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Abstract
In this paper we give a classification of the asymptotic expansion of the q-expansion
of reciprocals of Eisenstein series Ek of weight k for the modular group SL2(Z).
For k ≥ 12 even, this extends results of Hardy and Ramanujan, and Berndt, Bialek,
and Yee, utilizing the Circle Method on the one hand, and results of Petersson, and
Bringmann and Kane, developing a theory of meromorphic Poincaré series on the
other. We follow a uniform approach, based on the zeros of the Eisenstein series with
the largest imaginary part. These special zeros provide information on the singularities
of the Fourier expansion of 1/Ek(z) with respect to q = e2π i z .
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1 Introduction

In this paper we provide a new approach to determine the main asymptotic growth
terms in the Fourier expansion of the reciprocals 1/Ek of Eisenstein series of weight
k:

1

Ek(z)
=

∞∑

n=0

βk(n) qn (q := e2π i z).
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We refer to [4], Chapter 15 for a very good introduction into the topic. Eisenstein
series are defined by

Ek(z) := 1 − 2k

Bk

∞∑

n=1

σk−1 (n) qn .

They are modular forms [15] on the upper half of the complex plane H. The algebra
of modular forms with respect to the modular group SL2(Z) is generated by E4 and
E6. As usual Bk denotes the kth Bernoulli number and σ� (n) := ∑

d|n d�.
Hardy andRamanujan [8] launched, in their last joint paper, the study of coefficients

ofmeromorphicmodular formswith a simple pole in the standard fundamental domain
F. They demonstrated that, similar to their famous asymptotic formula for the partition
numbers

p(n) ∼ 1

4n
√
3
eπ

√
2
3 n,

∞∑

n=0

p(n) qn := q
1
24

η(z)
,

which had been given birth to the Circle Method [7], formulas for the coefficients
of reciprocals of modular forms can be obtained. The reciprocal of the Dedekind
η-function is a weakly modular form of weight −1/2 on H.

Hardy and Ramanujan focused on the reciprocal of the Eisenstein series E6. They
proved an explicit formula for the coefficients. Shortly afterwards, in a letter to Hardy,
Ramanujan stated several formulas of the same type, including the q-expansion of
1/E4. No proofs were given.

Bialek in his Ph.D. thesis, written under the guidance of Berndt [2], and finally
Berndt, Bialek, and Yee [3] have proven the claims in the letter of Ramanujan by
extending the methods applied in [8].

We illustrate the case k = 4. Following Ramanujan, we frequently put Ek(qz) :=
Ek(z) for q = qz := e2π i z . Let ρ be the unique zero of E4 in F. Let λ run over the
integers of the form 3α

∏r
�=1 p

α�

� , where α = 0 or 1. Here, p� is a prime of the form
6m + 1, and α j ∈ N0. Then [2]:

β4(n) = (−1)n
3

E6(qρ)

∑

(λ)

∑

(c,d)

h(c,d)(n)

λ3
e

πn
√
3

λ . (1)

Here, (c, d) �= (0, 0) and coprime, runs over distinct solutions to λ = c2 − cd + d2.
Let (a, b) be such that ad − bc = 1. Let h(1,0)(n) := 1, h(2,1)(n) := (−1)n , and for
λ ≥ 7:

h(c,d)(n) := 2 cos

(
(ad + bc − 2ac − 2bd + λ)

π n

λ
− 6 arctan

(
c
√
3

2d − c

))
.

For the definition of distinct we refer to [2, Sect. 3]. From the explicit formula (1) one
observes that the main asymptotic growth comes from (c, d) = (1, 0). This yields
([5], Introduction):

123



Asymptotic expansion of Fourier coefficients... 873

β4(n) ∼ (−1)n
3

E6(ρ)
eπn

√
3, (2)

β6(n) ∼ 2

E8(i)
e2πn, (3)

where
∑∞

n=0 βk(n) qn := 1
Ek (z)

. We added the asymptotic (3), which can be obtained
in a similar way.

Petersson [16] offered an alternative approach to study theq-expansion ofmeromor-
phic modular forms. He defined Poincaré series with poles at arbitrary points inH and
of arbitrary order, to provide a basis for the underlying vector spaces. Recently, Bring-
mann and Kane [5] have generalized Petersson’s method. They have also recorded
several important examples.

In this paper we study the asymptotic expansions for all reciprocals of Eisenstein
series. Instead of proving first an explicit formula and then detecting the main growth
terms, we provide a direct approach. This is based on the distribution of the zeros in
the standard fundamental domain with the largest imaginary part. For the convenience
of the reader, we recall some basic idea from complex analysis ([20], [17, Chap. 7,
Sect. 5, task 242]). Let f (q) = ∑∞

n=0 a(n) qn be a power series regular at q = 0 with
finite radius of convergence. Assume that there is only one singular point q0 on the
circle of convergence. Let at q0 be a pole. Then it is known that

lim
n→∞

a(n)

a(n + 1)
= q0. (4)

This follows from the Laurent expansion of f (q), which has a finite principal part.
Before we state our results, we want to point out as a warning that the limits as

n → ∞ for β4 (n) /β4 (n + 1) and β6 (n) /β6 (n + 1) exist, but that this is maybe not
true for all k as provided by the data in Table 1.

Table 1 Quotients of successive coefficients of 1/Ek for k ∈ {4, 6, 12, 14}
n β4(n)

β4(n+1) ≈ β6(n)
β6(n+1) ≈ β12(n)

β12(n+1) ≈ β14(n)
β14(n+1) ≈

1 − 4.3290 · 10−3 1.8622 · 10−3 5.1172 · 10−4 1.2170 · 10−4

2 − 4.3333 · 10−3 1.8677 · 10−3 − 9.6536 · 10−3 4.1330 · 10−3

3 − 4.3334 · 10−3 1.8674 · 10−3 5.4260 · 10−4 1.1240 · 10−3

4 − 4.3334 · 10−3 1.8674 · 10−3 − 8.9832 · 10−3 2.3564 · 10−3

5 − 4.3334 · 10−3 1.8674 · 10−3 5.8359 · 10−4 1.6491 · 10−3

6 − 4.3334 · 10−3 1.8674 · 10−3 − 8.3936 · 10−3 1.9821 · 10−3

7 − 4.3334 · 10−3 1.8674 · 10−3 6.2477 · 10−4 1.8133 · 10−3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

19 − 4.3334 · 10−3 1.8674 · 10−3 8.8114 · 10−4 1.8674 · 10−3

20 − 4.3334 · 10−3 1.8674 · 10−3 − 5.6773 · 10−3 1.8674 · 10−3
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2 Results

The constants in the asymptotic expansion ofβk(n), the coefficients of the q-expansion
of the reciprocal of Ek , involve the Ramanujan 
-operator [6, 18] induced by residue
calculation. The differential operator 
 := q d

dq acts on formal power series by




( ∞∑

n=h

a(n) qn
)

:=
∞∑

n=h

n a(n) qn .

Let E2(q) := 1 − 24
∑∞

n=1 σ1(n) qn . Ramanujan observed that


(E4) = (E4E2 − E6) /3 and 
(E6) = (E6E2 − E8) /2.

Our first results give an explicit interpretation of the data presented in Table 1 for
k = 6 and k = 14.

Theorem 1 Let k ≥ 4 and k ≡ 2 (mod 4) be an integer. Then 1/Ek has a q-expansion
with radius qi = e−2π :

1

Ek(q)
=

∞∑

n=0

βk(n) qn .

The coefficients βk(n) are non-zero and have the asymptotic expansion

βk(n) ∼ − 1


(Ek)(qi )
q−n
i .

The number qi = e−2π ≈ 1.867443 ·10−3 is transcendental. It is well-known that the
so-called Gel′fond constant eπ is transcendental. This was first proven by Gel′fond
in 1929. It can also be deduced from the Gel′fond–Schneider Theorem, which solved
Hilbert’s seventh problem [21]. We refer to a result by Nesterenko (also [21, Sect.
5.6]). Let z ∈ H. Then at least already three of the four numbers

qz,E2(qz),E4(qz), and E6(qz)

are algebraically independent. Since E4(qρ) = E6(qi ) = 0, we obtain that qi ,E4(qi )
and qρ,E6(qρ) are transcendental.

Moreover, 
(Ek)(qi ) for k = 6, 10, 14 can be explicitly expressed by �( 14 ) and π .
For example,


(E6)(qi ) = −1

2
E4(qi )

2, where E4(qi ) = 3�( 14 )
8

(2π)6
.

We can also extract the numbers qi and E4(qi ) from the coefficients.
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Asymptotic expansion of Fourier coefficients... 875

Corollary 1 Let k ≥ 4 and k ≡ 2 (mod 4). Then

lim
n→∞

βk (n)

βk (n + 1)
= qi , (5)

lim
n→∞

β6 (n)

β10 (n)
= lim

n→∞
β10 (n)

β14 (n)
= E4(qi ). (6)

Hardy and Ramanujan stated lower and upper bounds at the end of their initial work
[8] on the coefficients of the reciprocal of 1/E6. We generalize their idea to all cases
k ≡ 2 (mod 4) including k = 2 and also improve their result in the original case
k = 6.

Theorem 2 Let k ≡ 2 (mod 4) and k a positive integer. Let x(k) := 2k
Bk
. Then we

have for all n ∈ N

(
x(k)+√

�k
2

)n+1 −
(
x(k)−√

�k
2

)n+1

√
�k

≤ βk(n)

with �k = x(k)2 + 4
(
2k−1 + 1

)
x (k) and

βk(n) ≤
(
x(k) − bk−√

Dk
2

) (
bk+√

Dk
2

)n +
(
bk+√

Dk
2 − x(k)

) (
bk−√

Dk
2

)n

√
Dk

(7)

with bk = x (k)+ ak, ck = (
2k−1 + 1 − ak

)
x (k), and Dk = b2k + 4ck for all k where

a2 = √
7/3 and ak = 3k−1+1

2k−1+1
for k ≥ 6.

The case k ≡ 0 (mod 4) is more complicated. For large k, we cannot expect that the
limit as n → ∞ of βk(n)/βk(n + 1) exists, since we have two poles on the circle of
convergence. But for k = 4 and k = 8 there is still only one pole.

Proposition 1 Let qρ = e2πρ = −e−π
√
3. Let m ∈ N. Then the coefficients β4,m(n)

of the mth power of E−1
4 i.e.

∞∑

n=0

β4,m(n) qn :=
(

1

E4(q)

)m

satisfy for all m:

lim
n→∞

β4,m(n)

β4,m(n + 1)
= qρ.

Remarks
(a) For small weights the following identities exist:

E8 = E2
4 , E10 = E4 · E6 and E14 = E2

4 · E6. (8)
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876 B. Heim, M. Neuhauser

(b) Let the principal part of E−m
4 at the pole qρ be given by

m∑

k=1

λm,k
(
q − qρ

)k , (9)

then λm,m = resqρ

(
E−1
4

)m
. It would be interesting to get explicit formulas for all

λm,k , 1 ≤ k ≤ m. Especially for the case m = 2.

(c) We have resqρ (E
−1
4 ) = −3 qρ

E6(qρ)
.

We know that β4(n) and β8(n) are non-zero for all n ∈ N0 [9]. We provide new
proof of the asymptotic expansion for k = 4. This is the main term of a formula first
conjectured by Ramanujan and proven about 80 years later by Bialek [2]. For the case
k = 8, we also refer to [5].

Theorem 3 We have (−1)nβ4(n) ∈ 240N for all n ∈ N. Further, we have the asymp-
totic expansion

β4(n) ∼ − 1


(E4)(qρ)
q−n
ρ ,

where 
(E4)(qρ) = −E6(qρ)/3.

F. K. C. Rankin and H. P. F. Swinnerton-Dyer [19] have proven that all the zeros of
Ek(z) in the standard fundamental domain F are in C = {z ∈ F : |z| = 1} ⊂ F. We
recall the following basic facts [15]. The modular group � := SL2(Z) operates on the
complex upper half plane H, denoted by γ (z), where γ ∈ � and z ∈ H. The standard
fundamental domain F is given by

F = {z ∈ H : |z| ≥ 1 and 0 ≤ Re (z) ≤ 1/2}
∪ {z ∈ H : |z| > 1 and − 1/2 < Re (z) < 0} .

Proposition 2 (Rankin, Swinnerton-Dyer [19]) Let k ≥ 4 be an even integer. Let zk
be the zero of Ek with the largest imaginary part. Then

z4 = z8 = ρ and zk = i for k ≡ 2 (mod 4).

All other k satisfy zk ∈ C \ {i, ρ}. Only for k = 8 the zero zk is not simple.

Further, from [19] and Kohnen [12] we obtain the following.

Corollary 2 Let k ≥ 12 and k ≡ 0 (mod 4). Let k = 12 N + s for s ∈ {0, 4, 8}. Then
zk = e

1
2π i ϕ , where ϕ ∈ ( N−1

N , 1
)
.
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Asymptotic expansion of Fourier coefficients... 877

Theorem 4 Let k be a positive integer. Let k ≥ 12 and k ≡ 0 (mod 4). Then 1/Ek has
a q-expansion with radius |qzk |, where zk is the zero of Ek with the largest imaginary
part. Then

βk(n) qnzk + 1


(Ek)(qzk )
+ 1


(Ek)(qzk )

(
qzk
qzk

)n

constitutes a null sequence.

The expression

1


(Ek)(qzk )
+ 1


(Ek)(qzk )

(
qzk
qzk

)n

(10)

is bounded. But this is not sufficient to obtain an asymptotic expansion. Nevertheless
we have discovered a new property of the coefficients of 1/Ek for k ≡ 0 (mod 4).

Theorem 5 Let k ≡ 0 (mod 4) and k ≥ 12. Then there exists a subsequence {nt }∞t=1
of {n}∞n=1 such that

lim
t→∞

βk(nt )

−q−nt
zk

(
1


(Ek )(qzk )
+ 1


(Ek )(qzk )

(
qzk
qzk

)nt) = 1.

The statement of this theorem is equivalent to

lim
t→∞

βk(nt )

−2Re

(
q−nt
zk


(Ek )(qzk )

) = 1.

We have the following further properties.

Theorem 6 Let k be a positive integer. Let k ≥ 12 and k ≡ 0 (mod 4).

(1) Let Ak(n) denote the number of changes of sign in the sequence {βk(m)}nm=0 and
let zk = xk + i yk ∈ F be the zero of Ek with the largest imaginary part. Then

lim
n→∞

Ak(n)

n
= 2xk .

(2) Let Bk(n) be the number of non-zero coefficients among the n coefficients
{βk(m)}n−1

m=0. Then

lim sup
n→∞

n

Bk(n)
≤ 2.

Combining Theorem 6 (1) with Corollary 2 leads to the following result, which is
a priori surprising.
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Corollary 3 For large weights k divisible by 4, the coefficients of 1/Ek(q) satisfy

lim
�→∞ lim

n→∞
A4�(n)

n
= 0.

3 Proofs

3.1 Proof of Proposition 1, Theorem 1, and Corollary 1

Let Ek(q) have exactly one zero q0 ∈ B1(0) with absolute value smaller than all other
zeros. Then we obtain the property (4) for the coefficients of 1/Ek . Note that every
zero of a modular form has one representative in the fundamental domain F.

The zeros of Ek are controlled by a theorem by Rankin and Swinnerton-Dyer ([19],
see also Sect. 2). They proved that every zero in F has absolute value 1. Further, let k
be a positive, even integer and k ≥ 4. Let k = 12N + s, where s ∈ {4, 6, 8, 10, 0, 14}.
Then Ek has N simple zeros in C \ {i, ρ}. Additionally we have simple zeros ρ for
s = 4 and i for s = 6. Further, Ek has the double zero ρ for s = 8, the simple zeros i
and ρ for s = 10, and the simple zero i and the double zero ρ for s = 14. Further, let
zk be the zero of Ek with the largest imaginary part. Note that

z′k := S (zk) =
(
0 −1
1 0

)
zk

and zk have the same imaginary part. Note that S (i) = i and S (ρ) = ρ − 1. Thus,
1/Ek has exactly one pole on the radius of convergence iff zk = i or zk = ρ.

Proof of Proposition 1 Since (1/E4)
m has only the pole at qρ on the circle of conver-

gence, again we have formula (4), which proves the proposition. ��
Proof of Theorem 1 Let w be any complex number. Let Br (w) = {z ∈ C : |z − w| <

r} be the open ball with radius r around w. We denote the closure by Br (w) and
its boundary by ∂Br (w). Let k ≡ 2 (mod 4). Then Ek has the special property that
restricted to B|qi |(0) it has exactly one zero at qi , which is also simple. This implies
that the Taylor series expansion of the reciprocal of Ek has radius of convergence |qi |
and only a simple pole at qi :

1

Ek(q)
=

∞∑

n=0

βk(n) qn (|q| < |qi |).

Note that subtracting the principal part at qi provides a new Taylor series expansion
with a larger radius of convergence:

1

Ek(q)
− resqi (1/Ek)

q − qi
=

∞∑

n=0

b(n) qn .
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Asymptotic expansion of Fourier coefficients... 879

This implies that b(n)qni constitutes a null sequence. Here, resqi (1/Ek) denotes the
residue at qi . We obtain that

qn+1
i βk(n) + res qi (1/Ek)

constitutes a null sequence. By a standard argument, we obtain that

res qi (1/Ek) = 1
d
dq Ek(qi )

.

Finally, we obtain the asymptotic behavior

βk(n) ∼ − 1


(Ek)(qi )
q−n
i .

��
Proof of Corollary 1 From the theorem of Rankin and Swinnerton-Dyer we obtain that
for k ≡ 2 (mod 4) we have zk = i and qi = e−2π . This gives a first proof of equation
(5) of Corollary 1. Note that equation (5) of Corollary 1 also follows directly from
Theorem 1. The quotients for small k converge very quickly. We refer to Table 1 and
Table 2.

Table 2 Quotients of successive coefficients of 1/Ek for k ∈ {8, 10, 12, 14, 16}
n β8(n)

β8(n+1) ≈ β10(n)
β10(n+1) ≈ β12(n)

β12(n+1) ≈ β14(n)
β14(n+1) ≈ β16(n)

β16(n+1) ≈

17 − 4.1044 · 10−3 1.8674 · 10−3 8.3715 · 10−4 1.8674 · 10−3 1.6465 · 10−3

18 − 4.1159 · 10−3 1.8674 · 10−3 − 5.9626 · 10−3 1.8675 · 10−3 − 1.7502 · 10−2

19 − 4.1263 · 10−3 1.8674 · 10−3 8.8114 · 10−4 1.8674 · 10−3 2.3584 · 10−4

20 − 4.1357 · 10−3 1.8674 · 10−3 − 5.6773 · 10−3 1.8674 · 10−3 3.8543 · 10−3

21 − 4.1443 · 10−3 1.8674 · 10−3 9.2572 · 10−4 1.8674 · 10−3 − 1.8095 · 10−3

Table 3 Quotients of β6 (n) and
β10 (n) n β6(n)

β10(n)
≈

0 1.000000000000000000000000000000

1 1.909090909090909090909090909091

2 1.319410319410319410319410319410

3 1.523715744177431256188987060285

4 1.428309534304946335598514019013

.

.

. · · ·
80 1.455762892268709322462422003594

90 1.455762892268709322462422003599

100 1.455762892268709322462422003599
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880 B. Heim, M. Neuhauser

Since 
(E6)(qi ) = − 1
2E4(qi )2 and 
(E10)(qi ) = − 1

2E4(qi )3, the second part of
the Corollary also follows from Theorem 1 and (8). An approximate numerical value
of E4(qi ) can be read off Table 3. The theorem by Nesterenko implies that this number
is transcendental, since E6(qi ) = 0. ��

Note that for each integer � ≥ 2, the limit as n → ∞ of β4�−2(n)
β4�+2(n)

exists, but it is
generally not equal to E4(qi ).

3.2 Proof of Theorem 2

We use the following easy to prove lemmata.

Lemma 1 σ� (n) < �
�−1n

� for � > 1 and σ1 (n) ≤ (1 + ln n) n.

Proof σ� (n) ≤ (
1 + ∫ n

1 t−� dt
)
n� < �

�−1n
� for � > 1 and ≤ (1 + ln n) n for � =

1. ��

Lemma 2 For � ≥ 5 it holds that 3 �

√
1+3−�

1+2−� > 2.98.

Proof Considering � as a real variable ≥ 5, we obtain the following logarithmic
derivative

d

d�

1

�
ln

(
1 + 3−�

1 + 2−�

)

= − 1

�2
ln

(
1 + 3−�

1 + 2−�

)
+ 1

�

1 + 2−�

1 + 3−�

(
− 3−� ln 3

1 + 3−�
+ 2−� ln 2

1 + 2−�

)
> 0

since − ln 3
3�+1

+ ln 2
2�+1

> − ln 3
3� + ln 2

2�+1 > 0 for � ≥ 5. Therefore, the values of the
original sequence are increasing and we take the smallest value for � = 5. ��
Proof of Theorem 2 With εk (n) = 2k

Bk
σk−1 (n) we obtain

Ek (z) = 1 −
∞∑

n=1

εk (n) qn .

Let 1/
(
1 − εk (1) q − εk (2) q2

) = ∑∞
n=0 αk (n) qn . The αk (n) fulfill the recur-

rence relation αk (n) = εk (1) αk (n − 1) + εk (2) αk (n − 2) for n ≥ 2. Obviously,
αk (0) = βk (0), αk (1) = βk (1), and by induction αk (n) = εk (1) αk (n − 1) +
εk (2) αk (n − 2) ≤ ∑n

j=1 εk ( j) βk (n − j) = βk (n) using the power series expan-
sion of 1/Ek .

For the upper bound let a2 = √
7/3 and for k ≥ 6 let

ak = εk (3)

εk (2)
= σk−1 (3)

σk−1 (2)
= 3k−1 + 1

2k−1 + 1
.
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For all k ≡ 2 (mod 4) let bk = ak+εk (1), ck = −εk (2)−akεk (1), and 1−bkq−ckq2

1−akq
=

1 − ∑∞
n=1 δk (n) qn . Therefore, δk (1) = bk − ak = εk (1), δk (2) = ck + akδk (1) =

εk (2), and δk (n) = akδk (n − 1) for n ≥ 3. Therefore δk (n) = εk (2) an−2
k .

(1) First, let k = 2. Then δ2 (n) = 72 (7/3)(n−2)/2. For n ∈ {3, 4, 5, 6} we obtain
24σ1 (n) ≤ δ2 (n). Using Lemma 1 we obtain ε2 (n) ≤ 24 (1 + ln n) n. For n = 7
we obtain 24 · (1 + ln 7) · 7 < 504 < 72 (7/3)(7−2)/2 and for n ≥ 7 we obtain

1+ln(n+1)
1+ln n

n+1
n ≤

(
1 + ln

(
1+ 1

7

)

1+ln n

)
8
7 < 1.2 <

√
7/3. Therefore, ε2 (n) ≤ δ2 (n).

(2) Now, for k ≥ 6

δk (n) = εk (3) an−3
k = 2k

Bk

(
3k−1 + 1

) ((
3

2

)k−1 1 + 31−k

1 + 21−k

)n−3

.

Using Lemma 1we obtain σk−1 (n) < k−1
k−2n

k−1. Since k ≥ 6, Bernoulli’s inequal-

ity implies that k−1
k−2 ≤ 5

4 = 1 + 1
4 <

(
1 + 1

20

)5 ≤ ( 21
20

)k−1
. Therefore

k−1

√
Bk

2k
εk (n) = k−1

√
σk−1 (n) <

k−1

√
k − 1

k − 2
nk−1 <

21

20
n.

Using Lemma 2 implies k−1
√

Bk
2k δk (n) > 2.98

( 3
2

)n−3
. Now 21

20n < 2.98
( 3
2

)n−3

for n ≥ 4 as 4.2 < 4.47 for n = 4 and n
n−1 < 3

2 for n > 4.

We have shown εk (n) = δk (n) for n ∈ {1, 2} and εk (n) ≤ δk (n) for all n ≥ 3.
Let now 1−akq

1−bkq−ckq2
= ∑∞

n=0 γk (n) qn . Then βk (n) = γk (n) for n ∈ {1, 2} and by

induction γk (n) = ∑n
j=1 δk ( j) γk (n − j) ≥ ∑n

j=1 εk ( j) βk (n − j) = βk (n) for
n ≥ 3.

We have shown αk (n) ≤ βk (n) ≤ γk (n) for all n ≥ 1. From the generating
functions we can now determine formulas for αk (n) and γk (n). The characteristic
equation for αk (n) is λ2k − εk (1) λk − εk (2) = 0. Let �k = εk (1)2 + 4εk (2) =
(
2k
Bk

)2 + 8k
Bk

(
2k−1 + 1

)
. Then λk,± = 1

2

(
εk (1) ± √

�k
)
. We obtain

(
Lk,+
Lk,−

)
=

(
1 1

λk,+ λk,−

)−1 (
1

εk (1)

)
= 1

λk,+−λk,−

(
εk (1) − λk,−
λk,+ − εk (1)

)
= 1√

�k

(
λk,+

−λk,−

)
. There-

fore, αk (n) = Lk,+λnk,+ + Lk,−λnk,− = λn+1
k,+ −λn+1

k,−√
�k

for all n.

The characteristic equation for γk (n) is μ2
k − bkμk − ck = 0. Let Dk = b2k + 4ck .

Then μk,± = 1
2

(
bk ± √

Dk
)
,

(
Mk,+
Mk,−

)
=

(
1 1

μk,+ μk,−

)−1 (
1

εk (1)

)
= 1√

Dk

(
εk (1) − μk,−
μk,+ − εk (1)

)
,

and γk (n) = Mk,+μn
k,+ + Mk,−μn

k,−. ��
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Example (Slight improvement of [8]) Let k = 6. Then

α6 (n) = 1√
320544

⎛

⎝
(
504 + √

320544

2

)n+1

−
(
504 − √

320544

2

)n+1
⎞

⎠

≈ 1

566.16

(
535.08n+1 − (−31.083)n+1

)
.

With x (6) = 12
B6

= 504, a6 = 244
33 , b6 = 16876

33 , c6 = 141960
11 , D6 = 341015536

1089 and√
D6 ≈ 559.59 we obtain μ6,± = b6±√

D6
2 ,

M6,+ = 1√
D6

(
x(6) − b6 − √

D6

2

)
, M6,− = 1√

D6

(
b6 + √

D6

2
− x(6)

)
.

By (7) this finally yields

γ6 (n) = M6,+μn
6,+ + M6,−μn

6,− ≈ 528.10 · 535.49n + 31.494 · (−24.100)n

559.59
.

The second and last column in Table 4 are the lower and upper bounds from [8].

3.3 Proof of Theorem 3

For the special case of k = 4 we refer to a result of [9]. We have proven that
(−1)nβ4(n) ∈ 240N for all n ∈ N (see also [1], last section, for an announce-
ment of the result of strict sign changes). We are mainly interested in the implication
β4(n) �= 0.

Proof of Theorem 3 Let k = 4. Then z4 = ρ and S (z4) = ρ − 1. This implies that
1/E4(q) = ∑∞

n=0 β4(n) qn has |qρ | as the radius of convergence. Further, the only

Table 4 Improvement of upper and lower bounds (approximation) for β6(n)

n 535n+1−(−31)n+1

566 α6 (n) β6 (n) γ6 (n)
352·535.5n+21(−24)n

373

1 5.0400·102 5.0400·102 5.0400·102 5.0400·102 5.0400·102
2 2.7060·105 2.7065·105 2.7065·105 2.7065·105 2.7065·105
3 1.4474·108 1.4479·108 1.4491·108 1.4491·108 1.4491·108
4 7.7438·1010 7.7475·1010 7.7600·1010 7.7600·1010 7.7602·1010
5 4.1429·1013 4.1456·1013 4.1554·1013 4.1554·1013 4.1556·1013
6 2.2165·1016 2.2182·1016 2.2252·1016 2.2252·1016 2.2253·1016
7 1.1858·1019 1.1869·1019 1.1916·1019 1.1916·1019 1.1917·1019
8 6.3441·1021 6.3511·1021 6.3807·1021 6.3809·1021 6.3813·1021
9 3.3941·1024 3.3983·1024 3.4168·1024 3.4169·1024 3.4172·1024
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singularity on the circle of convergence is given by the pole at qρ . Nowwe can proceed
as in the proof of Theorem 1 and obtain the asymptotic expansion of β4(n). Here we
use the fact that resqρ E

−1
4 is equal to

qρ


 (E4)
(
qρ

) = −3 qρ

E6(qρ)
.

��
3.4 Proof of Theorem 4 and Theorem 5

Proof of Theorem 4 Let k ≡ 0 (mod 4). We are interested in the zeros of Ek which
contribute to poles on the circle of convergence of the power series

1

Ek(q)
=

∞∑

n=0

βk(n) qn .

Let k ≥ 12 then Proposition 2 and Corollary 2 imply that there are precisely two
singularities on the boundary of the region of absolute convergence, provided by the
two poles at qzk and qzk . This implies that the radius of convergence is equal to

∣∣qzk
∣∣.

Here we also used the well-known fact, that the imaginary part of γ (z), when γ is
in the modular group and z in the fundamental domain, does not increase. Next we
consider the Laurent expansion of 1/Ek(q) around qzk . We subtract the principal part
from 1/Ek(q) and obtain a holomorphic function at qzk . We iterate this procedure
and consider the Laurent expansion around the other pole qzk and subtract again the
principal part. Note that we have poles of order one. This implies that

1

Ek (q)
− resqzk E

−1
k

q − qzk
−

resqzk E−1
k

q − qzk
(11)

has a holomorphic expansion
∑∞

n=0 b(n) qn , with a radius of convergence larger than
|qzk | = ∣∣qzk

∣∣. This implies that b(n)qnzk and b(n)qnzk constitute null sequences. The
residue values can be expressed by 
(Ek) evaluated at the poles. This leads to an
expression which allows in the final formula the number q−n

zk to appear instead of

q−(n+1)
zk . See also the proof of Theorem 1. By the identity principle b(n) is equal to

βk(n) + 1


(Ek) (qzk )
q−n
zk + 1


(Ek) (qzk )
q−n
zk .

This implies that

∞∑

n=0

(
βk(n) + 1


(Ek) (qzk )
q−n
zk + 1


(Ek) (qzk )
q−n
zk

)
qn =

∞∑

n=0

b(n)qnzk

(
q

qzk

)n
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for q ∈ C and |q| < |qzk |. Let w = q/qzk . Then

∞∑

n=0

(
βk(n)qnzk + 1


(Ek) (qzk )
+ 1


(Ek) (qzk )

(
qzk
qzk

)n)
wn =

∞∑

n=0

b(n)qnzk wn .

In the final step we compare the coefficients with respect to wn and use the identity
principle for regular power series. Since b(n) qnzk constitutes a null sequence, the claim
of the theorem follows. ��
Proof of Theorem 5 Let k ≡ 0 (mod 4) and k ≥ 12. Let zk = xk + iyk be the zero
of Ek in F with the largest imaginary part. Then zk �= i, ρ. This implies by results
by Kanou [10] and Kohnen [11] that zk is transcendental. Since we have chosen zk
on the circle of unity, we can conclude that xk and yk are also transcendental. By a
well-known result by Kronecker [14], since xk is irrational, the orbit

Ok :=
{(

qzk
qzk

)n

: n ∈ N

}

is dense in
{
w = e2π iα : α ∈ [0, 1)}. Let Ck := 1/
(Ek)(qzk ). Since

Ck = 1/
(Ek)(qzk ),

for the closure of the set

Dk :=
{

1


(Ek)(qzk )
+ 1


(Ek)(qzk )

(
qzk
qzk

)n

: n ∈ N

}
,

we obtain a circle with center Ck and radius |Ck |:

∂B|Ck |(Ck) =
{
z ∈ C : |z − Ck | = |Ck |

}
.

We note that 0 and 2Ck are not elements of Dk . Let dk ∈ ∂B|Ck |(Ck) \ {0}. Then there
exists a subsequence {nt }∞t=1 of {n}∞n=1 such that

lim
t→∞

1


(Ek)(qzk )
+ 1


(Ek)(qzk )

(
qzk
qzk

)nt
= dk .

Combining this result with Theorem 4 proves the claim. ��

3.5 Proof of Theorem 6 and Corollary 3

We recall a result from complex analysis. Pólya and Szegő recorded the following
beautiful property ([17], Part Three, Chapter 5). Let f (x) = ∑∞

n=0 a(n) xn be a
power series with radius of convergence 0 < r < ∞ and real coefficients. We assume
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that we have only two singularities on the circle of convergence and that these two
singularities are poles: x1 = reiα and x2 = re−iα with 0 < α < π . Let A(n) denote
the number of changes of sign in the sequence {a(m)}nm=0. Then limn→∞ A(n)

n = α
π
.

The number of changes of sign in a sequence of real numbers is given by the sign
changes of the sequence, when all zeros are removed. Results in this direction had
also been given by König [13] in 1875.

Proof of Theorem 6, part (1) Let k ≡ 0 (mod 4). Then 1/Ek(q) = ∑∞
n=0 βk(n) qn has

a radius of convergence |qzk |, where zk = xk + iyk is the zero of Ek with the largest
imaginary part with 0 < xk < 1/2. We stated already that qzk and qzk are the single
two singularities on the circle of convergence. Note that qzk = rk · e2π i xk , where
rk = e−2π yk = |qzk |. Further, qzk = rk · e−2π i xk . Thus all assumptions are fulfilled to
apply the above cited result for A(n) = Ak(n) and α = 2xk . ��
Example We have z16 ≈ 0.196527 + 0.980498 i . See Table 5 for values A16 (n) /n.

We also recall another interesting result stated in [17] (Part Three, Chap. 5). Let
f (x) = ∑∞

n=0 a(n) xn be a power series with finite positive radius of convergence.
We assume that there are only poles on the circle of convergence. Let B(n) be the
number of non-zero coefficients among the first n coefficients {a(m)}n−1

m=0. Then the
number of poles is not smaller than

lim sup
n→∞

n

B(n)
. (12)

Proof of Theorem 6, part (2) The number of poles is 2. Thus, by the result above, 2 is
an upper bound for the term (12), which completes the proof. ��
Example We have B12(n) = B16(n) = B20(n) = n for n ≤ 1000.

Proof of Corollary 3 From Theorem 6 we obtain

lim
n→∞

A4�

4�
= 2 x4�,

Table 5 Portion of sign changes
for k = 16 n A16(n)

n ≈ A16(10n)
10n ≈ A16(100n)

100n ≈
2 0.50000000 0.40000000 0.39500000

3 0.33333333 0.40000000 0.39333333

4 0.50000000 0.40000000 0.39250000

5 0.40000000 0.40000000 0.39400000

6 0.33333333 0.40000000 0.39333333

7 0.42857143 0.40000000 0.39285714

8 0.37500000 0.40000000 0.39375000

9 0.44444444 0.38888889 0.39333333

10 0.40000000 0.39000000 0.39300000
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886 B. Heim, M. Neuhauser

where x4� is the real part of the zero of E4� with the largest imaginary part. Finally,
from Corollary 2 the claim follows, since x4� tends to zero. ��
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