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Abstract
We present a formula that expresses the Hankel determinants of a linear combination
of length d +1 of moments of orthogonal polynomials in terms of a d ×d determinant
of the orthogonal polynomials. This formula exists somehow hidden in the folklore of
the theory of orthogonal polynomials but deserves to be better known, and be presented
correctly and with full proof. We present four fundamentally different proofs, one that
uses classical formulae from the theory of orthogonal polynomials, one that uses a
vanishing argument and is due to Elouafi (J Math Anal Appl 431:1253–1274, 2015)
(but given in an incomplete form there), one that is inspired by random matrix theory
and is due to Brézin and Hikami (Commun Math Phys 214:111–135, 2000), and one
that uses (Dodgson) condensation.We give two applications of the formula. In the first
application, we explain how to compute such Hankel determinants in a singular case.
The second application concerns the linear recurrence of suchHankel determinants for
a certain class of moments that covers numerous classical combinatorial sequences,
including Catalan numbers, Motzkin numbers, central binomial coefficients, central
trinomial coefficients, central Delannoy numbers, Schröder numbers, Riordan num-
bers, and Fine numbers.

Keywords Hankel determinants · Moments of orthogonal polynomials · Catalan
numbers · Motzkin numbers · Schröder numbers · Riordan numbers · Fine numbers ·
Central binomial coefficients · Central trinomial numbers · Delannoy numbers ·
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1 Introduction

The purpose of this article is to put to the fore a fundamental formula for orthogonal
polynomials that is implicitly hidden in the classical literature on orthogonal polyno-
mials. It is so well hidden that seemingly even top experts of the theory of orthogonal
polynomials are not aware of the formula. How and why this is possible is explained
in greater detail in Sect. 2. My literature search led me to discover that the formula
is stated in Lascoux’s book [11], albeit incorrectly, but with a correct proof. Subse-
quently, I realised that the formula is stated correctly by Elouafi in [6], however with
an incomplete proof. Finally, in reaction to [10], Arno Kuijlaars pointed out to me that
the formula appears in [1], in which a result due to Brézin and Hikami [2] is cited.
Both papers contain correct statement and (different) proofs, however they use random
matrix language. Again, see Sect. 2 for more details.

So, let me present this formula without further ado. Let
(

pn(x)
)

n≥0 be a sequence

of monic polynomials over a field K of characteristic zero1 with deg pn(x) = n, and
assume that they are orthogonal with respect to the linear functional L , i.e., they satisfy
L(pm(x)pn(x)) = ωnδm,n with ωn �= 0 for all n, where δm,n is the Kronecker delta.
Furthermore, we write μn for the n-th moment L(xn) of the functional L , for which
we also use the umbral notation μn ≡ μn .2

Theorem 1 Let n and d be non-negative integers. Given variables x1, x2, . . . , xd , and
using the above explained umbral notation, we have

det
0≤i, j≤n−1

(
μi+ j ∏d

�=1(x� + μ)
)

det
0≤i, j≤n−1

(
μi+ j

) = (−1)nd
det

1≤i, j≤d

(
pn+i−1(−x j )

)

∏

1≤i< j≤d
(xi − x j )

. (1.1)

Here, determinants of empty matrices and empty products are understood to equal 1.

Remark. The theory of orthogonal polynomials guarantees that in our setting (namely
due to the condition ωn �= 0 in the orthogonality) the Hankel determinant of moments
in the denominator on the left-hand side of (1.1) is non-zero.

We may rewrite (1.1) using quantities that appear in the three-term recurrence

pn(x) = (x − sn−1)pn−1(x) − tn−2 pn−2(x), for n ≥ 1, (1.2)

1 For the analyst, (usually) this field is the field of real numbers, and a further restriction is that the linear
functional L is defined by a measure with non-negative density. However, the formulae in this paper do not
need these restrictions and are valid in this wider context of “formal orthogonality”.
2 “Umbral notation” means that an expression that is a polynomial in μ is expanded out, and then every
occurrence of μn is replaced by μn . So, for example, the umbral expression μ2(x1 + μ)(x2 + μ) means
x1x2μ2 + (x1 + x2)μ3 + μ4.
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Hankel determinants of orthogonal polynomials 599

with initial values p−1(x) = 0 and p0(x) = 1, that is satisfied by the polynomials
according to Favard’s theorem (see e.g. [8, Theorems 11–13]) for some sequences
(sn)n≥0 and (tn)n≥0 of elements of K with tn �= 0 for all n. Namely, using the well-
known fact (see e.g. [15, Ch. IV, Cor. 6])

det
0≤i, j≤n−1

(
μi+ j

) =
n−1∏

i=0

tn−i−1
i , (1.3)

the formula (1.1) becomes

det
0≤i, j≤n−1

(

μi+ j
d∏

�=1

(x� + μ)

)

= (−1)nd+(d
2)

( n−1∏

i=0

tn−i−1
i

) det
1≤i, j≤d

(
pn+i−1(−x j )

)

∏

1≤i< j≤d
(x j − xi )

. (1.4)

This form reveals that we may regard the formula as a polynomial formula in the xi ’s
and the si ’s and ti ’s. Indeed, the determinant on the right-hand side, being a skew-
symmetric polynomial in the xi ’s, is divisible by the Vandermonde product in the
denominator.

In the next section, I will present the history of Theorem 1, from a strongly biased
(personal) view. As I explain there, I discovered the formula onmy ownwhile thinking
aboutConjecture 8 in [4], and also cameupwith a proof, presented here in Sect. 3. Later
I found the earlier mentioned occurrences of the formula in [1,6,11] and [2]. Lascoux’s
argument (the one in [1] is essentially the same), which follows the classical literature
of orthogonal polynomials (but is presented in [11] in his very personal language),
is presented in Sect. 4 (in “standard” language). Section 5 brings the completion of
Elouafi’s vanishing argument. The random matrix-inspired proof due to Brézin and
Hikami is the subject of Sect. 6.

Sections 7 and 8 address issues that come frommy initial motivation (and Elouafi’s)
that in the end led to the discovery of Theorem 1: Hankel determinants of linear com-
binations of combinatorial sequences. Section 7 addresses the case in which in (1.1)
the xi ’s are all equal to each other. In that case, it is the limit formula in Proposition 5
in Sect. 5 that has to be applied. We show in Sect. 7 that Elouafi’s recurrence approach
for that case can be replaced by an approach yielding completely explicit expressions.
Finally, in Sect. 8 we show that the theory of linear recurrent sequences with constant
coefficients implies that, in the case where the coefficients si and ti in the three-term
recurrence (1.2) are constant for large i , the scaled Hankel determinants of linear
combinations of moments on the left-hand side of (1.1) satisfy a linear recurrence
with constant coefficients of order 2d , plus some more specific assertions about the
coefficients in this linear recurrence, see Corollary 9. This proves conjectures from
[5], vastly generalising them.
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600 C. Krattenthaler

2 History of Theorem 1—a (very) personal view

I discovered Theorem 1 on my own, in a very roundabout way. It started with an email
of Johann Cigler in which he asked me for a proof of a special case of

det
(
x1x2μi+ j + (x1 + x2)μi+ j+1 + μi+ j+2

)n−1
i, j=0

det
(
μi+ j

)n−1
i, j=0

=
n∑

j=0

p j (−x2)p j (−x2)
n−1∏

�= j

t�. (2.1)

We quickly realised that we can actually prove the above identity, which became the
first main result in [4] (see Theorem 1 there; the reader should notice that the left-
hand side of (2.1) agrees with the left-hand side of (1.1), while the right-hand sides
do not agree; in retrospect, the equality of the right-hand sides is equivalent to the
Christoffel–Darboux identity, cf. [14, Theorem 3.2.2]). We then proceeded to derive
a (more complicated) triple-sum expression for the “next” case (see [4, Theorem 5]),

det
(
x1x2x3μi+ j + (x1x2 + x2x3 + x3x1)μi+ j+1 + (x1 + x2 + x3)μi+ j+2 + μi+ j+3

)n−1
i, j=0

det
(
μi+ j

)n−1
i, j=0

.

In the special case where the si ’s and the ti ’s are constant for i ≥ 1, the orthogonal
polynomial pn(x) can be expressed in terms of a linear combination of Chebyshev
polynomials (see [4, Eq. (4.2)]). This allowed us to evaluate the sum on the right-hand
side of (2.1) and the afore-mentioned triple sum. We recognised a pattern, and this led
us to conjecture a precise formula for

det
0≤i, j≤n−1

(
μi+ j ∏d

�=1(x� + μ)
)

det
0≤i, j≤n−1

(
μi+ j

)

(see [4, Conj. 8]), again expressed in terms of Chebyshev polynomials. Subsequently, I
realised that this conjectural expression could be simplified (bymeans of [4, Eq. (4.2)]).
The result was the right-hand side of (1.1), in the special case where the si ’s and ti ’s
are constant for i ≥ 1. The obvious question at that point then was: does Formula (1.1)
also hold if the si ’s and ti ’s are generic? Computer experiments said “yes”.

At this point I told myself: this identity, being a completely general identity of
fundamental nature connecting orthogonal polynomials and their moments, must be
known. Naturally, I consulted standard books on orthogonal polynomials, such as
Szegő’s classic [14], but I could not find it. After a while I then started to think about
a proof. I figured out the proof of (1.1) that can be found in Sect. 3.

Still, I had the strong feeling that this identity must be known. So, if I cannot
find it in classical sources, what about “non-classical” sources? I remembered that
Alain Lascoux had devoted one chapter of his book [11] on symmetric functions
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Hankel determinants of orthogonal polynomials 601

to orthogonal polynomials, revealing there that orthogonal polynomials can be seen
as Schur functions of quadratic shapes, and demonstrating that formal identities for
orthogonal polynomials can be conveniently established by adopting this point of
view. So I consulted [11], and I quickly realised that Proposition 8.4.1 in the book
addresses (1.1); it needed some more work to see what exactly was contained in that
proposition.3

Lascoux attributes his proposition to Christoffel, without any specific reference.
With this information in hand, I returned to Szegő’s book [14] and made a text search
for “Christoffel”. I finally found the relevant theorem: Theorem 2.5. I believe that
the reader, after looking at that theorem, will forgive me for not recognizing on my
first attempt its relevance for our Theorem 1.4 In particular, [14, Theorem 2.5] does
not say anything about the proportionality factor between the two sides in (1.1) (as
opposed to Lascoux, even if the expression he gives is not correct; he does provide
an argument though5). Szegő tells that [14, Theorem 2.5] is due to Christoffel [3],
but only in the special case of Legendre polynomials (indeed, at the end of [3] there
appears Theorem 1 in that special case), a fact that also seems to have escaped many
researchers in the theory of orthogonal polynomials.

Eventually, I found that Theorem 1 appears, correctly stated, as Theorem 1 in the
relatively recent article [6] by Elouafi. However, the proof given there is incomplete.6

I present a completion of this proof in Sect. 5.
With all this knowledge, I consulted Mourad Ismail and asked him if he knows the

formula, respectively can refer me to a source in the literature. He immediately pointed
out that the right-hand side determinant of (1.1) features in “Christoffel’s theorem"
about the orthogonal polynomials with respect to the measure defined by the density∏d−1

i=1 (x + xi ) dμ(x) (with dμ(x) the density of the original orthogonality measure),
that is, in [14, Theorem 2.5] respectively [7, Theorem 2.7.1]. However, the conclusion
of a longer discussion was that he had not seen this formula earlier.

Finally, when I posted [10] (containing the extension of (1.1) to a rational defor-
mation of the density dμ(x)) on the arχiv, Arno Kuijlaars brought the article [1] to
my attention. Indeed, Equation (2.6) in [1] is equivalent to (1.1), and it is pointed out
there that this result had been earlier obtained by Brézin and Hikami in [2, Eq. (14)].
It requires some translational work to see this though, see Sect. 2.3.

In the next subsection, I provide a translation, into “standard English”, of Lascoux’s
rendering of Theorem 1. Then, in Sect. 2.2, I present “Christoffel’s theorem” and
explain its connection to Theorem 1. Finally, in Sect. 2.3 I translate the randommatrix

3 Lascoux’s book is written in the (for many: foreign) language of plethystic operators on symmetric
polynomials. I therefore provide a translation of the parts of [11] that are relevant to our discussion into
“standard language” further below in Sect. 2.1.
4 The reader may judge for her/himself: I present the theorem further below in Sect. 2.2, together with
explanations how this connects to our discussion.
5 Lascoux refers to “the Bazin formula” without any reference. He may be excused for that: a glance at the
index of [11] leads one to [11, Lemma A.1.1].
6 The proof of Lemma 4 in [6] only works for pairwise distinct αi ’s. It is probably possible to complete the
argument even with an accordingly weakened version of that lemma. In our completion of Elouafi’s proof
in Sect. 5 we prefer to complete the proof of the lemma.
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602 C. Krattenthaler

result [2, Eq. (14)] into the language that we use here to see that it is indeed equivalent
to (1.1).

2.1 Lascoux’s Proposition 8.4.1 in [11]

This proposition says that, given alphabets A and B = {b1, b2, . . . , bk+1},7

S(n+k)n (A − B)�(B)

is proportional, up to a factor independent of B, to

det
1≤i, j≤k+1

(
Pn−1+ j (b j )

)
.

The proportionality factor is given in the proof of [11, Prop. 8.4.1] (except for the
overall sign8), but it has not been correctly worked out.

In order to understand the connection with Theorem 1, let me translate Lascoux’s
language to the notation that I use here in this paper. First of all, as mentioned in Foot-
note 7, the symbol�(B) denotes the Vandermonde product (see [11, bottom of p. 11])

�(B) =
∏

1≤i< j≤k+1

(b j − bi ).

Next, Srs (C) is the Schur function of rectangular shape rs = (r , r , . . . , r) (with
s occurrences of r ) in the alphabetC (not to be confused with the complex numbers!),
defined by (see [11, Eq. (1.4.3)])

Srs (C) = det
1≤i, j≤s

(
Sr+ j−i (C)

) = (−1)(
s
2) det

1≤i, j≤s

(
Sr+i+ j−s−1(C)

)
,

where Sa(C) is the complete homogeneous symmetric function of degree a in the
alphabet C. Thus,

S(n+k)n (A − B) = (−1)(
n
2) det

1≤i, j≤n

(
S(n+k)+i+ j−n−1(A − B)

)

= (−1)(
n
2) det

0≤i, j≤n−1

(
Si+ j+k+1(A − B)

)
.

7 In the statement of [11, Prop. 8.4.1], the resultant R(x,B)must be replaced by the Vandermonde product
�(x +B), as is done in the proof of that proposition in [11]. I have done this correction here. Furthermore I
simplified the statement by incorporating the variable x in the alphabetB, which means to replace “−B−x”
by “−B” and “x + B” by “B”. It is obvious that Lascoux was aware of this simplification. However, he
needed to formulate the statement in that particular way in order to relate it to the classical result [14,
Theorem 2.5] (see also [7, Theorem 2.7.1]) in the theory of orthogonal polynomials.
8 Lascoux’s attitude towards signs is best described by himself: “… with signs that specialists will know
how to write.” [11, comment added below Eq. (3.1.5)]
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Hankel determinants of orthogonal polynomials 603

Here (this is implicit on page 6 of [11]),

Sm(A − B) =
m∑

a=0

Sm−a(A)Sa(−B) =
m∑

a=0

(−1)a Sm−a(A)�a(B),

where �a(B) is the elementary symmetric function of degree a in b1, b2, . . . , bk+1.
Furthermore (cf. [11, second display on p. 115]), we have Sm(A) = μm , withμm being
“our” m-th moment of the linear functional L . Thus, we recognise that S(n+k)n (A−B)

is, up to the sign (−1)(
n
2), in our notation the Hankel determinant

det
0≤i, j≤n−1

(

μi+ j
k+1∏

�=1

(−b� + μ)

)

on the left-hand side of (1.1) (with x� replaced by −b� and d replaced by k + 1).
On the other hand, Lascoux’s polynomials Pn(x) are orthonormal with respect to

the linear functional L with moments μm , m = 0, 1, . . . , and are given by (cf. [11,
Theorem 8.1.1])

Pn(x) = 1
(
(−1)n S(n−1)n (A)Snn+1(A)

)1/2 Snn (A − x), for n ≥ 0,

while “our” monic orthogonal polynomials pn(x) are given by (cf. [11, Theo-
rem 8.1.1 and second display on p. 116])

pn(x) = 1

(−1)n S(n−1)n (A)
Snn (A − x), for n ≥ 0.

Thus, we see that Lascoux’s determinant det1≤i, j≤k
(
Pn−1+ j (b j )

)
is, up to some over-

all factor, “our” determinant det1≤i, j≤k
(

pn−1+ j (b j )
)
on the right-hand side of (1.1)

(with x� replaced by −b� and d replaced by k + 1).
It should now be clear to the reader that Lascoux’s Proposition 8.4.1 in [11] is

equivalent to Theorem 1, except that he did not bother to figure out the correct sign,
and that he did not get the proportionality factor right [both of which being very
understandable given the complexity of the task…; in fact, in order to not risk similar
failure, I do not attempt to present the correct proportionality factor or sign inLascoux’s
notation—in “standard” notation, the correct identity is given in (1.1)].

2.2 “Christoffel’s Theorem”

This theorem (cf. [14, Theorem 2.5] or [7, Theorem 2.7.1]) says: in the setting of
Section 1, the polynomials (in x)
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604 C. Krattenthaler

det
1≤i, j≤d

(
pn+i−1(x j ), 1 ≤ j ≤ d − 1
pn+i−1(x), j = d

)

∏d−1
i=1 (x − xi )

, n = 0, 1, . . . , (2.2)

form a sequence of orthogonal polynomials with respect to the linear functional with
moments

μn
d−1∏

�=1

(μ − x�), n = 0, 1, . . . . (2.3)

The reader may now understand why I did not notice that Theorem 1 is hidden
in the above assertion on my first attempt to find it in Szegő’s book [14]. I did of
course see that the determinant in (2.2) is our determinant on the right-hand side
of (1.1) (with xd = x), and that the moments in (2.3) are “almost” the entries in the
Hankel determinant on the left-hand side of (1.1). There are however two obstacles
to overcome in order to “extract” (1.1) out of the above assertion: first, one has to
recall a certain determinant formula for the orthogonal polynomials with respect to
a given moment sequence, namely Lemma 4 in Sect. 4. Applied to the moments
in (2.3), it produces indeed the Hankel determinant on the left-hand side of (1.1). The
uniqueness of orthogonal polynomials up to scaling then implies that the determinants
on the left-hand side of (1.1) (with xd = x) and the expression (2.2) agree up to a
multiplicative constant (meaning: independent of x = xd ). So, second, this constant
has to be computed. A researcher in the theory of orthogonal polynomials does not
really care about the normalisation of the orthogonal polynomials and this seems to
be the reason why apparently nobody has done it there, although this is not really
difficult, see Sects. 4 and 5 for two slightly different arguments.

2.3 Expectation of a product of characteristic polynomials of randomHermitian
matrices

Let dμ(u) be the density of some positive measure with infinite support all of whose
moments exist. Equation (14) in [2] (cf. also [1, Eq. (2.6)]) reads

〈
d∏

j=1

Dn(x j , H)

〉

μ

= det1≤i, j≤d
(

pn+i−1(x j )
)

∏
1≤i< j≤d(x j − xi )

. (2.4)

(I have changed notation so that it is in line with our notation.) Here, the left-hand
side is an expectation for products of characteristic polynomials of random Hermitian
matrices. However, this fact does not need to concern us. According to [2, Eq. (5)]
(see also [1, Eq. (1.3)]) it can be expressed as
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Hankel determinants of orthogonal polynomials 605

〈
d∏

j=1

Dn(x j , H)

〉

μ

= 1

Zn

∫
· · ·

∫ ( d∏

j=1

n∏

i=1

(x j − ui )

)( ∏

1≤i< j≤n

(u j − ui )

)2

× dμ(u1) dμ(u2) · · · dμ(un),

where

Zn =
∫

· · ·
∫ ( ∏

1≤i< j≤n

(u j − ui )

)2

dμ(u1) dμ(u2) · · · dμ(un).

Now, by Heine’s formula (cf. [14, Eq. (2.2.11)], [7, Cor. 2.1.3], or Lemma 8), we have

Zn = n! det
0≤i, j≤n−1

(μi+ j )

and

〈
d∏

j=1

Dn(x j , H)

〉

μ

= n ! det
0≤i, j≤n−1

⎛

⎝
∫

ui+ j
( d∏

j=1

(x j − u)

)
dμ(u)

⎞

⎠ .

Since

∫
ui+ j

( d∏

j=1

(x j − u)

)
dμ(u) = μi+ j

d∏

j=1

(x j − μ)

(again using umbral notation), the equivalence of (2.4) and (1.1) nowbecomes obvious.

3 First proof of Theorem 1—condensation

In this section, we present the author’s proof of Theorem 1, which uses the method
of condensation (frequently referred to as “Dodgson condensation”). This method
provides inductive proofs that are based on a determinant identity due to Jacobi (see
Proposition 2 below).

For convenience, we change notation slightly. Instead of the polynomials pn(x),
let us consider the polynomials fn(x) defined by

fn(x) = (x + sn−1) fn−1(x) − tn−2 fn−2(x), for n ≥ 1, (3.1)

with f0(x) = 1 and f−1(x) = 0. (It should be noted that the only difference between
the recurrences (1.2) and (3.1) is the sign in front of sn−1.) Using these polynomials,
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606 C. Krattenthaler

the formula (1.1) can be rewritten as

det
0≤i, j≤n−1

(
μi+ j ∏d

�=1(x� + μ)
)

det
0≤i, j≤n−1

(
μi+ j

) =
det

1≤i, j≤d

(
fn+i−1(x j )

)

∏

1≤i< j≤d
(x j − xi )

. (3.2)

(That is, we got rid of the signs on the right-hand side of (1.1).) Our proof of (3.2) will
be based on the method of condensation (see [8, Sect. 2.3]). The “backbone” of this
method is the following determinant identity due to Jacobi.

Proposition 2 Let A be an N × N matrix. Denote the submatrix of A in which rows
i1, i2, . . . , ik and columns j1, j2, . . . , jk are omitted by A j1, j2,..., jk

i1,i2,...,ik
. Then we have

det A · det A j1, j2
i1,i2

= det A j1
i1

· det A j2
i2

− det A j2
i1

· det A j1
i2

(3.3)

for all integers i1, i2, j1, j2 with 1 ≤ i1 < i2 ≤ N and 1 ≤ j1 < j2 ≤ N.

The second ingredient of the proof of (3.2) will be the Hankel determinant identity
below, which, as its proof will reveal, is actually a consequence of the condensation
formula in (3.3).

Lemma 3 Let (cn)n≥0 be a given sequence, and α and β be variables. Then, for all
positive integers n, we have

(β − α) det
0≤i, j≤n−1

(
αβci+ j + (α + β)ci+ j+1 + ci+ j+2

)
det

0≤i, j≤n

(
ci+ j

)

= det
0≤i, j≤n−1

(
αci+ j + ci+ j+1

)
det

0≤i, j≤n

(
βci+ j + ci+ j+1

)

− det
0≤i, j≤n−1

(
βci+ j + ci+ j+1

)
det

0≤i, j≤n

(
αci+ j + ci+ j+1

)
. (3.4)

Proof By using multilinearity in the rows, it is easy to see (cf. also [9, Lemma 4]) that

det
0≤i, j≤M

(αci+ j + ci+ j+1) =
M+1∑

r=0

αr det
0≤i, j≤M

(ci+ j+χ(i≥r)), (3.5)

where χ(S) = 1 if S is true and χ(S) = 0 otherwise. If we apply this identity to the
first determinant on the left-hand side of (3.4), then we obtain

det
0≤i, j≤n−1

(
αβci+ j + (α + β)ci+ j+1 + ci+ j+2

)

= det
0≤i, j≤n−1

(
α(βci+ j + ci+ j+1) + (βci+ j+1 + ci+ j+2)

)

=
n∑

r=0

αr det
0≤i, j≤n−1

(
βci+ j+χ(i≥r) + ci+ j+χ(i≥r)+1

)
.
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Now we use multilinearity in rows 0, 1, . . . , r − 1 and in rows r , r + 1, . . . , n − 1
separately. This leads to

det
0≤i, j≤n−1

(
αβci+ j + (α + β)ci+ j+1 + ci+ j+2

)

=
n∑

r=0

αr
r∑

s=0

βs
n∑

t=r

β t−r det
0≤i, j≤n−1

(
ci+ j+χ(i≥s)+χ(i≥t)

)

=
∑

0≤s≤t≤n

( t∑

r=s

αrβs+t−r
)

det
0≤i, j≤n−1

(
ci+ j+χ(i≥s)+χ(i≥t)

)

= 1

β − α

∑

0≤s≤t≤n

(
αsβ t+1 − αt+1βs

)
det

0≤i, j≤n−1

(
ci+ j+χ(i≥s)+χ(i≥t)

)
.

We substitute this as well as (3.5) (wherever it can be applied) in (3.4). The factor β−α

cancels. Subsequently, we compare coefficients of αsβ t+1, respectively of αt+1βs , for
0 ≤ s ≤ t ≤ n. Thus we see that we need to show

det
0≤i, j≤n−1

(
ci+ j+χ(i≥s)+χ(i≥t)

)
det

0≤i, j≤n

(
ci+ j

)

= det
0≤i, j≤n−1

(
ci+ j+χ(i≥s)

)
det

0≤i, j≤n

(
ci+ j+χ(i≥t+1)

)

− det
0≤i, j≤n−1

(
ci+ j+χ(i≥t+1)

)
det

0≤i, j≤n

(
ci+ j+χ(i≥s)

)
, (3.6)

and this would moreover be sufficient for the proof of (3.4). As it turns out, the choice
of

A =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

c0 c1 c2 . . . cn 0
c1 c2 c3 . . . cn+1 0
c2 c3 c4 . . . cn+2 0

. . . . . . . . . . . . . . . . . . . . . . . . .

cn cn+1 cn+2 . . . c2n 0
cn+1 cn+2 cn+3 . . . c2n+1 1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

and i1 = s, i2 = t + 1, j1 = n, j2 = n + 1 in Proposition 2 yields exactly (3.6). ��
We are now ready for the proof of Theorem 1, which, as we have seen, is equivalent

to (3.2).

Proof of (3.2) We prove (3.2), in the form

det
1≤i, j≤d

(
fn+i−1(x j )

)

=
( ∏

1≤i< j≤d

(x j − xi )

) det
0≤i, j≤n−1

(
μi+ j ∏d

�=1(x� + μ)
)

det
0≤i, j≤n−1

(
μi+ j

) , (3.7)
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by induction on d. For d = 0, the formula is trivially true. For d = 1, the formula has
been proven by Mu, Wang and Yeh in [12, Theorem 1.3] in a different but equivalent
form (see also [4, Eq. (3.2)]).

Let LHSd,n(x1, . . . , xd) denote the left-hand side of (3.7). For the induction step,we
observe that, according to (3.3) with N = d, A = (

fn+i−1(x j )
)
1≤i, j≤d , i1 = j1 = 1

and id = jd = d, we have

LHSd,n(x1, . . . , xd)LHSd−2,n+1(x2, . . . , xd−1)

= LHSd−1,n(x1, . . . , xd−1)LHSd−1,n+1(x2, . . . , xd)

−LHSd−1,n(x2, . . . , xd)LHSd−1,n+1(x1, . . . , xd−1). (3.8)

This can be seen as a recurrence formula for LHSd,n(x1, . . . , xd), as one can use it to
express LHSd,n(x1, . . . , xd) in terms of expressions of the form LHSe,m(xa, . . . , xb)

with e smaller thand.Hence, for the proof of (3.7) it suffices to verify that the right-hand
side of (3.7) satisfies the same recurrence. Consequently, we substitute this right-hand
side in (3.8). After cancellation of factors that are common to both sides, we arrive at

(xd − x1) det
0≤i, j≤n−1

(

μi+ j
d∏

�=1

(x� + μ)

)

det
0≤i, j≤n

(

μi+ j
d−1∏

�=2

(x� + μ)

)

= det
0≤i, j≤n−1

(

μi+ j
d−1∏

�=1

(x� + μ)

)

det
0≤i, j≤n

(

μi+ j
d∏

�=2

(x� + μ)

)

− det
0≤i, j≤n−1

(

μi+ j
d∏

�=2

(x� + μ)

)

det
0≤i, j≤n

(

μi+ j
d−1∏

�=1

(x� + μ)

)

.

This is the special case of Lemma 3 where ci+ j = μi+ j ∏d−1
�=2 (x� + μ), α = x1 and

β = xd . ��

4 Second proof of Theorem 1—theory of orthogonal polynomials

Here we describe a proof of Theorem 1 that is based on facts from the theory of
orthogonal polynomials.We follow largely Lascoux’s arguments in the proof of Propo-
sition 8.4.1 in [11]. They show that, using the uniqueness up to scaling of orthogonal
polynomials with respect to a given linear functional, the right-hand side and the left-
hand side in (1.1) agree up to a multiplicative constant. For the determination of this
constant we provide a simpler argument than the one given in [11].

We prove (1.1) in the form

det
0≤i, j≤n−1

(
μi+ j ∏d

�=1(μ − x�)
)

det
0≤i, j≤n−1

(
μi+ j

) = (−1)nd
det

1≤i, j≤d

(
pn+i−1(x j )

)

∏

1≤i< j≤d
(x j − xi )

. (4.1)
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It should be recalled that, with L denoting the functional of orthogonality for the
polynomials

(
pn(x))n≥0, we have L(xn) = μn , where we still use the umbral notation

μn ≡ μn .
We start with a classical fact from the theory of orthogonal polynomials (cf. [14,

Eq. (2.2.9)] or [7, Eq. (2.1.10)]).

Lemma 4 Let M be a linear functional on polynomials in x with moments νn, n =
0, 1, . . . , such that all Hankel determinants det0≤i, j≤n(νi+ j ), n = 0, 1, . . . , are non-
zero. Then the determinants

det
0≤i, j≤n−1

(
νi+ j+1 − νi+ j x

)

are a sequence of orthogonal polynomials with respect to M.

Proof We have

det
0≤i, j≤n−1

(
νi+ j+1 − νi+ j x

)

= det

⎛

⎜⎜⎜⎜
⎝

1 0 0 . . . 0
ν0 ν1 − ν0x ν2 − ν1x . . . νn − νn−1x
ν1 ν2 − ν1x ν3 − ν2x . . . νn+1 − νn x

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

νn−1 νn − νn−1x νn+1 − νn x . . . ν2n−1 − ν2n−2x

⎞

⎟⎟⎟⎟
⎠

= det

⎛

⎜⎜⎜⎜
⎝

1 x x2 . . . xn

ν0 ν1 ν2 . . . νn

ν1 ν2 ν3 . . . νn+1
. . . . . . . . . . . . . . . . . . . . .

νn−1 νn νn+1 . . . ν2n−1

⎞

⎟⎟⎟⎟
⎠

. (4.2)

It is straightforward to check that the determinant in the last line is orthogonal with
respect to 1, x, x2, . . . , xn−1. Moreover, the coefficient of xn is± det0≤i, j≤n−1(νi+ j ),
which by assumption is non-zero so that the determinant in the assertion of the lemma
is a polynomial of degree n, as desired. ��

Remark. The determinant in the last line of (4.2) represents another classical deter-
minantal formula for orthogonal polynomials expressed in terms of the moments
of the corresponding linear functional of orthogonality, see [14, Eq. (2.2.6)] or [7,
Eq. (2.1.11)].

Proof of (4.1) Using Lemma 4 with νn = μn ∏d−1
�=1 (μ − x�), we see that the determi-

nants in the numerator of the left-hand side of (4.1),

det
0≤i, j≤n−1

(

μi+ j
d∏

�=1

(μ − x�)

)

,
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610 C. Krattenthaler

seen as polynomials in xd , are a sequence of orthogonal polynomials for the linear
functional with moments

μn
d−1∏

�=1

(μ − x�), n = 0, 1, . . . . (4.3)

Clearly, in terms of the functional L (now acting on polynomials in xd ) of orthogonality
for the polynomials

(
pn(xd)

)
n≥0, this linear functional with moments (4.3) can be

expressed as

p(xd) �→ L

(
p(xd) ·

d−1∏

�=1

(xd − x�)

)
. (4.4)

We claim that also the right-hand side of (4.1) gives a sequence of orthogonal
polynomials (in xd ) with respect to the linear functional (4.4). The first (and easy)
observation is that the right-hand side of (4.1) has indeed degree n in xd .

Let us denote the right-hand side of (4.1) by qn(xd). When we apply the func-
tional (4.4) to xs

dqn(xd), for 0 ≤ s ≤ n − 1, then, up to factors which are independent
of xd , we obtain

L

(
xs

d det
1≤i, j≤d

(
pn+i−1(x j )

))
.

By expanding the determinant with respect to the last column, this becomes a linear
combination of terms of the form L(xs

d pn+i−1(xd)). Since i ≥ 1 and s ≤ n − 1, all
of them vanish, proving our claim.

By symmetry, the same argument can also be made for any x� with 1 ≤ � ≤ d − 1.
The fact that orthogonal polynomials with respect to a particular linear functional

are unique up to multiplicative constants then implies that

det
0≤i, j≤n−1

(

μi+ j
d∏

�=1

(μ − x�)

)

= C
det

1≤i, j≤d

(
pn+i−1(x j )

)

∏

1≤i< j≤d
(x j − xi )

, (4.5)

where C is independent of the variables x1, x2, . . . , xd . In order to compute C , we
divide both sides by xn

1 xn
2 · · · xn

d , and then compute the limits as xd → ∞,…x2 → ∞,
x1 → ∞, in this order. It is not difficult to see that in this manner the above equation
reduces to

det
0≤i, j≤n−1

(
μi+ j (−1)d

)
= C det A,

where A is a lower triangular matrix with ones on the diagonal. Hence, we get C =
(−1)nd det0≤i, j≤n−1(μi+ j ), as desired. ��
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5 Third proof of Theorem 1—vanishing of polynomials

The purpose of this section is to present a completed version of Elouafi’s proof of
Theorem 1 in [6]. It is based on a vanishing argument: it is shown that the left-hand
side of (1.1) vanishes if and only if the right-hand side does. Since both sides have
the same leading monomial as polynomials in the xi ’s, it follows that they must be the
same up to a multiplicative constant. This constant is then determined in the last step.

To begin with, we need some preparations. Let us write

R(x1, x2, . . . , xd) :=
det

1≤i, j≤d

(
pn+i−1(−x j )

)

∏

1≤i< j≤d
(xi − x j )

for the expression on the right-hand side of (1.1), forgetting the sign. Since the
numerator is skew-symmetric in the xi ’s, it is divisible by the Vandermonde prod-
uct

∏
1≤i< j≤d(xi − x j ) in the denominator, so that R(x1, x2, . . . , xd) is actually a

(symmetric) polynomial in the xi ’s. Thus, while in its definition it seems problematic
to substitute the same value for two different xi ’s in R(x1, x2, . . . , xd), this is actually
not a problem. Nevertheless, it would also be good to have an explicit form for such
a case available as well. This is afforded by the proposition below.

Proposition 5 Let y1, y2, . . . , ye be variables and m1, m2, . . . , me be non-negative
integers with m1 + m2 + · · · + me = d. Then we have

R(y1, . . . , y1, y2, . . . , y2, . . . , ye, . . . , ye) = det Mm1,m2,...,me (y1, y2, . . . , ye)∏
1≤i< j≤e(yi − y j )

mi m j
,

where yi is repeated mi times in the argument of R on the left-hand side. The matrix
Mm1,m2,...,me (y1, y2, . . . , ye) is defined by

Mm1,m2,...,me (y1, y2, . . . , ye) = (
Mm1(y1) Mm2(y2) · · · Mme (ye)

)
,

where Mm(y) is the d × m matrix

Mm(y) =
(

p( j−1)
n+i−1(−y)

( j − 1)!

)

1≤i≤d, 1≤ j≤m

,

with p( j)
n (y) denoting the j-th derivative of pn(y) with respect to y.

Proof We have to compute the limit

lim
x1→y1,...,xm1→y1,...,xm1+···+me−1+1→ye,...,xd→ye

R(x1, x2, . . . , xd).

Since we know that R(x1, x2, . . . , xd) is in fact a polynomial in the xi ’s, we have a
large flexibility of how to compute this limit. We choose to do it as follows: we put
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612 C. Krattenthaler

xi = y1+ ih for i = 1, 2, . . . , m1, xi = y2+ ih for i = m1+1, m1+2, . . . , m1+m2,
etc. In the end we let h tend to zero.

We describe how this works for the first group of variables, for the other the proce-
dure is completely analogous. In thematrix appearing in the numerator of the definition
of R(x1, x2, . . . , xd), we replace column j by

j∑

k=1

(−1) j−k
(

j − 1

k − 1

)
(column k), for j = 1, 2, . . . , m1.

Clearly, this modification of the matrix can be achieved by elementary column oper-
ations, so that the determinant is not changed. Thus, we obtain

R(x1, x2, . . . , xd) = det N1
∏

1≤i< j≤d
(xi − x j )

, (5.1)

where

N1 =
(

pn+i−1(−x1) pn+i−1(−x2) − pn+i−1(−x1) . . .

m1∑

k=1

(−1)m1−k
(

m1 − 1

k − 1

)
pn+i−1(−xk) . . .

)

1≤i≤d
.

(Here, the terms describe the columns of the matrix N1.) We now perform the earlier
described assignments for x1, x2, . . . , xm1 . Under these assignments, we have

∏

1≤i< j≤m1

(xi − x j ) =
∏

1≤i< j≤m1

h(i − j) = (−1)(
m1
2 )h(m1

2 )
m1−1∏

l=1

l!

and

lim
h→0

1

h j−1

j∑

k=1

(−1) j−k
(

j − 1

k − 1

)
pn+i−1(−y1 − kh) = (−1) j−1 p( j−1)

n+i−1(−y1).

Therefore we get

R(y1, . . . , y1, xm1+1, . . . , xd)

= det N2
(

m1−1∏

l=1
l!
)(

d∏

j=m1+1
(y1 − x j )m1

)(
∏

m1+1≤i< j≤d
(xi − x j )

) ,
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where

N2 =
(

pn+i−1(−y1) p(1)
n+i−1(−y1) . . . p(m1−1)

n+i−1 (−y1) pn+i−1(−xm1+1) . . .

)

1≤i≤d
.

To finish the argument, one has to proceed analogously for the remaining groups
of xi ’s and finally put the arising factorials into the columns of the determinant. ��

The following auxiliary result is [6, Lemma 3].

Lemma 6 Let q(x) = ∏d
i=1(x +xi ). Furthermore, as before, we write L for the linear

functional with respect to which the sequence
(

pn(x)
)

n≥0 is orthogonal. Then

det
0≤i, j≤n−1

(

μi+ j
d∏

�=1

(x� + μ)

)

= det
0≤i, j≤n−1

(
L
(
q(x)pi (x)p j (x)

))
. (5.2)

Proof We first rewrite the determinant on the left-hand side,

det
0≤i, j≤n−1

(

μi+ j
d∏

�=1

(x� + μ)

)

= det
0≤i, j≤n−1

(
L
(
xi+ j q(x)

))
. (5.3)

Setting pm(x) = ∑m
a=0 cma xa , for some coefficients cma , we may rewrite the right-

hand side of (5.2) as

det
0≤i, j≤n−1

(
L
(
q(x)pi (x)p j (x)

)) = det
0≤i, j≤n−1

⎛

⎝
i∑

a=0

j∑

b=0

ciac jb L
(
q(x)xa+b)

⎞

⎠ .

Consequently, letting cma = 0 whenever m < a, we have

det
0≤i, j≤n−1

(
L
(
q(x)pi (x)p j (x)

)) = det (A · B · C) , (5.4)

where

A = (cia)0≤i,a≤n−1, B = (
L
(
q(x)xa+b))

0≤a,b≤n−1, C = (c jb)0≤b, j≤n−1.

Since A and C are triangular matrices with ones on the main diagonal (the latter
follows from our assumption that the polynomials pm(x) are monic), we conclude
that det A = det C = 1. The combination of (5.3) and (5.4) then establishes the
desired assertion. ��

The following lemma is [6, Lemma 4], which appears there with an incomplete
proof (cf. Footnote 6).
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Lemma 7 As polynomial functions in the variables x1, x2, . . . , xd , the expression

R(x1, x2, . . . , xd) =
det

1≤i, j≤d

(
pn+i−1(−x j )

)

∏

1≤i< j≤d
(xi − x j )

(5.5)

vanishes in an extension field K̂ of the ground field K if and only if the determinant

S(x1, x2, . . . , xd) = det
0≤i, j≤n−1

(

μi+ j
d∏

�=1

(x� + μ)

)

(5.6)

vanishes.

Proof Let R(x1, x2, . . . , xd) = 0, for some choice of elements xi in K̂ . We assume
that

{x1, x2, . . . , xd} = {y1, y2, . . . , ye},

with the yi ’s being pairwise distinct, and where yi appears with multiplicity mi among
the x j ’s, i = 1, 2, . . . , e. Since both R(x1, x2, . . . , xd) and S(x1, x2, . . . , xd) are
symmetric polynomials in the x j ’s, without loss of generality we may assume that
x1 = · · · = xm1 = y1, xm1+1 = · · · = xm1+m2 = y2, …, xm1+···+me−1+1 = · · · =
xd = ye. Thus, in view of Proposition 5, the vanishing of

R(y1, . . . , y1, y2, . . . , y2, . . . , ye, . . . , ye),

where the yi ’s are pairwise distinct and yi is repeated mi times, is equivalent to the
rows of the matrix Mm1,m2,...,me (y1, y2, . . . , ye) being linearly dependent. In other
words, there exist constants ci ∈ K̂ , i = 0, 1, . . . , n − 1, not all of them zero, such
that

d∑

i=1

ci p( j−1)
n+i−1(−yk) = 0, for k = 1, 2, . . . , e and j = 1, 2, . . . , mk . (5.7)

Define g(x) := ∑d
i=1 ci pn+i−1(x). Since the yi ’s are pairwise distinct, Identity (5.7)

implies that

q(x) =
d∏

i=1

(x + xi ) =
e∏

k=1

(x + yk)
mk

divides g(x) as a polynomial in x . Hence, there exists another polynomial h(x) such
that

g(x) = q(x)h(x).
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Now, by inspection, g(x) is a polynomial of degree at most n + d − 1, while q(x)

is a polynomial of degree d. Hence, h(x) is a polynomial of degree at most n − 1,
which therefore can be written as a linear combination

h(x) =
n−1∑

i=0

ri pi (x),

for some constants ri ∈ K̂ , i = 0, 1, . . . , n − 1. By its definition, g(x) is orthogonal
to all p j (x) with 0 ≤ j ≤ n − 1. In other words, we have

0 = L
(
g(x)p j (x)

) =
n−1∑

i=0

ri L
(
q(x)pi (x)p j (x)

)
, for j = 0, 1, . . . , n − 1.

Equivalently, the rows of thematrix
(
L
(
q(x)pi (x)p j (x)

)
0≤i, j≤n−1 are linearly depen-

dent, and consequently the determinant on the right-hand side of (5.2) vanishes, which
in its turn implies that the determinant on the left-hand side of (5.2), which is equal to
the determinant in (5.6), vanishes, as desired.

Conversely, let the determinant in (5.6) be equal to zero, for some choice of x ′
i s in

K̂ . Again, without loss of generality we assume that the first m1 of the xi ’s are equal
to y1, the next m2 of the xi ’s are equal to y2, …, and the last me of the xi ’s are equal
to ye, the y j ’s being pairwise distinct. These assumptions imply again that

q(x) =
d∏

i=1

(x + xi ) =
e∏

k=1

(x + yk)
mk .

Using the equality of Lemma 6, we see that the determinant on the right-hand side
of (5.2) must vanish. Thus, the rows of the matrix on this right-hand side must be
linearly dependent so that there exist constants ri ∈ K̂ , i = 0, 1, . . . , n − 1, not all of
them zero, such that

0 =
n−1∑

i=0

ri L
(
q(x)pi (x)p j (x)

)
, for j = 0, 1, . . . , n − 1.

Now consider the polynomial g(x) = ∑n−1
i=0 ri q(x)pi (x). This is a non-zero polyno-

mial of degree at most n + d − 1 which, by the last identity, is orthogonal to p j (x),
for j = 0, 1, . . . , n − 1. Hence there must exist constants ci ∈ K̂ such that

g(x) =
d∑

i=1

ci pn+i−1(x).

On the other hand, by the definition of g(x), we have

g( j−1)(−yk) = 0, for k = 1, 2, . . . , e and j = 1, 2, . . . , mk .
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We conclude that

d∑

i=1

ci p( j−1)
n+i−1(−xk) = 0, for k = 1, 2, . . . , e and j = 1, 2, . . . , mk .

Thismeans that the rows of thematrix Mm1,m2,...,me (y1, y2, . . . , ye) are linearly depen-
dent, so that, by Proposition 5 the polynomial R(x1, x2, . . . , xd) in (5.5) vanishes. ��

We can now complete the proof of Theorem 1.

Proof of Theorem 1 By Lemma 7 we know that the symmetric polynomials R(x1, x2,
. . . , xd) and S(x1, x2, . . . , xd) vanish only jointly. If we are able to show that in
addition both have the same highest degree term then they must be the same up
to a multiplicative constant. Indeed, the highest degree term in R(x1, x2, . . . , xd)

is obtained by selecting the highest degree term in each entry of the matrix in the
numerator of the fraction on the right-hand side of (5.5). Explicitly, this highest degree
term is

det1≤i, j≤d
(
(−x j )

n+i−1
)

∏
1≤i< j≤d(xi − x j )

=
d∏

j=1

(−x j )
n det1≤i, j≤d

(
(−x j )

i−1
)

∏
1≤i< j≤d(xi − x j )

= (−1)nd
d∏

j=1

xn
j ,

by the evaluation of the Vandermonde determinant.
On the other hand, the highest degree term in S(x1, x2, . . . , xd) is obtained by

selecting the highest degree term in each entry of the matrix in the numerator of the
fraction on the right-hand side of (5.6). Explicitly, this highest degree term is

det
0≤i, j≤n−1

(

μi+ j

d∏

�=1

x�

)

=
d∏

j=1

xn
j det
0≤i, j≤n−1

(
μi+ j

)
.

Both observations combined, we see that

C
det1≤i, j≤d

(
pn+i−1(−x j )

)

∏
1≤i< j≤d(xi − x j )

= det
0≤i, j≤n−1

(

μi+ j
d∏

�=1

(x� + μ)

)

.

with C = (−1)nd det0≤i, j≤n−1(μi+ j ). This finishes the proof of the theorem. ��

6 Fourth proof of Theorem 1—Heine’s formula and Vandermonde
determinants

The subject of this section is the random matrix-inspired proof of Theorem 1 due
to Brézin and Hikami [2]. Among all the proofs of Theorem 1 that I present in this
paper, it is the only one that does not need the knowledge of the formula beforehand.
Rather, starting from the left-hand side, by the clever use of Heine’s formula—given
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Hankel determinants of orthogonal polynomials 617

in Lemma 8 below—and some obvious manipulations, one arrives almost effortlessly
at the right-hand side. The meaning of the formula in the context of random matrices
has been indicated in Sect. 2.3, and more specifically in (2.4) which tells that the
right-hand side of (1.1) can be interpreted as an expectation of products of character-
istic polynomials of random Hermitian matrices. The random matrix flavour of the
calculations below is seen in the ubiquitous multivariate density

( ∏

1≤i< j≤n

(ui − u j )

)2

dν(u1)dν(u2) · · · dν(un),

which is, up to scaling, the density function for the eigenvalues of random Hermitian
matrices.

We prove (1.1) in the form

det
0≤i, j≤n−1

(

μi+ j
d∏

�=1

(x� − μ)

)

= det
0≤i, j≤n−1

(
μi+ j

)det1≤i, j≤d
(

pn+i−1(x j )
)

∏
1≤i< j≤d(x j − xi )

. (6.1)

As indicated, we need Heine’s integral formula (cf. [14, Eq. (2.2.11)] or [7,
Cor. 2.1.3]). Its proof is short enough that we provide it here for the sake of com-
pleteness. The integral that appears in the formula can equally well be understood in
the analytic or in the formal sense.

Lemma 8 Let dν(u) be a density with moments νs = ∫
us dν(u), s = 0, 1, . . . . For

all non-negative integers n, we have

det
0≤i, j≤n−1

(νi+ j )

= 1

n!
∫

· · ·
∫ ( ∏

1≤i< j≤n

(ui − u j )

)2

dν(u1)dν(u2) · · · dν(un). (6.2)

Proof We start with the left-hand side,

det
0≤i, j≤n−1

(νi+ j ) = det
0≤i, j≤n−1

(∫
ui+ j

i dν(ui )

)

=
∫

· · ·
∫ ( n−1∏

i=0

ui
i

)
det

0≤i, j≤n−1

(
u j

i

)
dν(u0)dν(u1) · · · dν(un−1).

If in this expression we permute the ui ’s, then it remains invariant, except for a
sign that is created by the determinant. Let Sn denote the group of permutations
of {0, 1, . . . , n − 1}. If we average the above multiple integral over all possible per-
mutations of the ui ’s, then we obtain
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618 C. Krattenthaler

det
0≤i, j≤n−1

(νi+ j ) = 1

n!
∫

· · ·
∫ ∑

σ∈Sn

sgn σ

( n−1∏

i=0

ui
σ(i)

)

· det
0≤i, j≤n−1

(
u j

i

)
dν(u0)dν(u1) · · · dν(un−1)

= 1

n!
∫

· · ·
∫ (

det
0≤i, j≤n−1

(
u j

i

))2

dν(u0)dν(u1) · · · dν(un−1).

In view of the evaluation of the Vandermonde determinant, up to a shift in the indices
of the ui ’s, this is the right-hand side of (6.2). ��
Proof of (6.1) Let dμ(u) be a density with moments μs = ∫

us dμ(u), s = 0, 1, . . . .
We apply Lemma 8 with

dν(u) = dμ(u)

d∏

�=1

(x� − u).

This yields

det
0≤i, j≤n−1

(

μi+ j
d∏

�=1

(x� − μ)

)

= 1

n!
∫

· · ·
∫ ( n∏

j=1

d∏

�=1

(x� − u j )

)( ∏

1≤i< j≤n

(ui − u j )

)2

× dμ(u1)dμ(u2) · · · dμ(un). (6.3)

Let
(

pm(y)
)

m≥0 be the sequence of monic orthogonal polynomials with respect to the

linear functional with moments μs = ∫
us dμ(u), s = 0, 1, . . . . It is easy to see that

det
1≤i, j≤N

(
p j−1(yi )

) = det
1≤i, j≤N

(
y j−1

i

) =
∏

1≤i< j≤N

(y j − yi ). (6.4)

We use this observation with N = n + d, where the role of the yi ’s is taken by
u1, u2, . . . , un, x1, x2, . . . , xd . Then (6.3) may be rewritten as

det
0≤i, j≤n−1

(

μi+ j
d∏

�=1

(x� − μ)

)

= 1

n! ∏

1≤i< j≤d
(x j − xi )

∫
· · ·

∫
det

1≤i, j≤n+d

(
p j−1(ui ), 1 ≤ i ≤ n

p j−1(xi−n), n + 1 ≤ i ≤ n + d

)

·
( ∏

1≤i< j≤n

(u j − ui )

)
dμ(u1)dμ(u2) · · · dμ(un).

By orthogonality of the p j (x)’s, we have
∫

us p j−1(u) dμ(u) = 0 for 0 ≤ s < n ≤
j − 1. Since the expansion of the Vandermonde determinant

∏
1≤i< j≤n(u j − ui )
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consists entirely of monomials ±us1
1 us2

2 · · · usn
n with si < n for all i , we see that in the

above expression we may replace the determinant in the integrand by

det
1≤i, j≤n+d

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

p0(u1) p1(u1) . . . pn−1(u1) 0 . . . 0
p0(u2) p1(u2) . . . pn−1(u2) 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p0(un) p1(un) . . . pn−1(un) 0 . . . 0
p0(x1) p1(x1) . . . pn−1(x1) pn(x1) . . . pn+d−1(x1)
p0(x2) p1(x2) . . . pn−1(x2) pn(x2) . . . pn+d−1(x2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p0(xd) p1(xd) . . . pn−1(xd) pn(xd) . . . pn+d−1(xd)

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

= det
1≤i, j≤n

(
p j−1(ui )

) · det
1≤i, j≤d

(
pn+ j−1(xi )

)
.

If we substitute this above and use (6.4) again, we get

det
0≤i, j≤n−1

(

μi+ j
d∏

�=1

(x� − μ)

)

=
det

1≤i, j≤d

(
pn+ j−1(xi )

)

n! ∏

1≤i< j≤d
(x j − xi )

∫
· · ·

∫ ( ∏

1≤i< j≤n

(u j − ui )

)2

× dμ(u1)dμ(u2) · · · dμ(un).

This gives indeed (6.1) once we apply Lemma 8 another time, now with dν(u) =
dμ(u). ��

7 Hankel determinants of linear combinations of Motzkin and
Schröder numbers

As described in Sect. 2, the origin of the author’s discovery of Theorem 1 has been
the interest in the evaluation of Hankel determinants of linear combinations of com-
binatorial sequences. Elouafi in [6] has the same motivation. The point of (1.1) in this
context is that it provides a compact formula for n × n Hankel determinants of a fixed
linear combination of d + 1 successive elements of a (moment) sequence (the left-
hand side of (1.1)) that does not “grow” with n. (The right-hand side is a “fixed-size”
formula for fixed d; the dependence on n is in the index of the orthogonal polynomi-
als.) Elouafi provides numerous applications of Theorem 1 to the evaluation of Hankel
determinants of linear combinations of Catalan, Motzkin, and Schröder numbers in
[6, Sect. 3]. However, his treatment of Motzkin and Schröder numbers can be replaced
by a better one.

The reader should recall that, if some of the xi ’s in (1.1) should be equal to each
other, then on the right-hand side we would have to use Proposition 5 in order to
make sense of the right-hand side of (1.1). In order to apply the proposition, we must
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620 C. Krattenthaler

evaluate derivatives of the orthogonal polynomials at −x j . How to accomplish this
for the orthogonal polynomials corresponding to Motzkin and Schröder numbers as
moments by a recursive approach, is described in [6, Sects. 3.2 and 3.3]. Here we show
that one can be completely explicit. We do not try to treat the most general case but
rather restrict ourselves to illustrate the main ideas by two examples.

By Theorem 1 with xi = 0 for all i and Proposition 5 with y1 = 0 and m1 = d, we
have (see also [6, Eq. (1.3)])

det
0≤i, j≤n−1

(
μi+ j+d

)

det
0≤i, j≤n−1

(
μi+ j

) = (−1)nd det
1≤i, j≤d

(
p( j−1)

n+i−1(0)

( j − 1)!

)

. (7.1)

We consider first the special case where μn = Mn , the n-th Motzkin number,

defined by
∑

n≥0 Mn zn = 1−z−√
1−2z−3z2

2z2
(cf. [13, Ex. 6.37]). It is well-known (see

[15] or [6, p. 1265]) that the associated orthogonal polynomials satisfy the three-term
recurrence (1.2) with si = ti = 1 for all i .More explicitly, they are pn(x) = Un

( x−1
2

)
,

where Un(x) is the nth Chebyshev polynomial of the second kind, which is defined by

Un(x) = 2xUn−1(x) − Un−2(x), (7.2)

with generating function

∑

n≥0

Un(x)zn = 1

1 − 2xz + z2
.

From this generating function, we may now easily obtain an explicit expression for

p( j)
n (0) = d j

dx j Un
( x−1

2

) ∣∣
x=0. Namely, we have

∑

n≥0

d j

dx j
Un

(
x − 1

2

)
zn = j ! z j

(
1 − (x − 1)z + z2

) j+1 .

Consequently, we get

∑

n≥0

p( j)
n (0)zn = j ! z j

(
1 + z + z2

) j+1

= j ! z j (1 − z) j+1

(
1 − z3

) j+1

= j ! z j
j+1∑

a=0

(−1)a
(

j + 1

a

)
za

∑

b≥0

(
j + b

b

)
z3b.
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Comparison of coefficients of zn then yields

p( j)
n (0) = j !

∑

b≥0

(−1)n− j−b
(

j + 1

n − j − 3b

)(
j + b

b

)
.

If we recall that det0≤i, j≤n−1
(
Mi+ j

) = 1 (by (1.3) and the choice ti = 1 for all i),
then we arrive at the identity

det
0≤i, j≤n−1

(
Mi+ j+d

) = det
1≤i, j≤d

(
Ai, j (n)

)
, (7.3)

where

Ai, j (n) =
∑

b≥0

(−1)b
(

j

n + i − j − 3b

)(
j + b − 1

b

)
.

Second, we consider here the special case where μn = rn , the n-th (large)

Schröder number, defined by
∑

n≥0 rn zn = 1−z−√
1−6z+z2
2z (cf. [13, Second Prob-

lem on page 178]). Here, the associated orthogonal polynomials satisfy the three-term
recurrence (1.2) with s0 = 2, si = 3 for i ≥ 1, and ti = 2 for all i (see [4,
Case (vii) in Sect. 4]). More explicitly, their generating function satisfies

∑

n≥0

pn(x)zn = 1 + z

1 − (x − 3)z + 2z2
.

From this generating function, we may now obtain an explicit expression for p( j)
n (0).

Namely, we have

∑

n≥0

d j

dx j
pn(x)zn = j ! z j (1 + z)

(
1 − (x − 3)z + 2z2

) j+1 .

Consequently, we get

∑

n≥0

p( j)
n (0)zn = j ! z j (1 + z)

(
1 + 3z + 2z2

) j+1

= j ! z j

(1 + z) j (1 + 2z) j+1

= j ! z j
j∑

a=1

ca

(1 + z)a
+ j ! z j

j+1∑

b=1

db

(1 + 2z)b
,

where

ca = 1

( j − a)!
d j−a

dz j−a

1

(1 + 2z) j+1

∣∣∣∣
z=−1

= (−1) j+12 j−a
(
2 j − a

j

)
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and

db = 1

( j + 1 − b)!
d j+1−b

dz j+1−b

1

(1 + z) j

∣∣∣∣
z=−1/2

= (−1) j+b+12 j
(
2 j − b

j − 1

)
.

Then, by comparing coefficients of zn , we obtain

p( j)
n (0) = j !

j∑

a=1

(−1)n+12 j−a
(
2 j − a

j

)(
a + n − j − 1

n − j

)

+ j !
j+1∑

b=1

(−1)n+b+12n
(
2 j − b

j − 1

)(
b + n − j − 1

n − j

)
.

If we recall that det0≤i, j≤n−1
(
ri+ j

) = 2(
n
2) (by (1.3) and the choice ti = 2 for all i),

then we arrive at the identity

det
0≤i, j≤n−1

(
ri+ j+d

) = (−1)(
d+1
2 )2(

n
2) det
1≤i, j≤d

(
Bi, j (n)

)
, (7.4)

where

Bi, j (n) =
j−1∑

a=1

2 j−a−1
(
2 j − a − 2

j − 1

)(
a + n + i − j − 1

n + i − j

)

+
j∑

b=1

(−1)b2n+i−1
(
2 j − b − 2

j − 2

)(
b + n + i − j − 1

n + i − j

)
.

As a final remark, we point out that the above treatment of the “Motzkin case”
is one which only applies in a specific situation, whereas the above treatment of the
“Schröder case”works for allmoment sequences for orthogonal polynomialswhich are
generated by a three-term recurrence (1.2) where the coefficient sequences (si )i≥0 and
(ti )i≥0 become constant eventually, that is, where si ≡ s and ti ≡ t for large enough i .
For, under this assumption, the generating function

∑
n≥0 pn(x)zn for the orthogonal

polynomials
(

pn(x)
)

n≥0 is a rational function with denominator 1− (x − s)z + t z2, a
quadratic polynomial, as in the special case of Schröder numbers, where we had s = 3
and t = 2.
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8 Recursiveness of Hankel determinants of linear combinations of
moments

In [5, Conj. 5], Dougherty, French, Saderholm and Qian conjectured that the Hankel
determinants of a linear combination of Catalan numbers Cn = 1

n+1

(2n
n

)
,

det
0≤i, j≤n−1

(
d∑

k=0

λkCi+ j+k

)

,

satisfy a linear recurrence with constant coefficients of order 2d . This conjecture was
proved by Elouafi in [6, Theorem 6] by using Theorem 1 and special properties of the
orthogonal polynomials corresponding to the Catalan numbers as moments. However,
Theorem 1 implies a much more general result. This is what we make explicit in the
corollary below. For the statement of the corollary, we need to recall the definition of
the elementary symmetric polynomials

ek(x1, x2, . . . , xd) :=
∑

1≤i1<i2<···<ik≤d

xi1xi2 · · · xik .

Corollary 9 Within the setup in Sect. 1, let si ≡ s and ti ≡ t for i ≥ 1. Furthermore,
let

Hn = t−(n−1)
0 t−(n−1

2 ) det
0≤i, j≤n−1

( d∑

k=0

λkμi+ j+k

)
, (8.1)

where the λk’s are some constants9 in the ground field K , k = 0, 1, . . . , d − 1,
and λd = 1. Then the sequence (Hn)n≥0 of (scaled) Hankel determinants of linear
combinations of moments satisfies a linear recurrence of the form

2d∑

i=0

ci Hn−i = 0, for n > 2d , (8.2)

for some constants ci ∈ K , normalised by c0 = 1. Explicitly, these constants can be

computed as the coefficients of the characteristic polynomial (in x)
∑2d

i=0 ci x2
d−i of

the tensor product of 2 × 2 matrices

(
x1 + s t
−1 0

)
⊗

(
x2 + s t
−1 0

)
⊗ · · · ⊗

(
xd + s t
−1 0

)
, (8.3)

9 We may also think of the λk ’s as variables.
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where λk = ed−k(x1, x2, . . . , xd). In particular, we have

c1 = −
d∑

j=0

λ j s
j (8.4)

and

c2d−i = td(2d−1−i)ci , for i = 0, 1, . . . , 2d . (8.5)

Remarks. (1) The reader should note that, by (1.3), the scaling in (8.1) is exactly the
value of the determinant

det
0≤i, j≤n−1

(
μi+ j

)

in the denominator on the left-hand side of (1.1).
(2) A small detail is that the proof of Corollary 9 given below shows that, if ti ≡ t

for all i , then the recurrence (8.2) holds even for n ≥ 2d .
Furthermore, an inspection of the proof of the corollary shows that, if si ≡ s for

i > N and ti ≡ t for i ≥ N , where N is some positive integer, then the recurrence (8.2)
still holds, but only for n ≥ 2d + N .

(3) The formula (8.4) for the coefficient c1 is a far-reaching generalisation of Con-
jecture 6 in [5], while the symmetry relation (8.5) is a far-reaching generalisation of
Conjecture 7 in [5].

(4) In view of the specialisations listed in items (i)–(xi) and (xiv)–(xviii) in the list
given in [4, Sect. 4], Corollary 9 implies that the (properly scaled)Hankel determinants
of linear combinations of numerous combinatorial sequences satisfy a linear recurrence
with constant coefficients, which, aside from the already mentioned Catalan numbers,
includeMotzkin numbers, central binomial coefficients, central trinomial coefficients,
central Delannoy numbers, Schröder numbers, Riordan numbers, and Fine numbers.

Proof of Corollary 9 We use Theorem 1 in the equivalent form (3.2). In order to apply
this identity, we write

d∑

j=0

λ j x j =
d∏

i=1

(x + xi ),

with the xi ’s in the algebraic closure of our ground field K . Equivalently,

λk = ed−k(x1, x2, . . . , xd).

For the moment, we assume that the xi ’s are pairwise distinct in order to avoid a
zero denominator in (3.2). We will get rid of this restriction in the end by a limiting
argument. (An alternativewould be to base the arguments on Proposition 5. Thiswould
however be more complicated.)
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What (3.2) affords is to express Hn in terms of a d × d determinant with entries
fn+i−1(x j ), 1 ≤ i, j ≤ d. If we expand the determinant on the right-hand side
of (3.2) according to its definition, then we obtain a linear combination of products of
the form

∏d
i=1 fn+τi (xi ) with constant coefficients, where τi ∈ {0, 1, . . . , d − 1} for

i = 1, 2, . . . , d. Now, by (3.1), for each fixed i and τi the sequence
(

fn+τi (xi )
)

n≥0
satisfies the recurrence relation

gn − (xi + s)gn−1 + tgn−2 = 0, for n ≥ 3. (8.6)

Hence, each product sequence
(∏d

i=1 fn+τi (xi )
)

n≥0
satisfies the same recurrence

relation, namely the one resulting from the (Hadamard) product of the recurrences
(8.6) over i = 1, 2, . . . , d. From the proof of [13, Theorem 6.4.9] (which is actually a
much more general theorem), it follows immediately that the order of this “product”
recurrence is at most 2d .

In order to obtain the explicit description of the “product” recurrence in the
statement of the corollary, we have to recall the basics of the solution theory of (homo-
geneous) linear recurrences with constant coefficients. This theory says that one has
to determine the zeroes of the characteristic polynomial of the recurrence; the powers
αn of the zeroes α multiplied by powers ne of n, where the exponent e is less than the
multiplicity of α, form a basis of the solution space of the recurrence.

The characteristic polynomial of the recurrence (8.6) is

x2 − (xi + s)x + t, (8.7)

which is also equal to the characteristic polynomial of the 2 × 2 matrix

(
xi + s t
−1 0

)
. (8.8)

Let yi,1 and yi,2 be the zeroes of the polynomial (8.7). Then the powers
(
yn

i,1

)
n≥0 and(

yn
i,2

)
n≥0 form a basis of solutions to the recurrence (8.6) if yi,1 and yi,2 are distinct,

while otherwise the sequences
(
yn

i,1

)
n≥0 and

(
nyn

i,1

)
n≥0 form a basis. The product

recurrence that we want to find is one for which all products
(

ne−d ∏
i=1 yn

i,εi

)

n≥0
are solutions, for εi ∈ {1, 2} and e bounded above by the sum of the multiplicities of
the yi,1’s. Equivalently, the characteristic polynomial of the desired product recurrence
is one which has all products

∏
i=1 yi,εi , where εi ∈ {1, 2}, as zeroes, with multiplic-

ities equal to the sum of the multiplicities of the yi,1’s minus d − 1. It is a simple fact
of linear algebra that such a polynomial is the characteristic polynomial of the tensor
product of all matrices (8.8), that is, the matrix in (8.3). (For, the eigenvalues of the
tensor product of matrices are all products of eigenvalues of the individual matrices.)
This proves the assertion about the explicit form of the recurrence (8.2) in the case of
pairwise distinct xi ’s.

Since everything—the expressions in (3.2), the coefficients of the recurrence (8.2)—
is polynomial in the xi ’s, we may finally drop that restriction.
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The coefficient c1 is the coefficient of x2
d−1 in the characteristic polynomial of

(8.3). It is easy to see that this is

−
d∏

i=1

(xi + s) = −
d∑

j=0

ed− j (x1, x2, . . . , xd)s j = −
d∑

j=0

λ j s
j ,

proving (8.4).
Finally, the symmetry relation (8.5) is a consequence of the inherent symmetry of

a linear recurrence of order 2. In order to make this visible, let f̂n(x) = t−n/2 fn(x).
Then, from (3.1) we see that

f̂n(x) − (x + s)t−1/2 f̂n−1(x) + f̂n−2(x) = 0, for n ≥ 3. (8.9)

Now, a recurrence can be read in the forward direction—that is, we compute the
n-th term of the sequence from lower order terms—or in the backward direction—
that is, we compute the n-th term from higher order terms. In this sense we see that
the recurrence (8.9) is the same regardless whether it is read in forward or backward
direction.Consequently, the recurrence relation for theHadamardproduct

∏d
i=1 f̂n(xi )

must also be symmetric, that is, the same regardless whether it is read in forward or in
backward direction. If one then substitutes back f̂n(x) = t−n/2 fn(x) in that symmetric
recurrence, the relation (8.5) follows. ��
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