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Abstract
In this paper we explore special values of Gaussian hypergeometric functions in terms
of products of Euler �-functions and exponential functions of linear functions of the
hypergeometric parameters. They include some classical evaluations, but the main
inspiration is from the contiguity method recently applied by Akihito Ebisu.

Keywords Gauss hypergeometric function · Special values · Gamma function

Mathematics Subject Classification 33C05

1 Introduction

Let a, b, c ∈ C such that c /∈ Z≤0. The Gauss hypergeometric function F(a, b, c | z)
is defined by the power series expansion

∞∑

n=0

(a)n(b)n
(c)nn! zn .

This power series converges in the complex disc | z | < 1. When Re(c − a − b) > 0,
the series also converges on | z | = 1. Note that if the a or b parameter is a negative
integer, then F(a, b, c | z) is a polynomial. There are no convergence issues in that
case.
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In the classical literature on hypergeometric functions, we find many instances of
special evaluation of a hypergeometric function at specific arguments. The best known
evaluation is due to Gauss,

F(a, b, c | 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
.

The left-hand side converges only if Re(c−a−b) > 0. Another example is Kummer’s
evaluation

F(a, b, a − b + 1 | − 1) = 1

2

�(a/2)�(a − b + 1)

�(a)�(a/2 − b + 1)
.

From this, one can deduce two others, as shown by Bailey in [2,p. 11]. The first is

F
(
2a, 2b, a + b + 1/2 | 1/2) = �(1/2)�(a + b + 1/2)

�(a + 1/2)�(b + 1/2)
,

attributed to Gauss, and the second is

F
(
a, 1 − a, c | 1/2) = �(c/2)�((c+1)/2)

�((c+a)/2)�((1+c−a)/2)
.

There is a related evaluation

F(2a + 1, b, 2b | 2) = �(−a)�(1/2 + b)

�(1/2)�(−a + b)
× 1 − e2π ia

2
.

However, for the moment this is only well defined when 2a+ 1 ∈ Z≤0 and 2b /∈ Z≤0,
since in that case the left-hand side is a finite sum.

The above examples contain 3 or 2 degrees of freedom in their parameters. It turns
out that there exists a very extensive list of one-parameter evaluations. As an example,
we quote from Bateman’s [7,2.8(53)],

F
(− a,−a + 1/2, 2a + 3/2 | − 1/3

) =
(
8

9

)2a
�(2a + 3/2)�(4/3)

�(2a + 4/3)�(3/2)
.

These evaluations take place at fixed arguments and the values are a product of values
of �-functions times an exponential function times, possibly, a periodic function in
the hypergeometric parameters. In the literature, they are sometimes called “strange
evaluation,” we prefer the more descriptive name �-evaluations.

The first systematic study that we are aware of is fromHeyman in 1899, [12]. There
we find a collection of �-evaluations obtained by using the contiguity property for
hypergeometric functions. We also cite [11] from 1982 and [14] from 1998, which
includes special evaluations for higher-order hypergeometric functions as well. The
evaluations are often in polynomial form, by which we mean that one of the first
two hypergeometric parameters is a negative integer. The development of computer
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algebra methods made it possible to automatize the search for �-evaluations. See,
for example, [10] and the remarkable manuscript [9] containing 40 �-evaluations
discovered around 2004 by Shalosh Ekhad, Doron Zeilberger’s tireless computer. One
more or less random example of such a �-evaluation is

F
(
2t, t + 1/3, 4/3 | − 8

) = 2 cos
(
π(t + 1/3)

)

27t
�(t − 1/6)�(1/2)

�(t + 1/2)�(−1/6)
,

which can be found in [11,(3.7)]when t ∈ −1/3+Z≤0 and additionally in [8,4.3.2(xxi)]
when 2t ∈ Z≤0. In this paper, we show that it holds for arbitrary t .

The inspiration for the present paper comes from Akihito Ebisu’s remarkable AMS
Memoir [8], in which the author develops a systematic method to find �-evaluations
of Gaussian hypergeometric functions. As in Heymann’s work, the main tool in this
study is the contiguity property of hypergeometric functions. After explanation of this
idea, Ebisu produces a long list of sample �-evaluations, either in the finite form, with
one a or b parameter in Z≤0, or an interpolated version which holds fo all parameter
values t . We have adapted Ebisu’s approach, which very briefly comes down to the
following.

Consider a triple of hypergeometric parameters a, b, c and abbreviate it by β :=
(a, b, c). We denote F(β | z) := F(a, b, c | z). Let k, l,m be a triple of integers, which
we denote as γ := (k, l,m), the shift vector. Using contiguity relations, we can find
rational functions Rγ (β, z) and Qγ (β, z) in Q(a, b, c, z) such that

F(β + γ | z) = Rγ (β, z)F(β | z) + Qγ (β, z)F ′(β | z).

A quadruple (β, z0) := (a, b, c, z0) is called admissible with respect to γ if Qγ (β +
tγ, z0) = 0 for all t ∈ C. Choose an admissible quadruple (β, z0). We then obtain the
functional equation

F(β + (t + 1)γ | z0) = Rγ (β + tγ, z0)F(β + tγ | z0) (1.1)

for F(β + tγ | z0) as function of t . Suppose that

Rγ (β + tγ, z0) = R0

r∏

i=1

t + αi

t + δi
, R0 ∈ C

×.

Then observe that Rt
0

∏r
i=1

�(t+αi )
�(t+δi )

satisfies the same functional equation as F(β +
tγ | z0).Allweneed todo is to identify these two functions of t . This is done inTheorem
2.5, which is our main result. From Theorem 2.5, we can deduce interpolated versions
of �-evaluations which occurred only in finite form in earlier publications.

Since, in many of the latter cases, the argument is outside the disc of convergence,
we need to extend the evaluations of F(a, b, c | z) to z outside the unit disc.
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680 F. Beukers, J. Forsgård

The sum F(a, b, c | z) can be continued analytically to C \ [1,∞) using Euler’s
integral

F(a, b, c | z) = �(c)

�(b)�(c − b)

∫ 1

0

xb−1(1 − x)c−b−1

(1 − zx)a
dx.

In the integrand, we choose xb = exp(b log |x |) and (1−x)c−b = exp((c−b) log |1−
x |), and we define (1−zx)a using the choice | arg(1−zx)| < π . Note that this integral
only converges at the points 0 and 1 if Re(b) and Re(c − b) are positive. To get an
integral without these restrictions, one can replace the path of integration [0, 1] by the
so-called Pochhammer contour C :

and division of the integral by (e−2π ib − 1)(e2π i(c−b) − 1). The four horizontal piece-
wise linear paths should be thought of as four copies of the real segment [δ, 1 − δ]
and the rounded parts as the circles |z| = δ and |z − 1| = δ for some small δ > 0.
We have taken the argument of the integrand on the bottom line segment to be given
as above. For the evaluation of F(a, b, c | z) at z ∈ (1,∞), we make the choice
limε↓0 F(a, b, c | z + εi). Its value is now given by the Euler integral over the arc

or its Pochhammer version. When a, b, c are real, the value limε↓0 F(a, b, c | z − εi)
is its complex conjugate. When a, b, c are not all real, the difference between these
limits can be quite drastic. The reader should be aware of this when checking the
results numerically. For example, the computer package Mathematica seems to use
the second limit (with z − iε).

In the above description, we have suggested that the degrees in t of numerator and
denominator of Rγ (β + tγ, z0) are the same. In Theorem 4.1, we prove that this is
indeed the case when the vector β + tγ is non-resonant. This means that none of the
four linear functions

a + kt, b + lt, c − a + t(m − k), and c − b + t(m − l)

is an integer valued constant. It turns out that the non-resonant case is the interesting
case; in Sect. 3, we give a description of the resonant cases only for completeness. In
the non-resonant case, Theorem 4.1 also gives the values of z0 and R0. This is a result
found previously by Iwasaki in [13,Theorem 2.3], although not in this wording and
with a different proof using asymptotic analysis of the Euler integral.
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Although we believe that, for a given admissible quadruple, there should exist a
simple procedure to determine Rγ (β + γ t), we have not been able to discover it.
Another issue we should mention is a difference between the result of Theorem 2.5
and some finite evaluations in [9] and [8]. As an example, consider the identity

F(t, 3t − 1, 2t |eπ i/3) = −
√
3

2
eπ i(t/2+5/6)

(
4√
27

)t
�(t + 1/2)�(1/3)

�(t + 1/3)�(1/2)
,

which can be deduced from Theorem 2.5. It holds for all t ∈ C. When t = −n for
any n ∈ Z>0, the left-hand side is not well defined as hypergeometric series, but the
equality should be read as the limit when t → −n. We get, after some simplification,

F(−n,−3n − 1,−2n|eπ i/3) = −
√
3

2
e5π i/6

(
−√−27

4

)n
(2/3)n

(1/2)n
.

In [9,Theorem 11] and [8,4.2.4], we find the same evaluation, but with the fac-
tor −√

3e5π i/6/2 missing. The reason is that in the latter evaluations, the function
F(−n,−3n−1,−2n|z) is interpreted as the polynomial F(−n,−3n−1, c|z)|c=−2n .
It is remarkable that the limit and the polynomial evaluation differ by a constant fac-
tor. In many cases when both the a-parameter and c-parameter have limits that are
non-positive integers, this phenomenon seems to occur. As suggested by the referee,
an explanation might be that both sequences satisfy the same first order recurrence
relation in n. We have not tried to elaborate this.

We have not made an exhaustive search for all admissible quadruples. This is
more or less done in [8]. There it is also remarked that through the use of Kummer’s
solution to a hypergeometric equation, any admissible quadruple is associated with
24 others. This may explain the abundance of these �-evaluations. In Sect. 4, we give
a description and a proof of the existence of these associated quadruples through the
properties of the Euler kernel, which is the integrand of the Euler integral.

In the final section, we present a more or less random list of examples of �-
evaluations.

2 Interpolation

Let us begin with an example. We consider the case (k, l,m) = (2, 2, 1) and carry out
the program we sketched in the introduction. We get

Rγ (a, b, c, z) = c(2 + a + b − c)

(a + 1)(b + 1)(z − 1)2
and

Qγ (a, b, c, z) = c((1 + 2a + a2 + 2b + ab + b2 − c − ac − bc)z + (1 + a − c)(1 + b − c))

a(1 + a)b(1 + b)(−1 + z)2
.
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682 F. Beukers, J. Forsgård

The numerator of Qγ (a + 2t, b + 2t, c + t, z) reads

(c + t)
(
1 + a + b + ab − 2c − ac − bc + c2 + z + 2az + a2z + 2bz + abz + b2z

−cz − acz − bcz + (2 + a + b − 2c + 7z + 5az + 5bz − 4cz)t + (8z + 1)t2
)

.

The equations for the admissible quadruple are obtained by setting this polynomial in
t identically zero. We get

⎧
⎪⎪⎨

⎪⎪⎩

0 = 8z + 1,
0 = 2 + a + b − 2c + 7z + 5az + 5bz − 4cz,
0 = 1 + a + b + ab − 2c − ac − bc + c2 + z + 2az + a2z

+2bz + abz + b2z − cz − acz − bcz.

Solution of this system yields

z0 = −1/8, a = 2t, b = 2t + 1/3, c = t + 5/6 (2.1)

or

z0 = −1/8, a = 2t, b = 2t − 1/3, c = t + 2/3.

Taking the first possibility, we get

Rγ

(
2t, 2t + 1/3, t + 5/6,−1/8

)

= 16

27
× t + 5/6

t + 2/3
.

So we find from (1.1) that

F
(
2(t + 1), 2(t + 1) + 1/3, t + 1 + 5/6 | − 1/8

)

= 16

27
× t + 5/6

t + 2/3
× F(2t, 2t + 1/3, t + 5/6 | − 1/8)

for all t . Notice that
( 16
27

)t �(t+5/6)
�(t+2/3)

satisfies the same functional equation. The cor-
responding functions turn out to differ by a constant factor, as shown in Corollary
2.8.

In this section, we prove Theorem 2.5 which states that for any admissible quadru-
ple (β, z0), there exists a complex interpolation of the �-evaluations. We find from
[1,Corollary 1.4.4], the following estimate.

Lemma 2.1 Suppose s = a + bi with a1 < a < a2 and | b | → ∞. Then

|�(a + bi)| = √
2π |b|a− 1

2 e− π |b|
2
[
1 + O(1/|b|)].
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Proposition 2.2 Let β = (a, b, c) ∈ R
3 and γ = (k, l,m) ∈ Z

3. Let z0 ∈ C and
z0 	= 1. Then, F(β + γ t |z0) is a meromorphic function in t ∈ C having at most
finitely many poles with |Re(t)| ≤ 1

2 . Let

C1 = |k arg(1 − z0)| + |l|π
2

+ |m − l|π
2

− |m|π
2

, | arg(1 − z0)| ≤ π.

Then there exist C2,C3 ≥ 0 such that

∣∣F(β + γ t |z0)
∣∣ ≤ C2 |Im(t)|C3 eC1|Im(t)|

for all t ∈ C with |Re(t)| ≤ 1
2 and |Im(t)| sufficiently large.

Proof In order to prove our estimate, we use the ordinary Euler integral. We first
prove the proposition under the assumption that −a >

|k|
2 , that b >

|l|
2 , and that

c − b >
|m−l|
2 . Let us write

G(β + γ t |z0) :=
∫ 1

0

xb−1+lt (1 − x)c−b−1+(m−l)t

(1 − z0x)a+kt
dx.

This integral converges for all t with |Re(t)| ≤ 1
2 because of our assumptions on a, b,

and c. Since |Re(t)| ≤ 1
2 , we get

|xb−1+lt | ≤ xb−1− |l|
2 and |(1 − x)c−b−1+(m−l)t | ≤ (1 − x)c−b−1− |m−l|

2 .

Let c1 = ∫ 10 xb−1− |l|
2 (1 − x)c−b−1− |m−l|

2 dx. Recall that

∣∣(1 − z0x)
−a−kt

∣∣ = |1 − z0x |−a−kRe(t) exp
(
k arg(1 − z0x)Im(t)

)
.

Let c2 = maxx∈[0,1],|y|≤ 1
2
|1− z0x |−a−ky , which is finite because −a > |k|/2. Notice

also that

max
x∈[0,1] exp

(
k arg(1 − z0x)Im(t)

) ≤ exp
(|k arg(1 − z0) Im(t)|).

We conclude that |G(β + tγ |z0)| has the upper bound c1c2 e|k arg(1−z0) Im(t)|. Using
Lemma 2.1, we find the desired estimate for

F(β + tγ |z0) = �(c + mt)

�(b + lt)�(c − b + (m − l)t)
G(β + tγ |z0)

when −a >
|k|
2 , b >

|l|
2 and c − b >

|m−l|
2 .

In the general situation, we first choose integers 	a,	b,	c such that

−a − 	a − 1 >
|k|
2

, b + 	b >
|l|
2

, c − b + 	c − 	b >
|m − l|

2
.
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684 F. Beukers, J. Forsgård

Denote 	β = (	a,	b,	c). Then, there exists a contiguity relation

F(β + tγ |z) = r(t, z)F (β + 	β + tγ |z) + s(t, z)F (β + 	β + (1, 1, 1) + tγ |z) ,

where r(t, z) and s(t, z) are rational functions in z, t . In Lemma 2.3, we show that,
as rational function of z, their only poles are in z = 0, 1. Hence, we can specialize to
z = z0 and get

F(β + tγ |z0) = r(t, z0)F (β + 	β + tγ |z0)
+s(t, z0)F (β + 	β + (1, 1, 1) + tγ |z0) ,

We then apply the above estimate to the terms on the right-hand side. ��
Lemma 2.3 Let a, b, c be hypergeometric parameters such that a, b, c−a, c−b /∈ Z.
Let a′, b′, c′ be contiguous parameters, that is a′ − a, b′ − b, c′ − c ∈ Z. Consider
the contiguity relation

F(a′, b′, c′|z) = r(z)F(a, b, c|z) + s(z)F(a + 1, b + 1, c + 1|z),

where r(z), s(z) are rational functions in a, b, c, z. Then as rational functions in z,
the functions r(z), s(z) have only poles in z = 0, 1.

Proof Weknow that F(a+1, b+1, c+1|z) = c
ab F

′(a, b, c|z). The contiguity relation
is stable under analytic continuation in z. Therefore, we have a similar relation for the
solution of the hypergeometric equation corresponding to the local exponent 1 − c.
Thus, there exists a rational function λ in a, b, c such that λz1−c′

F(a′ + 1 − c′, b′ +
1 − c′, 2 − c′|z) equals

r(z)z1−cF(a + 1 − c, b + 1 − c, 2 − c|z)
+s(z)

c

ab
(z1−cF(a + 1 − c, b + 1 − c, 2 − c|z))′.

We can now solve for r(z), s(z) and find that

(
r(z)
c
ab s(z)

)
= 1

W (z)

(
(z1−cF(a + 1 − c, b + 1 − c, 2 − c|z)′ −F ′(a, b, c|z)
−z1−cF(a + 1 − c, b + 1 − c, 2 − c|z) F(a, b, c|z)

)

×
(

F(a′, b′, c′)
λz1−c′

F(a′ + 1 − c′, b′ + 1 − c′, 2 − c′|z)
)

,

where W (z) is the Wronskian determinant of the hypergeometric equation, which
equals 1 − c times z−c(1 − z)c−a−b−1. The matrices on the right-hand side have
entries which are locally holomorphic outside 0, 1,∞, and therefore, we conclude
that the same holds for r(z), s(z).

Strictly speaking, we have proved the lemma when c /∈ Z. The case of integral c
runs similarly. ��
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Proposition 2.4 Let f (t) be a periodic entire function with unit period one. Suppose
that there are constants C+,C− ≥ 0 such that

(1) | f (t)| = O
(
eC

+Im(t)
)
when Im(t) → ∞, and

(2) | f (t)| = O
(
e−C−Im(t)

)
when Im(t) → −∞.

Then, f (t) = g(e2π i t ) where g(z) ∈ C[z, 1/z]. Moreover, g has a pole of order at
most C+/2π at z = 0, and a pole of order at most C−/2π at z = ∞.

Proof Consider the composite function g(z) = f
( log z
2π i

)
. This is an entire function in z,

except possibly at z = 0, which is an isolated singularity. Notice that Im(t) = − log |z|
2π .

So when z → 0 we get Im(t) → ∞ and we can use the estimate

| f (t)| = O
(
e− log |z|

2π C+) = O
(|z|−C+

2π
)
.

When z → ∞ we get Im(t) → −∞ and we can use the estimate

| f (t)| = O
(
e
log |z|
2π C−) = O

(|z|C
−

2π
)
.

��
We can now show our main theorem.

Theorem 2.5 We use the notations from the introduction. Let (β, z0) be an admissible
quadruple with respect to γ = (k, l,m) ∈ Z

3. We assume that m ≥ 0 and c /∈ Z≤0
when m = 0. Write

Rγ (β + tγ, z0) = R0 ×
r∏

j=1

(t + α j )

(t + δ j )
.

Then, there exists g(z) ∈ C[z, 1/z] such that

F(β + tγ | z0) = g
(
e2π i t

)
Rt
0

r∏

j=1

�(t + α j )

�(t + δ j )

for all t ∈ C. Moreover, g has a pole order at most

arg(R0)

2π
+ |k arg(1 − z0)|

2π
+ |l|

4
+ |m − l|

4
− |m|

4

at z = 0 and order at most

−arg(R0)

2π
+ |k arg(1 − z0)|

2π
+ |l|

4
+ |m − l|

4
− |m|

4

at z = ∞.
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Remark 2.6 We have used that the numerator and denominator of R have the same
degree. This is a consequence of Theorem 4.1, last two lines..

Remark 2.7 The assumption m ≥ 0 is not a restriction. If m < 0, then we apply
Theorem 2.5 with −γ and simply replace t by −t .

Proof of Theorem 2.5. We find that

G(t) := F(β + tγ | z0) R−t
0

r∏

j=1

�(t + δ j )

�(t + α j )

is a meromorphic periodic function with period 1. Poles can only arise from the factor
F(β+tγ | z0)when c+mt ∈ Z≤0, or from the product

∏
j �(t+δ j )when t+δ j ∈ Z≤0

for some j . It follows, since m ≥ 0, that there are no poles when Re(t) is sufficiently
large. Hence, G(t) is holomorphic in t . We now use the estimates from Lemma 2.1
and Proposition 2.2 to get |Rt

0 G(t)| = O(e(C1+ε)|Im(t)|) for any ε > 0, where

C1 = |k arg(1 − z0)| + |l|π
2

+ |m − l|π
2

− |m|π
2

,

as in Proposition 2.2. This yields |G(t)| = O(e(arg(R0)+C1+ε)|Im(t)|)when Im(t) → ∞
and |G(t)| = O(e(− arg(R0)+C1+ε)|Im(t)|) when Im(t) → −∞. The result now follows
from Proposition 2.4. ��

We give three example applications.

Corollary 2.8 For all t ∈ C we have

F
(
2t, 2t + 1/3, t + 5/6 | − 1/8

) =
(
16

27

)t
�(t + 5/6)�(2/3)

�(t + 2/3)�(5/6)
.

Proof In the beginning of this section, we considered the example γ = (2, 2, 1) and
the admissible quadruple (2.1). From Theorem 2.5, applied to this example, we find
that

(
27

16

)t
�(t + 2/3)

�(t + 5/6)
F(2t, 2t + 1/3, t + 5/6 | − 1/8)

is a Laurent polynomial in e2π i t . Since arg(16/27) = arg(1 − z0) = 0, the estimates
for the pole order of g at 0 and∞ are 1

2 . Hence, g is constant. The value of the constant
can be found by setting t = 0. ��
Corollary 2.9 For all t ∈ C, we have

F
(
3t, t + 1/6, 1/2 | − 3

) = cos(π t)

16t
�(t + 1/2)�(1/3)

�(t + 1/3)�(1/2)
.
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Proof Consider the admissible quadruple a = 3t, b = t + 1/6, c = 1/2, and z0 = −3.
We get

Rγ (β + tγ, z0) = − 1

16
× t + 1/2

t + 1/3
.

Application of Theorem 2.5 yields

F(3t, t + 1/6, 1/2 | − 3) = eπ i t

16t
�(t + 1/2)

�(t + 1/3)
g
(
e2π i t

)
.

Here, g(z) is a Laurent polynomial, bounded at z = ∞, and with a pole at z = 0 of
order at most 1. Hence, g

(
e2π i t

) = u + ve−2π i t for some u, v ∈ C. Setting t = 0 and
t = − 1

2 yields

{
1 = (u + v)�(1/2)/�(1/3),

0 = u − v.

Hence, u = v = �(1/3)/2�(1/2) and our corollary follows. ��
Corollary 2.10 For all t ∈ C we have

F
(
3t, t + 1/6, 1/2 | 9) = 1

2 · 64t
(
1 + e

2π i
(
t+ 1

6

)

− e
4π i
(
t+ 1

6

))
.

Proof Consider the admissible quadruple a = 3t, b = t + 1/6, c = 1/2, and z0 = 9.
We find that Rγ = 1

64 . So Theorem 2.5 gives F(3t, t + 1/6, 1/2 | 9) = 64−t g
(
e2π i t

)
.

Since | arg(1− 9)| = π , we get the estimate 2 for the polar order of g(z) at z = 0 and
at z = ∞. Hence, g

(
e2π i t

) =∑2
k=−2 ake

2π ikt . To determine the values of the ak , we
use five special evaluations of 64t F(3t, t + 1/6, 1/2 | 9) for t = 0,− 1

3 ,− 2
3 ,− 1

6 , and
1
6 . We obtain the system

⎡

⎢⎢⎢⎢⎣

1
1

− 1
2

1
2
ζ

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

1 1 1 1 1
ζ−2 ζ 2 1 ζ−2 ζ 2

ζ 2 ζ−2 1 ζ 2 ζ−2

ζ 2 ζ 1 ζ−1 ζ−2

ζ−2 ζ−1 1 ζ ζ 2

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

a−2
a−1
a0
a1
a2

⎤

⎥⎥⎥⎥⎦
,

where ζ = e
π i
3 . The evaluation at t = 1/6 requires some explanation. We need to

determine 2F(1/2, 1/3, 1/2|9) = 2 · (1 − 9)−1/3. The absolute value is of course 1. It
remains to determine the argument. By our branch choice, we take a path in the upper
half plane from z = 1/2 to z = 9. The argument of (1− z)−1/3 then changes from 0 to
π/3. Hence, the function value becomes ζ . Solution of the system gives our corollary.

��
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688 F. Beukers, J. Forsgård

3 Resonant quadruples

Our next goal is to explain the values of z0 and Rγ (β + tγ ) that occur in the above
considerations. For that purpose, it turns out to be convenient to restrict to admissible
quadruples such that β + tγ is non-resonant, that is, none of

a + kt, b + lt, c − b + (m − l)t, and c − a + (m − k)t

is an element of Z. If at least one of these linear polynomials is an integer constant,
then we say that the quadruple is resonant. In this section, we make some comments
on the resonant case and proceed with the non-resonant cases in the next sections. We
will use the identity

F(c − a, c − b, c | z) = (1 − z)a+b−cF(a, b, c | z). (3.1)

Suppose that β + tγ is resonant and that (β + tγ, z0) is a resonant quadruple. Then,
we distinguish the following cases.

(1) Exactly one of a+ kt, b+ lt, c− b+ (m − l)t, and c− a+ (m − k)t is an integer.

(a) If a + kt ∈ Z, then we conjecture that the admissible quadruples are given by
a = 2, b = 1 + lt, c = 2 + mt, and z0 = m/l, with �-evaluation

F(2, 1 + lt, 2 + mt |m/l) = l(1 + mt)

l − m
,

or a = −1, b = lt, c = mt, and z0 = m/l with � evaluation

F(−1, lt,mt |m/l) = 0.

It should be remarked that these evaluations are a direct consequence of the
general identities

F
(
2, r , s

∣∣∣
s − 2

r − 1

)
= (r − 1)(s − 1)

r − s + 1
and F

(
− 1, r , s

∣∣∣
s

r

)
= 0,

which are easy to prove. A similar remark applies to the next cases.
(b) The case b + lt ∈ Z is similar to case (1a).
(c) If c − a + (m − k)t ∈ Z, then we use the identity (3.1) to get

F
(
mt, 1 + (m − l)t, 2 + mt | m/l) =

(
1 − m

l

)(l−m)t
(1 + mt)

and

F
(
mt + 1, (m − l)t,mt | m/l) = 0.

(d) The case c − b + (m − l)t ∈ Z is similar to case (1c).
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�-evaluations of hypergeometric... 689

(2) Exactly two of a + kt, b + lt, c − b + (m − l)t, c − a + (m − k)t are in Z,

(a) If a + kt, b + lt ∈ Z, then admissibility implies that either ab = 0 or a ∈
Z, b = 1−a, c = mt, and z0 = 1/2. In the latter case we might as well replace
mt by t . Bailey’s identity gives

F(a, 1 − a, t | 1/2) = �(t/2)�((t+1)/2)

�((t+a)/2)�((1+t−a)/2)
.

(b) If a+kt, c−b+(m−l)t ∈ Z, then admissibility implies that either a(b−c) = 0
or a ∈ Z, b = t, c = t − a + 1, and z0 = −1. In the latter case, Kummer’s
identity gives

F(a, t, t + 1 − a | − 1) = 1

2

�(t/2)�(t − a + 1)

�(t)�(t/2 − a + 1)
.

(c) If b + lt, c − b + (m − l)t ∈ Z, then admissibility implies that either b = 1
and c = 2, or b ∈ Z, c = 2b, and z0 = 2. In the former case, we get

F(1 + t, 1, 2 | z) = (1 − z)−t − 1

t z
;

in the latter case, we get

F(1 − 2t, b, 2b | 2) = �(t)�(b + 1/2)

�(t + b)�(1/2)
× 1 − e−2π i t

2
.

(d) The other three cases are related to the above three via the identity (3.1).

4 Euler kernels

Let β be the triple of hypergeometric parameters and γ the shift vector as in the
previous section. Suppose also that z 	= 0, 1. We define

K (β, z, x) = xb−1(1 − x)c−b−1

(1 − zx)a
.

Application of the Pochhammer contour integral then gives us

�(b)�(c − b)

�(c)
F(β | z).

In [4], the author considered the Q(β, z)-vector space of twisted differential forms
generated by the differential forms K (β + δ, z, x)dx with δ ∈ Z

3. TheQ(β, z)-vector
space of twisted exact forms is generated by d(K (β+δ, z, x))with δ ∈ Z

3.We denote
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690 F. Beukers, J. Forsgård

the quotient space by H1
twist(β | z). In [4,Theorem 6.1], it is shown, under the assump-

tion β is non-resonant, that this space is two dimensional with basis K (β, z, x)dx and
K (β + (1, 1, 1), z, x)dx. Notice that

aK (β + (1, 1, 1), z, x) = ∂

∂z
K (β, z, x).

Define the hypergeometric operator

L = z(z − 1)
∂2

∂z2
+ ((a + b + 1)z − c)

∂

∂z
+ ab.

Wefind thatL(K (β, z, x)) = 0 in H1
twist(β | z). SinceL commuteswith the application

of the Pochhammer contour, and Pochhammer integration is zero on exact forms, we
recover the hypergeometric equation for F(a, b, c | z).

Let (β, z0) be an admissible quadruple with respect to γ and suppose it is non-
resonant. Let M be the field M = Q(β, z0). Define

R̂(t) = (b + lt)l(c − b + (m − l)t)m−l

(c + mt)m
Rγ (β + tγ, z0).

Here (x)n = x(x + 1) · · · (x + n − 1) if n ≥ 0 and (x)n = 1
(x−1)···(x− | n | ) if n < 0.

We can rewrite Eq. (1.1) in terms of Euler kernels as

K (β + (t + 1)γ, z0, x)dx ≡ R̂(t)K (β + tγ, z0, x)dx (4.1)

in H1
twist(β + tγ | z0). Define also

gγ (z, x) = xl(1 − x)m−l

(1 − zx)k
.

Then, (4.1) amounts to the statement that there exists W (t, x) ∈ M(t, x) such that

gγ (z0, x)K (β+ tγ, z0, x) = R̂(t)K (β+ tγ, z0, x)+ ∂

∂x
(W (t, x)K (β + tγ, z0, x)) .

(4.2)
Define the denominator dγ (x) of gγ (z0, x) by

dγ (x) = x (−l)+(1 − x)(l−m)+(1 − z0x)
k+

,

where u+ denotes max(0, u). The numerator nγ (x) is defined by dγ (x)gγ (z0, x).
Let us write

W (t, x) = p(t, x)

dγ (x)
x(1 − x)(1 − z0x),
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where p(t, x) is another rational function which will turn out to be a polynomial in x .
Then, after multiplication by dγ (x) and division by K (x), (4.2) can be rewritten as

nγ (x) − R̂(t)dγ (x) = ∂

∂x
(p(t, x)x(1 − x)(1 − z0x)) + q(t, x)p(t, x), (4.3)

where

q(t, x) := x(1 − x)(1 − z0x)

×
(
b − 1 + lt

x
+ c − b − 1 + (m − l)t

x − 1
− a + kt

x − 1/z0
− 1

dγ

∂dγ

∂x

)
.

This is the log-derivative of K (β + tγ, z0, x)/dγ (x) times x(1 − x)(1 − z0x). Note
that q(t, x) is a polynomial in x of degree at most 2 and linear in t . The coefficient
of x2 reads z(c − a − 2 + t(m − k) − degx (dγ )), which is non-zero as a result of
our non-resonance condition. Therefore, q(t, x) has degree 2 in x . The non-resonance
condition also sees to it that q(t, x) has no zeros in {0, 1, 1/z0}.

We shall write q(t, x) = q1(x) + tq0(x). Notice that

q0(x) = x(1 − x)(1 − z0x)

(
l

x
− m − l

1 − x
+ kz0

1 − z0x

)

= (m − k)z0x
2 + ((k − l)z0 − m)x + l.

In particular, q0(x) is non-trivial.
It follows from (4.3) that p(t, x) has no poles outside x = 0, 1, 1/z. Suppose it has

a pole of order δ > 0 at x = 0. Then, looking at the coefficients of x−δ on both sides
of (4.3), we get 0 = (1 − δ) + (b + tl − 1 − n), where n is the pole order at x = 0
of gγ . This implies b + lt ∈ Z, contradicting our non-resonance condition. Similarly,
we show that p(t, x) has no poles in x = 1, 1/z. Hence, p(t, x) is a polynomial in
x . Its degree in x turns out to be at most max(degx (dγ ), degx (nγ )) − 2. For the latter
fact, we use the condition c − a + t(m − k) /∈ Z.

We may interpret Eq. (4.3) as a system of linear equations in the unknown coef-
ficients of p(t, x) ∈ M(t)[x], and the unknown R̂(t). Suppose p(t, x) and R̂(t) are
a non-trivial solution of (4.3). We now like to take t → ∞. We say that a rational
function S(t) in t has degree u if t−u S(t) tends to a non-zero limit when t → ∞. Let
now u be the degree in t of p(t, x).

Suppose u ≤ −2 and let t → ∞ in (4.3). Then the right-hand side goes to 0 and
we get

nγ (x) − lim
t→∞ R̂(t)dγ (x) = 0.

Since nγ (x) and dγ (x) are relatively prime polynomials in x this gives a contradiction.
Hence u ≥ 1.

123



692 F. Beukers, J. Forsgård

Now suppose that u ≥ 0. Multiply (4.3) by t−u−1 on both sides and let t → ∞.
We obtain

− lim
t→∞ t−u−1 R̂(t)dγ (x) = q0(x) lim

t→∞ t−u p(t, x). (4.4)

The right-hand side is a non-zero polynomial in x which is divisible by q0(x), hence
q0(x) divides dγ (x). Thismeans that the zeros of q0(x) belong to {0, 1, 1/z0}. Suppose
q0(0) = 0. Then, by definition of q0, we have l = 0. But then the factor x does not
occur in dγ (x) and we have a contradiction. A similar argument holds for the zeros
1, 1/z0. If q0(x) has no zeros, it must be constant. In particular m = k. Then dγ (x)
and nγ (x) have the same degree in x . We have seen that the degree in x of p(t, x)
is ≤ max(degx (nγ ), degx (dγ ) − 2 and the latter equals degx (dγ ) − 2. This implies
that the degree in x of q0(x) limt→∞ t−u p(t, x) is ≤ degx (dγ ) − 2. This is in conflict
with (4.4). Hence q0(x) cannot divide dγ (x), which leads us to conclude that u < 0.
Together with u ≥ 1, this implies that u = −1.

Set u = −1 and take the limit as t → ∞ in (4.3). This gives us

nγ (x) − R̂0dγ (x) = q0(x) lim
t→∞ tp(t, x),

where R̂0 = limt→∞ R̂(t). The latter limit of course exists. When R̂0 = 0 we see that
q0(x) divides nγ (x), which is impossible by the same argument which showed that
q0(x) does not divide dγ (x). Hence R̂0 is non-zero, which implies that the numerator
and denominator of R̂(t) have the same degree.

In particular, q0(x) divides nγ (x) − R̂0dγ (x). Stated alternatively, if q0(ξ) = 0,

then gγ (z0, ξ) = nγ (ξ)

dγ (ξ)
= R̂0. This leads us to the following conclusion.

Theorem 4.1 Let β + tγ, z0 with γ = (k, l,m) be a non-resonant admissible quadru-
ple. Assuming that degx q0(x) = 2 let x1, x2 be the zeros of q0(x) := (m − k)z0x2 +
((k − l)z0 − m)x + l. Then, z0 has the property that gγ (z0, x1) = gγ (z0, x2) if
x1 	= x2 and g′

γ (x1) = 0 if x1 = x2. Moreover, the limit R̂0 := limt→∞ R̂(t) is
non-zero and given by gγ (z0, x1). Consequently, the factor R0 in Theorem 2.5 is given
by mm

ll (m−l)m−l gγ (z0, x1).

Remark 4.2 When q0(x) is linear, let x1 be its zero. Then

R̂0 = nγ (∞)

dγ (∞)
= nγ (x1)

dγ (x1)
,

in other words, gγ (z0,∞) = gγ (z0, x1), which is compatible with Theorem 4.1 if we
consider x2 = ∞ as zero of q0(x).

When q0(x) is constant, the degree in x of nγ (x) − R̂0dγ (x) is ≤ max(degx (dγ ),

degx (nγ )) − 2. This determines R̂0 and z0. Again note that this is compatible with
Theorem 4.1 if we consider ∞ as a double zero of q0(x).

Remark 4.3 When none of k, l,m − k,m − l is zero, the zeros x1, x2 are distinct
from 0, 1,∞. The condition gγ (z0, x1) = gγ (z0, x2) is simply the requirement that

123



�-evaluations of hypergeometric... 693

gγ (z0, x) is a Belyi map. By that we mean a rational function such that the set of
images of its ramification points consists of at most three points in P1.

When one of k, l,m − k,m − l is zero, gγ is automatically a Belyi map, but the
condition gγ (z0, x1) = gγ (z0, x2) still gives a finite number of possibilities for z0.

Example 4.4 Let us consider the example γ = (1, 1, 6). Then, gγ (z0, x) is a Belyi map
if and only if z0 is one of 4/5, 9/5, (45 ± 3

√−15)/50. Only z0 = 4/5 belongs to an
admissible quadruple. The function gγ (4/5, x) is a Belyi map with ramification points
at x1,2 = (3±√

5)/4. Then R̂0 = gγ (4/5, x1,2) = 5/64. Hence R0 = mm

ll (m−l)m−l R̂0 =
36/54.

5 Kummer’s list

Let x �→ g(x) be a fractional linear transformation in x that permutes the points
0, 1,∞. Then, the substitution x �→ g(x) in K (a, b, c, z, x)dx yields, as a result, a
new Euler kernel. For example,

g1(x) = 1/x gives z−aK (a, a + 1 − c, a + 1 − b, 1/z, x)dx,
g2(x) = 1 − x gives (1 − z)−aK (a, c − b, c, z/(z − 1), x)dx,
g3(x) = x/(x − 1) gives K (a, b, a + b + 1 − c, 1 − z, x)dx,
g4(x) = 1 − 1/x gives z−aK (a, a + 1 − c, a + b + 1 − c, 1 − 1/z, x)dx,
g5(x) = 1/(1 − x) gives (1 − z)−aK (a, c − b, a + 1 − b, 1/(1 − z), x)dx.

We can also consider linear fractional transformations in x that permute the four points
0, 1,∞, 1/z. These permutations are products of 2-cycles. Up to a constant factor,

g6(x) = 1/zx gives z1−cK (b + 1 − c, a + 1 − c, 2 − c, z, x)dx,
g7(x) = (x − 1/z)/(x − 1) gives z1−c(1 − z)c−a−bK (1 − b, 1 − a, 2 − c, z, x)dx,
g8(x) = (1 − x)/(1 − zx) gives (1 − z)c−a−bK (c − a, c − b, c, z, x)dx.

Together with the additional substitutions given by gi ◦ g j for i = 1, . . . , 5 and
j = 6, 7, 8, we get 24 forms of the shape λ(z)K (a′, b′, c′, h(z), x)dx.
Consider the example given by g1(x) = 1/x , which changed K (a, b, c, z, x)dx

into

z−aK (a, a + 1 − c, a + 1 − b, 1/z, x)dx.

Application of L to this form yields a vanishing element in H1
twist. As application of

the Pochhammer contour yields

z−a F(a, a + 1 − c, a + 1 − b | 1/z),

the latter is also a solution to the hypergeometric equation. In this way, the 24 forms
obtained from the 24 rational linear transformations are related to the 24 Kummer
solutions; the entire list can be seen in the following table.
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Table 1 Kummer’s 24 transformations

λ(z) h(z) a′ b′ c′ Permutation

1 z a b c (1)

(1 − z)c−a−b z c − a c − b c (13)(24)

z1−c z b − c + 1 a − c + 1 2 − c (14)(23)

z1−c(1 − z)c−a−b z 1 − b 1 − a 2 − c (12)(34)

z−a 1/z a a − c + 1 a − b + 1 (23)

z−b 1/z b − c + 1 b b − a + 1 (14)

zb−c(1 − z)c−a−b 1/z 1 − b c − b a − b + 1 (1342)

za−c(1 − z)c−a−b 1/z c − a 1 − a b − a + 1 (1243)

1 1 − z a b a + b − c + 1 (34)

z1−c(1 − z)c−a−b 1 − z 1 − b 1 − a c − a − b + 1 (12)

z1−c 1 − z b − c + 1 a − c + 1 a + b − c + 1 (1324)

(1 − z)c−a−b 1 − z c − a c − b c − a − b + 1 (1423)

(1 − z)−a z/z−1 a c − b c (24)

(1 − z)−b z/z−1 c − a b c (13)

z1−c(1 − z)c−a−1 z/z−1 1 − b a − c + 1 2 − c (1432)

z1−c(1 − z)c−b−1 z/z−1 b − c + 1 1 − a 2 − c (1234)

z−a 1 − 1/z a a − c + 1 a + b − c + 1 (243)

z−b 1 − 1/z b − c + 1 b a + b − c + 1 (134)

za−c(1 − z)c−a−b 1 − 1/z c − a 1 − a c − a − b + 1 (123)

zb−c(1 − z)c−a−b 1 − 1/z 1 − b c − b c − a − b + 1 (142)

z1−c(1 − z)c−a−1 1/1−z 1 − b a − c + 1 a − b + 1 (132)

(1 − z)−a 1/1−z a c − b a − b + 1 (234)

z1−c(1 − z)c−b−1 1/1−z b − c + 1 1 − a b − a + 1 (124)

(1 − z)−b 1/1−z c − a b b − a + 1 (143)

The last column in Table 1 consists of permutations of S4 in cycle notation. Its
meaning follows from the following proposition.

Proposition 5.1 The triples a′, b′, c′ in Table 1 have the form

⎛

⎝
a′
b′
c′

⎞

⎠ =
⎛

⎝
1/2
1/2
1

⎞

⎠+ ρ(σ)

⎛

⎝
a − 1/2
b − 1/2
c − 1

⎞

⎠ ,

where ρ is a three-dimensional matrix representation of S4 applied to the element σ

which is the entry in the last column of Table 1. Moreover, the representation ρ is
equivalent to the representation of S4 by rotations of the cube tensored with the sign
representation of S4 .
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Proof To every triple a′, b′, c′ in the table, we form the 4-vector

(a′ − 1/2,−b′ + 1/2, c′ − a′ − 1/2, b′ − c′ + 1/2). (5.1)

It turns out that the coordinates of these 4-vectors are permutations of each other and
that every permutation occurs precisely once. The cycle notation of this permutation
is in the last column of Table 1. Moreover, the sum of the coordinates of the 4-vector
(5.1) is zero. Let ρ be the restriction of the permutation representation of S4 to the
invariant plane x1 + x2 + x3 + x4 = 0. It is well known that is equivalent to the
representation of S4 by cube rotations tensored with the sign representation. ��

In [8,Prop 2.3], we find that to every admissible quadruple there correspond 23
other admissible quadruples, but with possibly different shift vectors γ = (k, l,m).

This can be seen as follows. Let β, z0 be an admissible quadruple with respect to
γ = (k, l,m). Consider the equality (4.1) which abbreviates to

K (β + (t + 1)γ, z0, x)dx = R̂(t)K (β + tγ, z0, x)dx.

Apply any one of the 24 permutation actions of Table 1 to this equality. We then get
the equality

K (β ′ + (t + 1)γ ′, g(z0), x)dx = R̂(t)K (β ′ + tγ ′, g(z0), x)dx,

where β ′ + tγ ′ = (a′, b′, c′) and a′, b′, c′ follow from Table 1 when we had started
with (a, b, c) = β+tγ . Then, (β ′, g(z0)) is another admissible quadruplewith respect
to the new shift vector γ ′.

Definition 5.2 We call the set of elements (a′, b′, c′) = β ′ + tγ ′, together with the
triples (b′, a′, c′), the Kummer orbit of the line given by (a, b, c) = β + tγ .

Notice that, with the notation of Proposition 5.1, we get γ ′ = ρ(σ)γ . We can find
a fundamental domain for these 24 transformations by requiring that k ≥ m−k ≥ l−
m ≥ −l, hencem ≤ 2k, 2l and k+ l ≤ 2m. In particular, this implies that k, l,m ≥ 0.
Note that this choice differs from Ebisu’s normalization 0 ≤ k + l −m ≤ l − k ≤ m,
see [8,(1.14)].

Although Ebisu does not state it, we have the impression that he tried to get a list of
’strange evaluations’ which is as complete as possible. Recently, Henri Cohen made
an extensive search for non-resonant admissible quadruples for all shifts k, l,m with
|k|, |l|, |m| ≤ 10. It turned out that beyond the bound 6, there are no new quadruples.

6 Sample 0-evaluations

In this section, we collect some examples of �-evaluations related to non-resonant
admissible quadruples. For the resonant cases, we refer to Sect. 3. Notice that even if
one of k, l,m−k,m−l is zero, onemay still have a non-resonant quadruple. Belowwe
find several such examples. Each entry is preceded by the corresponding shift vector
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k, l,m. In some cases, it may happen that the c-parameter tends to a negative integer
when the a or b parameter does (see the final remarks in the introduction). In that case,
we also mention what the polynomial interpretation gives as value.

The shift � = (1, 3, 2)

F(t, 3t − 1, 2t | eπ i/3) = −
√
3

2
eπ i(t/2+5//6)

( 4√
27

)t �(t + 1/2)�(1/3)

�(t + 1/3)�(1/2)
.

This is the example that was mentioned on page 4. If t ∈ Z≤0 and the left-hand side
is considered as finite sum, then the constant −√

3eπ5i/3/2 must be dropped.

The shift � = (2, 4, 4)
F(2t, 4t − 1/2, 4t | − 2 + √

8) = 1√
2
(1 + √

2)4t
�(t + 1/4)�(t + 3/4)�(3/8)�(5/8)

�(t + 3/8)�(t + 5/8)�(1/4)�(3/4)
.

When 2t ∈ Z≤0 and the left-hand side is considered as polynomial, the right-hand
side must be multiplied by (−1)2t

√
2.

The shift � = (−1, 2, 1)

F(−t, 2t + 1, t + 4/3 | 1/9) =
(
3

4

)t
�(7/6)�(t + 4/3)

�(4/3)�(t + 7/6)
.

F(−t, 2t + 2, t + 5/3 | 1/9) =
(
3

4

)t
�(3/2)�(t + 5/3)

�(5/3)�(t + 3/2)
.

The shift � = (−2, 4, 2)

Let z0 = (3 + 2
√
3)/9 and z1 = (3 − 2

√
3)/9

F(−2t, 4t + 1, 2t + 4/3 | z0)

=
(−27z1

16

)t cos(π(t − 1/12))

cos(π/12)

�(t + 2/3)�(t + 7/6)�(3/4)�(13/12)

�(t + 3/4)�(t + 13/12)�(2/3)�(7/6)
.

F(−2t, 4t + 1, 2t + 4/3 | z1) =
(
27z0
16

)t
�(t + 2/3)�(t + 7/6)�(3/4)�(13/12)

�(t + 3/4)�(t + 13/12)�(2/3)�(7/6)
.

F(−2t, 4t + 2, 2t + 5/3 | z0)

=
(−27z1

16

)t cos(π(t + 1/12))

cos(π/12)

�(t + 4/3)�(t + 5/6)�(5/4)�(11/12)

�(t + 5/4)�(t + 11/12)�(4/3)�(5/6)
.

F(−2t, 4t + 2, 2t + 5/3 | z1) =
(
27z0
16

)t
�(t + 4/3)�(t + 5/6)�(5/4)�(11/12)

�(t + 5/4)�(t + 11/12)�(4/3)�(5/6)
.

The shift � = (−1,−1, 1)

F(−t,−t + 1/3, t + 4/3 | − 1/8) =
(
27

32

)t
�(t + 4/3)�(7/6)

�(t + 7/6)�(4/3)
.
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The shift � = (−2,−2, 2)

Let z0 = (3
√
3 − 5)/4

F(−2t,−2t + 1/3, 2t + 4/3 | z0) =
(
81

√
3

128

)t
�(t + 2/3)�(t + 7/6)�(3/4)�(13/12)

�(t + 3/4)�(t + 13/12)�(2/3)�(7/6)
.

The shift � = (0, 1, 3)

F(1/2, t, 3t − 1 | 3/4) = 1

3

�(t + 1/3)�(t − 1/3)�(1/6)�(−1/6)

�(t + 1/6)�(t − 1/6)�(1/3)�(−1/3)
.

When t ∈ Z≤0 and the left-hand side is considered polynomial, the factor 1/3 should
be dropped.

The shift � = (1, 3, 1)

F(t, 3t − 3/2, t + 1/2 | 4) = 6e2π i t cos(π t)

27t
�(t + 1/2)�(t − 1/2)

�(t − 1/6)�(t + 1/6)
.

The shift � = (−1, 3, 2)

F(−t, 3t + 1, 2t + 3/2 | 1/4) =
(
16

27

)t
�(t + 5/4)�(t + 3/4)�(7/6)�(2/3)

�(t + 7/6)�(t + 2/3)�(5/4)�(3/4)
.

F(−t, 3t + 2, 2t + 9/4 | − 1/8) =
(
32

27

)t
�(t + 13/8)�(t + 9/8)�(4/3)�(17/12)

�(t + 4/3)�(t + 17/12)�(13/8)�(9/8)
.

The shift � = (3, 3, 4)

F(3t, 3t + 1/2, 4t + 2/3 | 8/9) = 108t
�(t + 11/12)�(t + 5/12)�(1/2)�(5/6)

�(t + 1/2)�(t + 5/6)�(11/12)�(5/12)
.

When t ∈ −1/6 + Z≤0 and the left-hand side is considered polynomial, one must
multiply the result by 2. When t ∈ −2/3 + Z≤0 and the left-hand side is considered
polynomial, one must multiply the result by −2.

F(3t, 3t + 1/4, 4t + 1/3 | 8/9) = 108t
�(t + 7/12)�(t + 5/6)�(3/4)�(2/3)

�(t + 3/4)�(t + 2/3)�(7/12)�(5/6)
.

When t ∈ {−1/12,−1/3}+Z≤0 and the left-hand side is considered polynomial, one

must multiply the right-hand side by 1081/12 �(5/6)�(7/12)2

�(1/2)�(3/4)2
.

F(3t, 3t − 1/2, 4t | 4/3) = 1

4
(1 − √−3)e2π i t16t

�(t + 1/4)�(t + 3/4)�(1/6)�(2/3)

�(t + 1/6)�(t + 2/3)�(1/4)�(3/4)

When t ∈ Z≤0 and the left-hand side considered polynomial, we must drop the factor
(1 − √−3)/4.
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The shift � = (2, 1, 0)
F(2t, t + 1/6, 2/3 | − 8) = 2√

3 · 27t sin(π(t + 1/3)),

F(2t, t + 1/3, 4/3 | − 8) = 2 cos(π(t + 1/3))

27t
�(t − 1/6)�(1/2)

�(t + 1/2)�(−1/6)
.

The shift � = (3, 1, 0)
F(3t, t + 1/6, 1/2 | 9) = 1

2 · 64t
(
1 + e2π i(t+1/6) − e4π i(t+1/6)

)
,

F(3t, t + 1/2, 3/2 | 9) = −1

6
√
3 · 64t (1 − e2π i t + e4π i t )

�(t − 1/6)�(t + 1/6)

�(t + 1/3)�(t + 2/3)
.

The first line is proven in Corollary 2.10. Unfortunately, the second line cannot be
proven in this manner because we do not have enough special values of t with an
elementary evaluation. The result is a conjecture which was found experimentally.
Furthermore, we found

F(3t, t + 1/6, 1/2 | − 3) = 1

16t
cos(π t)

�(t + 1/2)�(1/3)

�(t + 1/3)�(1/2)
,

F(3t, t + 1/2, 3/2 | − 3) = 2

16t
cos(π(t + 1/3))

�(t − 1/6)�(2/3)

�(t + 2/3)�(−1/6)

The shift � = (1, 1, 0)

Strictly speaking, there is no admissible quadruple with respect to (1, 1, 0). However,
we do like to recall the following classical identity

F(t, t + 1/2, 1/2|z2) = 1

2

(
(1 + z)−2t + (1 − z)−2t

)
.
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