n] \ V ), so the only way for f ′ to be surjective is to have

{even elements of V } ⊆ f ′(V ).

We also see that f ′(Rk) = {2n}. Indeed, we know that f ′(2n − 1) = f ′(2n) = 2n
(whether or not 2n − 1 ∈ Rk). Any other element i of Rk is an odd element of
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[2n − 2] \ V , and by construction, all such i are odd maxima of f ′. Hence,

f ′(V ∪ Rk) = {even elements of V } ∪ {2n}.

Thus, we can define a surjective staircase f ∈ EV ∪Rk by restricting the domain
of f ′ to V ∪ Rk . Indeed, we have just shown that the image of such an f would be
{even elements of V } ∪ {2n}, and such an f would be excedent because f ′ was. We
also know that f would have no even maxima because f ′ had no even maxima.

Finally, note that the image of φ ◦ ψ consists of surjective staircases f ′ ∈ E2n

with no even maxima, such that f ′(2i − 1) = 2n for all 2i − 1 /∈ V , and such
that 2i is an isolated fixed point of f ′ for all 2i /∈ V . We observe that restricting
the domain of f ′ to V ∪ Rk yields a bijection between the image of φ ◦ ψ and
{ f ∈ EV ∪Rk | f has no even maxima}. Indeed, given any f ∈ EV ∪Rk that has no even
maxima, we define a g ∈ E2n with no even maxima by

g(a) =

⎧
⎪⎨

⎪⎩

f (a), a ∈ V ,

2n, a ∈ [2n] \ V is odd,

a, a ∈ [2n] \ V is even.

Such a g is in the image of φ ◦ ψ because 2i − 1 is an odd maximum of g for all
2i − 1 ∈ [2n − 2] \ V and 2i is an isolated fixed point of g for all 2i ∈ [2n − 2] \ V .
Moreover, by construction we see that g|V ∪Rk = f .

Hence,we define φ̃ : DV → EV ∪Rk by φ̃(σ ) = φ(σ ′)
∣∣
V ∪Rk

. Since the three desired

properties held for φ, they hold for φ̃ automatically. The map φ̃ is the composition of
three maps σ �→ σ ′ �→ f ′ �→ f , each of which is a bijection, so φ̃ is a bijection. �	

Next, we prove a technical result generalizing [14, Lemma 5.4].

Lemma 4 For any k,

∑

σ∈DV

tc(σ ) = �V ∪Rk (t, t, 1, 0, t, 1),

where c(σ ) is the number of cycles of σ .

Proof We apply the bijection φ̃ from Lemma 3:

∑

σ∈DV

tc(σ ) =
∑

σ∈DV

tfi(φ̃(σ ))+fd(φ̃(σ ))+mo(φ̃(σ ))

=
∑

f ∈EV ∪Rk
me( f )=0

tfi( f )+fd( f )+mo( f )

= �V ∪Rk (t, t, 1, 0, t, 1).

�	
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7 Generating function proofs

We now use the technical results established in Sect. 6 to prove Theorems 4 and 6.

7.1 k-Step staircases

Let

Sk
n = {1, 3, 5, . . . , 2nk − 1} 	 {2k, 4k, . . . , 2nk},

and note that λ(Sk
n ) is the k-staircase partition λ

(n)
k .

We are ready to prove a generalization of Randrianarivony and Zeng’s generating
function formula for the generalized Dumont–Foata polynomials.

Theorem 9 For all k ≥ 1,

∑

n≥1

�Sk
n
(x, y, z, x̄, ȳ, z̄)un−1

=
∑

n≥1

(y + x̄)(n−1)
(
(x + z̄)(n−1)

)k
un−1

∏n−1
i=0

(
1 − (x + i)k−1 [(x + i)(ȳ − y) + k(x + i)(z − z̄) − (x + i)(x̄ + i)] u

) ,

where x (n) = x(x + 1) · · · (x + (n − 1)).

Proof Throughout this proof we will abbreviate �S(x, y, z, x̄, ȳ, z̄) as �S , and simi-
larly write�S(x +1, y, z, x̄ +1, ȳ, z̄) as�S(x +1, x̄ +1). By assumption, Sk

1 contains
exactly one even element, so �Sk

1
= 1. We can thus write

∑

n≥1

�Sk
n
un−1 = 1 +

∑

n≥2

�Sk
n
un−1

= 1 +
∑

n≥2

(y + x̄)(x + z̄)k�Sk
n−1

(x + 1, x̄ + 1)un−1

+
∑

n≥2

xk−1[x(ȳ − y) + kx̄(z − z̄) − x x̄]�Sk
n−1

un−1

= 1 +
∑

n≥1

(y + x̄)(x + z̄)ku�Sk
n
(x + 1, x̄ + 1)un−1

+
∑

n≥1

xk−1[x(ȳ − y) + kx̄(z − z̄) − x x̄]u�Sk
n
un−1,

with the second equality being the recurrence proved in Theorem 8.
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We can rearrange this equation to obtain

(
1 − xk−1[x(ȳ − y) + kx̄(z − z̄) − x x̄]u

)∑

n≥1

�Sk
n
un−1

= 1 + ((y + x̄)(x + z̄)ku)
∑

n≥1

�Sk
n
(x + 1, x̄ + 1)un−1,

so we have

∑

n≥1

�Sk
n
un−1 = 1

1 − xk−1[x(ȳ − y) + kx̄(z − z̄) − x x̄]u

+ (y + x̄)(x + z̄)ku

1 − xk−1[x(ȳ − y) + kx̄(z − z̄) − x x̄]u
×

∑

n≥1

�Sk
n
(x + 1, x̄ + 1)un−1.

By recursively expanding the right-hand side of this equation, we obtain the desired
generating function formula. �	

We can now prove Theorem 4.

Proof of Theorem 4. By Corollary 1, we know that �Sk
n

= �V k
n
for any V k

n satisfying

λ(V k
n ) = λ

(n)
k , so without loss of generality we can take V k

n = Sk
n . By Lemma 4, we

know that

∑

σ∈D
Sk
n

tc(σ ) = �Sk
n+1

(t, t, 1, 0, t, 1).

Hence, we have

∑

n≥1

∑

σ∈D
Sk
n

tc(σ )un =
∑

n≥1

�Sk
n+1

(t, t, 1, 0, t, 1)un

= −1 +
∑

n≥1

�Sk
n
(t, t, 1, 0, t, 1)un−1

= −1 +
∑

n≥1

t (n−1)
(
(t + 1)(n−1)

)k
un−1

∏n−1
i=0

(
1 + i(t + i)ku

)

=
∑

n≥2

t (n−1)
(
(t + 1)(n−1)

)k
un−1

∏n−1
i=0

(
1 + i(t + i)ku

)

=
∑

n≥1

t (n)
(
(t + 1)(n)

)k
un

∏n
i=0

(
1 + i(t + i)ku

) ,
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with the third equality following from Theorem 9.
Next, we have

∑

n≥1

∑

σ∈D
Sk
n

(−t)c(σ )−1un = −1

t

∑

n≥1

(−t)(n)
(
(−t + 1)(n)

)k
un

∏n
i=0

(
1 + i(−t + i)ku

)

=
∑

n≥1

(−1)nk+n−1(t − 1)n−1 ((t − 1)n)k un

∏n
i=0

(
1 + i(i − t)ku

) . (7)

By Theorem 1, we know that χ��
Sk
n

(t) = (−1)nk+n−1
∑

σ∈D
Sk
n

(−t)c(σ )−1,

because �Sk
n
has nk + n vertices. Hence,

∑

n≥1

χ��
Sk
n

(t)un = −
∑

n≥1

∑

σ∈D
Sk
n

(−t)c(σ )−1(−1)nk+nun

= −
∑

n≥1

∑

σ∈D
Sk
n

(−t)c(σ )−1((−1)k+1u)n

= −
∑

n≥1

(−1)nk+n−1(t − 1)n−1 ((t − 1)n)k (−1)nk+nun

∏n
i=0

(
1 + i(i − t)k(−1)k+1u

)

=
∑

n≥1

(t − 1)n−1 ((t − 1)n)k un

∏n
i=0

(
1 − i(t − i)ku

) ,

with the third equality following from Eq. (7). �	

7.2 The complete bipartite graph Kn,k.

Fix k ≥ 1, and let T k
n = {1, 3, 5, . . . , 2k − 1} 	 {2k, . . . , 2(k + n − 1)} as in Sect. 5.2.

By applying Theorem 8, we see that

�T k
1

= 1,

�T k
2

= (y + x̄)(x + z̄)k + xk−1[x(ȳ − y) − kx̄(z̄ − z) − x x̄], (8)

and

�T k
n

= (y + x̄)�Tn−1(x + 1, x̄ + 1) + (ȳ − y − x̄)�T k
n−1

(9)

for all n ≥ 3, where �T k
n
(x + 1, x̄ + 1) := �T k

n
(x + 1, y, z, x̄ + 1, ȳ, z̄).
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Theorem 10 We have

∑

n≥1

�T k
n

un−1 = 1 +
∑

n≥2

(y + x̄)(n−2)�T k
2
(x + (n − 2), x̄ + (n − 2))un−1

∏n−2
i=0 (1 − (ȳ − y − (x̄ + i))u)

,

where a(n) is the rising factorial a(a + 1) · · · (a + (n − 1)).

Proof We can write

∑

n≥1

�T k
n

un−1 = 1 + �T k
2

u +
∑

n≥3

�T k
n

un−1

= 1 + �T k
2

u + (y + x̄)
∑

n≥3

�T k
n−1

(x + 1, x̄ + 1)un−1

+ (ȳ − y − x̄)
∑

n≥3

�T k
n−1

un−1

= 1 + �T2u + (y + x̄)u
∑

n≥2

�T k
n
(x + 1, x̄ + 1)un−1

+ (ȳ − y − x̄)u
∑

n≥2

�T k
n

un−1,

with the second equality following from Eq. (9).
Subtracting 1 from both sides, we have

∑

n≥2

�T k
n

un−1 = �T k
2

u + (y + x̄)u
∑

n≥2

�T k
n
(x + 1, x̄ + 1)un−1

+(ȳ − y − x̄)u
∑

n≥2

�T k
n

un−1.

By rearranging, we see

(1 − (ȳ − y − x̄)u)
∑

n≥2

�T k
n

un−1 = �T k
2

u + (y + x̄)u
∑

n≥2

�T k
n
(x + 1, x̄ + 1)un−1,

or equivalently that

∑

n≥2

�T k
n

un−1 =
�T k

2
u

1 − (ȳ − y − x̄)u
+ (y + x̄)u

1 − (ȳ − y − x̄)u

∑

n≥2

�T k
n
(x+1, x̄ +1)un−1.
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By recursively expanding the right-hand side of the above equation, we see that

∑

n≥2

�T k
n

un−1 =
∑

n≥2

(y + x̄)(n−2)�T k
2
(x + (n − 2), x̄ + (n − 2))un−1

∏n−2
i=0 (1 − (ȳ − y − (x̄ + i))u)

.

�	
Now, by applying Lemma 4, we can prove Theorem 6.

Proof (Proof of Theorem 6.) By Lemma 4, we know that

∑

σ∈D
T k

i

t c(σ ) = �T k
i+1

(t, t, 1, 0, t, 1),

so

∑

n≥1

∑

σ∈D
T k

n

tc(σ )un =
∑

n≥2

�T k
n
(t, t, 1, 0, t, 1)un−1

=
∑

n≥2

t (n−2)
(
�T k

2
(x + (n − 2), x̄ + (n − 2))

)∣∣∣
(t,t,1,0,t,1)

un−1

∏n−2
i=0 (1 + iu)

,

by Theorem 10.
Now, by Eq. (8),

�T k
2
(x + i, x̄ + i)

= (y + x̄ + i)(x + z̄ + i)k

+ (x + i)k−1 [(x + i)(ȳ − y) − k(x̄ + i)(z̄ − z) − (x + i)(x̄ + i)] ,

so
(
�T k

2
(x + i, x̄ + i)

)∣∣∣
(t,t,1,0,t,1)

= (t + i)(t + i + 1)k + (t + i)k−1(−(t + i)i)

= (t + i)(t + i + 1)k − i(t + i)k .

Thus, after reindexing we have

∑

n≥1

∑

σ∈D
T k

n

tc(σ )un =
∑

n≥1

t (n−1)((t + (n − 1))(t + n)k − (n − 1)(t + (n − 1))k)un

∏n−1
i=1 (1 + iu)

= t(t + 1)ku +
∑

n≥2

t (n)
[
(t + n)k − (n − 1)(t + (n − 1))k−1

]
un

∏n−1
i=0 (1 + iu)
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Next, we have

∑

n≥1

∑

σ∈D
T k

n

(−t)c(σ )−1

= −1

t

⎛

⎝(−t)(1 − t)ku +
∑

n≥2

(−t)(n)
[
(n − t)k − (n − 1)((n − 1) − t)k−1

]
un

∏n−1
i=0 (1 + iu)

⎞

⎠

= (1 − t)ku +
∑

n≥2

(−1)n+k−1(t − 1)n−1
[
(t − n)k + (n − 1)(t − (n − 1))k−1

]
un

∏n−1
i=0 (1 + iu)

.

Finally, since �T k
n
has n + k vertices, χ��

T k
n

(t) = (−1)n+k−1
∑

σ∈D
T k

n

(−t)c(σ )−1

by Theorem 1. Hence,

∑

n≥1

χ��
T k

n

(t)un

=
∑

n≥1

(−1)n+k−1
∑

σ∈D
T k

n

(−t)c(σ )−1un

= (−1)k−1
∑

n≥1

∑

σ∈DTn

(−t)c(σ )−1(−u)n

= (t − 1)ku

+ (−1)k−1
∑

n≥2

(−1)n+k−1(t − 1)n−1
[
(t − n)k + (n − 1)(t − (n − 1))k−1

]
(−1)nun

∏n−1
i=0 (1 − iu)

= (t − 1)ku +
∑

n≥2

(t − 1)n−1
[
(t − n)k + (n − 1)(t − (n − 1))k−1

]
un

∏n−1
i=0 (1 − iu)

=
∑

n≥1

(t − 1)n−1
[
(t − n)k + (n − 1)(t − (n − 1))k−1

]
un

∏n−1
i=0 (1 − iu)

.

Finally, we multiply by t to obtain the desired generating function for the chromatic
polynomial. �	

8 Dowling analogs

8.1 Homogenized �dowling arrangements

As in [11, Chapter 4] (see also [12]), we can consider a complex analog of the
homogenized ν-arrangements. Many of the results of the previous sections can be
extended to the complex case after some technical results are established.

Let ν = (ν1, . . . , νn) be a weak composition of m, and fix a positive integer q.

Let ω be the primitive qth root of unity e
2π i
q . We define the homogenized ν-Dowling
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arrangement to be the hyperplane arrangement in

{(x1, . . . , xn, y(1)
1 , . . . , y(ν1)

1 , y(1)
2 . . . . , y(ν2)

2 , . . . , y(1)
n , . . . , y(νn)

n )} = C
m+n

given by

Hq
ν ={xi − ωk x j = y(�)

i | 1 ≤ i < j ≤ n, 0 ≤ k ≤ q − 1, 1 ≤ � ≤ νi }
∪ {xi = y(�)

i | 1 ≤ i ≤ n, 1 ≤ � ≤ νi }.

The term “Dowling” comes from the fact that the intersection lattice of Hq
ν is a

subposet of the Dowling lattice Qn(Zq), introduced by Dowling in [5].
Let Kq

ν be the hyperplane arrangement in C
n+m given by:

{x (�)
2i−1 − ωk x2 j−2 = 0 | 1 ≤ i < j ≤ n, 0 ≤ k ≤ q − 1, 1 ≤ � ≤ νi }

∪ {x (�)
2i−1 = 0 | 1 ≤ i ≤ n, 1 ≤ � ≤ νi }.

Lemma 5 There is an invertible linear transformation from C
n+m to itself that takes the

hyperplanes of Hq
ν to the hyperplanes of Kq

ν . In particular, we have L(Hq
ν ) ∼= L(Kq

ν ).

Proof This follows from essentially the same argument as in the proof of Theorem 3.
See also [11, Lemma 4.2.3], [12]. �	

The results of [11, Section 4.2] (and of [12]) allow us to interpret the coefficients of
the χL(Kq

ν )(t) (and hence of χL(Hq
ν )(t)) in terms of certain decorated D-permutations.

A q-labeled D-cycle on V ⊆ [2r ] is a D-cycle σ on V , some of whose entries are
labeled with elements of {0, . . . , q − 1} subject to the following conditions.

• The maximum entry of σ is labeled 0.
• If 2r ∈ V and σ is written in the form (w · 2r) then the right-to-left minima of the
word w are the only unlabeled entries of σ .

• If 2r /∈ V then each entry of σ is labeled.

A q-labeled D-permutation on V ⊆ [2r ] is a D-permutation σ on V , some of
whose entries are labeled with elements of {0, . . . , q − 1}, such that each cycle of
σ is a q-labeled D-cycle. We write Dq

V ,r for the set of q-labeled D-permutations on
V ⊆ [2r ].

The combinatorics of q-labeled D-permutations is equivalent to the combinatorics
of a certain class of edge-decorated forests.

A tree T on vertex set V ⊂ Z>0 is increasing-decreasing (or ID for short) if, when
T is rooted at its largest vertex, each internal vertex v of T satisfies:

• if v is odd then v is smaller than all of its descendants and all of the children of v

are even,
• if v is even then v is larger than all of its descendants and all of the children of v

are odd.
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An ID forest is a forest, each of whose connected components is an ID tree. ID
forests were introduced in [14], where the authors showed that the ID forests on V
are exactly the non-broken circuit sets (with respect to a particular edge order) of the
graph �V [14, Theorem 3.5].

A q-labeled ID tree is a tree T on vertex set V ⊆ [2r ] such that each edge of T
not incident to 2r is labeled with an element of {0, . . . , q − 1} (so if 2r /∈ V , each
edge of T is labeled). A q-labeled ID forest is a forest, each of whose components is
a q-labeled ID tree. We write Fq

V ,r for the set of q-labeled ID forests on V ⊆ [2r ]. As
in the unlabeled case, the q-labeled ID forests are exactly the non-broken circuit sets
of the matroid arising from a complex hyperplane arrangement studied by Lazar and
Wachs [11, 12, Proposition 4.2.8].

In [11, 12, Theorem 4.2.10], Lazar and Wachs construct a bijection between the
q-labeled D-permutations on V with k cycles and the q-labeled ID forests on V with
k components.

Let V be any finite subset of Z>0 with odd minimum and even maximum such that
λ(V ) = λ(ν), and let 2r = max V . Then V has m odd elements and n even elements.
We let 2s be the second-largest even element of V and suppose that there are � odd
elements of V between 2s and 2r . Finally, we let V ′ := V |[2s].

By [11, 12, Proposition 4.2.8] and [11, 12, Theorem 4.2.10], we have the following
interpretation of the coefficients of χL(Kq

ν )(t).

Proposition 2 The coefficient of (−1)k tk−1 in χL(Kq
ν )(t) is equal to the number of q-

labeled D-permutations on V with exactly k cycles, and hence is equal to the number
of q-labeled ID forests on V with exactly k components.

We can thus use Lemma 3 to show the following:

Theorem 11 For any weak composition ν of m of length n and any finite V ⊆ Z>0
with odd minimum and even maximum such that λ(ν) = λ(V ), we have

χL(Hq
ν )(t) = (−1)m+n−1(1 − t)�qm+n−�−1�V

(
1 − t

q
,
1 − t

q
, 1, 0,

−t

q
, 1

)
,

where � is the number of odd elements of V between the largest and second-largest
even elements of V .

Proof We have

χL(Hq
ν )(t) = χL(Kq

ν )(t) = (−1)m+n−1
∑

F∈Fq
V ,r

(−t)c(F)−1,

where c(F) is the number of components of F .We let F ′ be the forest obtained from F
by deleting the vertex 2r . Let G is a q-labeled ID forest on V \ {2r} such that F ′ = G,
and let T be a component of G. If T is not an isolated even vertex then either T is a
component of F , or T is attached to 2r in F . If T is an isolated even vertex then T
must also be a component of F . Hence
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∑

F∈Fq
V ,r

F ′=G

(−t)c(G)−1 = (−t)#{even isolated nodes of G}(1 − t)#{other components of G}.

Moreover, we know that G must have at least � isolated odd nodes for the � odd
elements of V between 2s and 2r (since each such vertex can only share an edge with
2r ). Hence we have

∑

F∈Fq
V ,r

(−t)c(F)−1 =
∑

G∈Fq
V \{2r},r

∑

F∈Fq
V ,r

F ′=G

(−t)c(G)−1

=
∑

G∈Fq
V \{2r},n

(−t)#{even isolated nodes of G}

× (1 − t)#{other components of G}

= (1 − t)�
∑

G∈Fq
V ′,r

(−t)#{even isolated nodes of G}

× (1 − t)#{other components of G}.

By applying the bijection between Fq
V ′,r and Dq

V ′,r , this last sum becomes

(1 − t)�
∑

σ∈Dq
V ′,r

(−t)#{even fixed points of σ }(1 − t)#{other cycles of σ }.

If σ ∈ Dq
V ,r , we let |σ | be the underlying (unlabeled) D-permutation in DV . We

thus have

χL(Kq
ν )(t) = (−1)m+n−1(1 − t)�

×
∑

σ∈DV ′

∑

τ∈Dq
V ′,n|τ |=σ

(−t)#{even fixed points of σ }(1 − t)#{other cycles of σ }.

Since 2r /∈ V ′, given any σ ∈ DV ′ we can construct a τ ∈ Dq
V ′,r with |τ | = σ

by labeling the largest entry of each cycle of σ with 0 and freely labeling all of the
entries of σ with the elements of {0, . . . , q − 1}. This means that there are exactly
q |V ′|−#{cycles of σ } many τ ∈ Dq

V ′,r with |τ | = σ .
Letting cyc(σ ) be the number of cycles of σ , this means that we have

χL(Kq
ν )(t) = (−1)m+n−1(1 − t)�

×
∑

σ∈DV ′
q |V ′|−cyc(σ )(−t)#{even fixed pts of σ }(1 − t)#{other cycles of σ }

= (−1)m+n−1(1 − t)�q |V ′|
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×
∑

σ∈DV ′

(−t

q

)#{even fixed points of σ } (
1 − t

q

)#{other cycles of σ }

= (−1)m+n−1(1 − t)�qm+n−�−1�V

(
1 − t

q
,
1 − t

q
, 1, 0,

−t

q
, 1

)
,

as desired, with the last equality following from Lemma 3. �	

8.2 Generating function proofs

Since Hm
n,k = Hm

ν for ν = (k, k, . . . , k︸ ︷︷ ︸
n

), we are now able to prove Theorem 5.

Proof of Theorem 5 By Theorem 11, we have

χL(Hm
n,k )

(t) = (−1)nk+n−1(1 − t)kmnk+n−k−1�Sk
n

(
1 − t

m
,
1 − t

m
, 1, 0,

−t

m
, 1

)
,

where

Sk
n = {1, 3, . . . , 2nk − 1} 	 {2k, 4k, . . . , 2nk}.

We have
∑

n≥1

χL(Hm
n,k )(t)u

n−1 =
∑

n≥1

(−1)nk+n−1(1 − t)kmnk+n−k−1�Sk
n

×
(
1 − t

m
,
1 − t

m
, 1, 0,

−t

m
, 1

)
un−1

= (t − 1)k
∑

n≥1

�Sk
n

(
1 − t

m
,
1 − t

m
, 1, 0,

−t

m
, 1

)
((−mk+1)u)n−1.

By Theorem 9, this last sum is equal to

(t − 1)k
∑

n≥1

( 1−t
m

)(n−1)
(( 1−t

m + 1
)(n−1)

)k
((−m)n−1)k+1un−1

∏n−1
i=0

(
1 − ( 1−t

m + i
)k−1 [( 1−t

m + i
) −1

m − ( 1−t
m + i

)
i
]
(−m)k+1u

) .

Now,

(−m)n−1
(
1 − t

m

)(n−1)

= (−m)n−1
n−1∏

j=1

(
1 − t

m
+ j − 1

)

=
n−1∏

j=1

t − 1 − ( j − 1)m

= (t − 1)n−1,m .
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Similarly,

(t − 1)(−m)n−1
(
1 − t

m
+ 1

)(n−1)

= (t − 1)
n−1∏

j=1

(t − 1 − jm) =
n−1∏

j=0

(t − 1 − jm) = (t − 1)n,m .

Thus, the generating function formula above simplifies to

∑

n≥1

χL(Hm
n,k )

(t)un−1

=
∑

n≥1

(t − 1)n−1,m
(
(t − 1)n,m

)k
un−1

∏n−1
i=0

(
1 − (im + 1)(t − (im + 1))ku

) ,

as desired. �	
Since J m

n,k = Hm
ν for ν = (k, 0, . . . , 0︸ ︷︷ ︸

n−1

), a similar argument allows us to prove

Theorem 7.

Proof of Theorem 7 By Theorem 11, we have

χJ m
n,k

(t) =
{

(t − 1)k, n = 1

(−m)n+k−1�T k
n

( 1−t
m , 1−t

m , 1, 0, −t
m , 1

)
, n ≥ 2

,

so

∑

n≥2

χJ m
n,k

(t)un−1 = (−m)k
∑

n≥2

�T k
n

(
1 − t

m
,
1 − t

m
, 1, 0,

−t

m
, 1

)
(−mu)n−1,

and by Theorem 6 the last sum is equal to

(−m)k
∑

n≥2

( 1−t
m

)(n−2)
�T k

2
(x + n − 2, x̄ + n − 2)

∣∣∣∣( 1−t
m , 1−t

m ,1,0, −t
m ,1

) (−m)n−1un−1

∏n−2
i=0

[
1 − (−1

m − i
)
(−m)u

] .

Now, we know that

�T k
2
(x + i, x̄ + i)

= (y + x̄ + i)(x + z̄ + i)k

+ (x + i)k−1 [(x + i)(ȳ − y) − k(x̄ + i)(z̄ − z) − (x + i)(x̄ + i)] ,
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so

(−m)k+1�T k
2
(x + n − 2, x̄ + n − 2)

∣∣∣∣( 1−t
m , 1−t

m ,1,0, −t
m ,1

)

= (t − 1 − m(n − 2))

×
[
(t − 1 − m(n − 1))k + (m(n − 2) + 1)(t − 1 − m(n − 2))k−1

]
.

Since (−m)n−2
( 1−t

m

)(n−2) = (t − 1)n−2,m and (t − 1− m(n − 2))(t − 1)n−2,m =
(t − 1)n−1,m , the generating function formula simplifies to

∑

n≥2

χJ m
n,k

(t)un−1

=
∑

n≥2

(t − 1)n−1,m
[
(t − 1 − m(n − 1))k + (m(n − 2) + 1)(t − 1 − m(n − 2))k−1

]
un−1

∏n−2
i=0 [1 − (mi + 1)u]

,

as desired. �	

9 Final remarks and further questions

In [14, Corollary 3.9], it was shown that −χL(H2n−1)(0) is equal to the (unsigned)
Genocchi number gn , and Hetyei’s count of the number of regions of H2n−1 in [10]
tells us that −χL(H2n−1)(−1) is equal to the median Genocchi number hn . It therefore
seems reasonable to define a family of generalizations gn,k and hn,k by

gn,k = (−1)nk+n−1χL(Hn,k )(0), (10)

hn,k = (−1)nk+n−1χL(Hn,k )(−1). (11)

Using Corollary 3, we can derive generating function formulas for these sequences
as functions of k.

∑

n≥1

gn,kun =
∑

n≥1

(−1)nk+n−1χL(Hn,k )(0) =
∑

n≥1

(n − 1)!(n!)kun
∏n

i=1(1 + i2u)
, (12)

∑

n≥1

hn,kun =
∑

n≥1

(−1)nk+n−1χL(Hn,k )(−1) =
∑

n≥1

n!((n + 1)!)kun
∏n

i=1(1 + i(i + 1)u)
. (13)

These generating functions reduce to generating functions due to Barsky and
Dumont [1] for theGenocchi andmedianGenocchi numbers, respectively,when k = 1.

Specializing the proof of Theorem 11 to m = 1 and V = Sk
n (c.f. [14, Theorem

4.14]), we see that
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χL(Hn,k )(t) = (1 − t)k
∑

σ∈D
Sk
n−1

(−t)#{even fixed points of σ }(1 − t)#{other cycles of σ }.

(14)

By evaluating Eq. (14) at t = −1, we obtain a decomposition of hn,k into powers
of 2 for all n ≥ 2:

hn,k =
k(n−1)∑

j=1

h j
n−1,k2

j+k, (15)

where h j
n,k is the number of D-permutations on Sk

n with exactly j cycles that are not
even fixed points.

In [14, Corollary 4.16], the authors obtain a decomposition of the Genocchi num-
bers into powers of 2 that is expected to be the same as a decomposition due to
Sundaram [18, Theorem 3.15]. However, the proof of this decomposition relies on a
factorization of χL(H2n−1)(t) [14, Theorem 4.15] whose proof does not immediately
generalize toHn,k .

Question 1 What is the largest power of (t − 1) that divides χL(Hn,k )(t)?

Question 2 Is there a decomposition of gn,k analogous to Sundaram’s decomposition
of gn?

There is awealth of literature studying theGenocchi numbers andmedianGenocchi
numbers. It would be interesting to see which results about those sequences can be
generalized to this broader setting. For example, the Genocchi and median Genocchi
numbers can be obtained from one another via a triangular array known as a Seidel
triangle (see, e.g., [7]).

Question 3 Is there an analogous relationship between gn,k and hn,k?
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