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Abstract
We settle the dual addition formula for continuous q-ultraspherical polynomials as
an expansion in terms of special q-Racah polynomials for which the constant term is
given by the linearization formula for the continuous q-ultraspherical polynomials. In
a second proof we derive the dual addition formula from the Rahman–Verma addition
formula for these polynomials by using the self-duality of the polynomials. We also
consider the limit case of continuous q-Hermite polynomials.
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1 Introduction

In this paper, as a natural continuation of our recent derivation [18] of the dual addition
formula for ultraspherical polynomials, we derive the dual addition formula for con-
tinuous q-ultraspherical polynomials. We give two different proofs. The first proof is a
perfect q-analogue of the derivation in [18]. Every step of the proof yields in the limit
for q → 1 the corresponding step in [18]. The second proof exploits the self-duality
of the continuous q-ultraspherical polynomials. Then the dual addition formula easily
follows from the known addition formula [22] for these polynomials.

Addition formulas are closely related to product formulas. For instance, the addition
formula for Legendre polynomials [21, (18.18.9)]
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Pn (cos θ1 cos θ2 + sin θ1 sin θ2 cosφ) = Pn (cos θ1) Pn (cos θ2)

+2
n∑

k=1

(n − k)! (n + k)!
22k(n!)2 (sin θ1)

k P(k,k)
n−k (cos θ1) (sin θ2)

k P(k,k)
n−k (cos θ2) cos(kφ)

(1.1)

gives the Fourier-cosine expansion of the left-hand side as a function of φ. Integration
with respect to φ over [0, π ] gives the constant term in this expansion, which is the
product formula for Legendre polynomials [21, (18.17.6)]

Pn (cos θ1) Pn (cos θ2) = 1

π

∫ π

0
Pn (cos θ1 cos θ2 + sin θ1 sin θ2 cosφ) dφ. (1.2)

Two formulas involving Legendre polynomials Pn(x) (or more generally some
orthogonal polynomials pn(x)) are called dual to each other if the roles of n and
x in the second formula are interchanged in comparison with the first formula. The
formula dual to the product formula (1.2) is the linearization formula, which expands
the product P�(x)Pm(x) in terms of Legendre polynomials Pk(x). This expansion is
a sum running from k = |� − m| to k = � + m, where only terms with � + m − k
even will occur since Pn(−x) = (−1)n Pn(x). The linearization formula for Legendre
polynomials is explicitly known (see [21, (18.18.22)] for λ = 1

2 together with [21,
(18.7.9)]):

P�(x)Pm(x) =
min(�,m)∑

j=0

( 12 ) j (
1
2 )�− j (

1
2 )m− j (� + m − j)!

j ! (� − j)! (m − j)! ( 32 )�+m− j

× (2(� + m − 2 j) + 1) P�+m−2 j (x), (1.3)

where (a)k is the shifted factorial, see below.DickAskey, in his lectures at conferences,
often raised the problem to find an addition type formula associated with (1.3) in a
similar way as the addition formula (1.1) is associated with the product formula (1.2).
The author finally solved this in [18] by recognizing the coefficient of P�+m−2 j (x) in
(1.3) as the weight of a special Racah polynomial [16, (9.2.1)] depending on j , and
then finding the expansion of P�+m−2 j (x) in terms of these Racah polynomials. More
generally, the same idea worked out well in [18] for ultraspherical polynomials.

While (1.1), (1.2), (1.3), and their generalizations to ultraspherical polynomials,
are formulas established long ago and staying within the realm of classical orthogonal
polynomials, it is remarkable that the dual addition formula steps out from this and
needs Racah polynomials, which live high up in the Askey scheme. Parallel to the
Askey scheme there is the much larger q-Askey scheme1. Families of orthogonal
polynomials in the Askey scheme are limit cases of families in the q-Askey scheme.
The continuous q-ultraspherical polynomials form the family which is the q-analogue
of the ultraspherical polynomials. Moreover, the q-analogues of (1.1), (1.2) and (1.3)
for these polynomials are available in the literature. The continuous q-ultraspherical

1 See http://homepage.tudelft.nl/11r49/book.html for charts of these schemes.
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polynomials also have the property of self-duality, which is lost in the limit to q = 1.
This notion means that, for a suitable function σ , an orthogonal polynomial pn(x)
has the property that pn(σ (m)) = pm(σ (n)) (m, n = 0, 1, . . .). With all this material
available there is a clear road to the derivation of the dual addition formula for these
polynomials.

The contents of the paper are as follows. Section 2 summarizes the results from
[18] about the dual addition formula for ultraspherical polynomials. The necessary
preliminaries about special orthogonal polynomials in the q-case are given in Sect. 3.
The new results of the paper appear in Sect. 4. It contains the two proofs of the dual
addition formula for continuous q-ultraspherical polynomials. Finally the limit case
for continuous q-Hermite polynomials is considered in Sect. 5.
NoteFor definition and notation of (q-)shifted factorials and (q-)hypergeometric series
we follow [14, §1.2]. We will only need terminating series:

r Fs

(−n, a2, . . . , ar
b1, . . . , bs

; z
)

:=
n∑

k=0

(−n)k

k!
(a2, . . . , ar )k
(b1, . . . , bs)k

zk,

rφs

(
q−n, a2, . . . , ar

b1, . . . , bs
; q, z

)

:=
n∑

k=0

(
q−n; q)

k

(q; q)k

(a2, . . . , ar ; q)k

(b1, . . . , bs; q)k

(
(−1)kq

1
2 k(k−1)

)s−r+1
zk .

Here (b1, . . . , bs)k := (b1)k . . . (bs)k with (b)k := b(b+1) · · · (b+ k−1) the shifted
factorial, and (b1, . . . , bs; q)k := (b1; q)k . . . (bs; q)k with (b; q)k := (1 − b)(1 −
qb) . . . (1 − qk−1b) the q-shifted factorial.

For formulas on orthogonal polynomials in the (q-)Askey scheme we will often
refer to Chapters 9 and 14 in [16].

2 The dual addition formula for ultraspherical polynomials

Here we summarize the results of [18]. We write ultraspherical polynomials as

Rα
n (x) := P(α,α)

n (x)

P(α,α)
n (1)

= C

(
α+ 1

2

)

n (x)

C
(α+ 1

2 )
n (1)

= 2F1

(−n, n + 2α + 1

α + 1
; 1
2 (1 − x)

)
, (2.1)

where C (λ)
n (x) is the standard notation [16, §9.8.1] for ultraspherical polynomials and

P(α,β)
n (x) is a Jacobi polynomial [16, §9.8].
We will consider Racah polynomials [16, §9.2]

Rn (x(x + γ + δ + 1);α, β, γ, δ)

:= 4F3

(−n, n + α + β + 1,−x, x + γ + δ + 1

α + 1, β + δ + 1, γ + 1
; 1

)
(2.2)
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428 T. H. Koornwinder

for γ = −N − 1, where N ∈ {1, 2, . . .}, and for n ∈ {0, 1, . . . , N }. These are orthog-
onal polynomials on the finite quadratic set {x(x + γ + δ + 1) | x ∈ {0, 1, . . . , N }}:

N∑

x=0

(RmRn) (x(x + γ + δ + 1);α, β, γ, δ) wα,β,γ,δ(x)

= hn;α,β,γ,δ δm,n (m, n ∈ {0, 1, . . . , N })

with

wα,β,γ,δ(x) = (α + 1)x (β + δ + 1)x (γ + 1)x (γ + δ + 1)x
(−α + γ + δ + 1)x (−β + γ + 1)x (δ + 1)x x !

γ + δ + 1 + 2x

γ + δ + 1
,

(2.3)
hn;α,β,γ,δ

h0;α,β,γ,δ

= α + β + 1

α + β + 2n + 1

(β + 1)n(α + β − γ + 1)n(α − δ + 1)n n!
(α + 1)n(α + β + 1)n(β + δ + 1)n(γ + 1)n

,

h0;α,β,γ,δ =
N∑

x=0

wα,β,γ,δ(x) = (α + β + 2)N (−δ)N

(α − δ + 1)N (β + 1)N
(γ = −N − 1). (2.4)

The linearization formula for ultraspherical polynomials, see [5, (5.7)], can be
written as

Rα
� (x)Rα

m(x) = �!m!
(2α + 1)�(2α + 1)m

min(�,m)∑

j=0

� + m + α + 1
2 − 2 j

α + 1
2

× (α + 1
2 ) j (α + 1

2 )�− j (α + 1
2 )m− j (2α + 1)�+m− j

j ! (� − j)! (m − j)! (α + 3
2 )�+m− j

×Rα
�+m−2 j (x). (2.5)

Assume that α > − 1
2 and that, without loss of generality, � ≥ m. By (2.3) and (2.4)

formula (2.5) can be rewritten as

Rα
� (x)Rα

m(x) =
m∑

j=0

wα− 1
2 ,α− 1

2 ,−m−1,−�−α− 1
2
( j)

h0;α− 1
2 ,α− 1

2 ,−m−1,−�−α− 1
2

Rα
�+m−2 j (x) (� ≥ m). (2.6)

This can be considered as giving the constant term of an expansion of R(α,α)
�+m−2 j (x) as

a function of j in terms of the following special case of Racah polynomials (2.2):

Rn
(
j
(
j − � − m − α − 1

2

) ; α − 1
2 , α − 1

2 ,−m − 1,−� − α − 1
2

)

= 4F3

(−n, n + 2α,− j, j − � − m − α − 1
2

α + 1
2 ,−�,−m

; 1
)

.

The full expansion is the dual addition formula for ultraspherical polynomials :
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Rα
�+m−2 j (x)

=
min(l,m)∑

k=0

α + k

α + 1
2k

(−�)k(−m)k (2α + 1)k
22k(α + 1)2k k!

×
(
x2 − 1

)k
Rα+k

�−k (x) Rα+k
m−k(x)

×Rk
(
j( j − � − m − α − 1

2 ); α − 1
2 , α − 1

2 ,−m − 1,−� − α − 1
2

)
,

j ∈ {0, 1, . . . ,m}. (2.7)

For j = 0 this becomes

Rα
�+m(x) =

min(l,m)∑

k=0

α + k

α + 1
2k

(−�)k(−m)k(2α + 1)k
22k(α + 1)2k k!

(x2 − 1)k Rα+k
�−k (x) Rα+k

m−k(x).

(2.8)
Formula (2.8) was first given by Carlitz [11, (3)]. It can be rewritten as a matrix
decomposition S = LDU with S symmetric, L lower triangular, its transposeU = Lᵀ
upper triangular and D diagonal. Cagliero &Koornwinder [8, Theorem 4.1 for α = β]
earlier gave the inverse of the matrix L .

3 Some q-hypergeometric orthogonal polynomials

3.1 Askey–Wilson polynomials

Wewill use the following standardization and notation forAskey–Wilson polynomials :

Rn[z] = Rn[z; a, b, c, d | q] := 4φ3

(
q−n, qn−1abcd, az, az−1

ab, ac, ad
; q, q

)
. (3.1)

These are symmetric Laurent polynomials of degree n in z, so they are ordinary
polynomials of degree n in x := 1

2 (z + z−1). The polynomials (3.1) are related to
the Askey–Wilson polynomials pn(x; a, b, c, d | q) in usual notation [7, (1.15)], [16,
(14.1.1)] by

Rn [z; a, b, c, d | q] = an

(ab, ac, ad; q)n
pn

(
1
2

(
z + z−1

)
; a, b, c, d | q

)
. (3.2)

If |a|, |b|, |c|, |d| ≤ 1 such that pairwise products of a, b, c, d are not equal to 1
and such that non-real parameters occur in complex conjugate pairs, then the Askey–
Wilson polynomials are orthogonal with respect to a non-negative weight function on
x = 1

2 (z + z−1) ∈ [−1, 1]. For convenience we give this orthogonality in the variable
z on the unit circle, where the integrand is invariant under z → z−1:

∫

|z|=1
Rm[z] Rn[z] w[z] dz

iz
= hn δm,n, (3.3)
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430 T. H. Koornwinder

where

w[z] = w[z; a, b, c, d; q] =
∣∣∣∣∣

(
z2; q)

∞
(az, bz, cz, dz | q)∞

∣∣∣∣∣

2

, (3.4)

h0 = h0[a, b, c, d | q] = 4π(abcd; q)∞
(q, ab, ac, ad, bc, bd, cd; q)∞

, (3.5)

and where the explicit expression for hn can be obtained from [16, (14.1.2)] together
with (3.2).

3.2 Continuous q-ultraspherical polynomials

The continuous q-ultraspherical polynomials are a one-parameter subfamily of the
Askey–Wilson polynomials (3.1). For them we will use the following standardization
and notation:

Rβ;q
n [z] = Rβ;q

n

(
1
2 (z + z−1)

)
:= Rn

[
z; q 1

4 β
1
2 , q

3
4 β

1
2 ,−q

1
4 β

1
2 ,−q

3
4 β

1
2 | q

]

= 4φ3

(
q−n, β2qn+1, q

1
4 β

1
2 z, q

1
4 β

1
2 z−1

βq,−βq
1
2 ,−βq

; q, q

)
.

(3.6)
The polynomials (3.6) are related to the continuous q-ultraspherical polynomials in
usual notation [16, §14.10.1] by

Rβ;q
n (x) = q

1
4 nβ

1
2 n

(q; q)n

(qβ2; q)n
Cn

(
x; q 1

2 β | q)
. (3.7)

The continuous q-ultraspherical polynomials with β = qα tend to the ultraspherical
polynomials (2.1) as q ↑ 1:

lim
q↑1 R

qα;q
n (x) = Rα

n (x).

In view of [14, (3.10.13)] we can represent Rβ;q
n by a different q-hypergeometric

expression:

Rβ;q
n [z] = 4φ3

(
q− 1

2 n, q
1
2 n+ 1

2 β, q
1
4 β

1
2 z, q

1
4 β

1
2 z−1

−q
1
2 β, (qβ)

1
2 ,−(qβ)

1
2

; q 1
2 , q

1
2

)
. (3.8)

In particular,

Rβ;q
n

[
q− 1

2m− 1
4 β− 1

2

]
= 4φ3

(
q− 1

2 n, q
1
2 n+ 1

2 β, q− 1
2m, q

1
2m+ 1

2 β

−q
1
2 β, (qβ)

1
2 ,−(qβ)

1
2

; q 1
2 , q

1
2

)

(m, n = 0, 1, 2, . . .).
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Hence we have the duality

Rβ;q
n

[
q− 1

2m− 1
4 β− 1

2

]

= Rβ;q
m

[
q− 1

2 n− 1
4 β− 1

2

]
(m, n = 0, 1, 2, . . .). (3.9)

Note the special value

Rβ;q
n

[
q

1
4 β

1
2

]
= 1

and the coefficient of the term of highest degree

Rβ;q
n (x) = 2n

(
q

1
2 β

) 1
2 n

(
q

1
2 β; q

)

n(
qβ2; q)

n

xn + terms of lower degree. (3.10)

For 0 < β < q− 1
2 the polynomials Rβ;q

n (x) are orthogonal on [−1, 1] with respect
to the even weight function

wβ,q(x) :=
(
1 − x2

)− 1
2

∣∣∣∣∣∣∣

(
e2iθ ; q)

∞(
q

1
2 βe2iθ ; q

)

∞

∣∣∣∣∣∣∣

2

, x = cos θ, (3.11)

see [16, (14.10.18)]. This weight function satisfies the recurrence

wqβ,q(x)

wβ,q(x)
=

(
1 + q

1
2 β

)2 − 4q
1
2 βx2

= 4q
1
2 β

(
a2 − x2

)
, a = 1

2

(
q

1
4 β

1
2 + q− 1

4 β− 1
2

)
. (3.12)

We will need the difference formula

Rβ;q
n (x) − Rβ;q

n−2(x) = 4q− 1
2 n+ 3

2 β(
1 + q

1
2 β

)
(1 + qβ)

1 − qn− 1
2 β

1 − qβ

×
(
x2 −

(
1
2 (q

1
4 β

1
2 + q− 1

4 β− 1
2 )

)2)
Rqβ;q
n−2 (x) (n ≥ 2).

(3.13)

Proof of (3.13). More generally, let w(x) = w(−x) be an even weight function on
[−1, 1], let pn(x) = knxn + · · · be orthogonal polynomials on [−1, 1] with respect
to the weight function w(x), and let qn(x) = k′

nx
n + · · · be orthogonal polynomials

on [−1, 1] with respect to the weight function w(x)(a2 − x2) (a ≥ 1). Assume that
pn and qn are normalized by pn(a) = 1 = qn(a). Let n ≥ 2. Then pn(x) − pn−2(x)
vanishes for x = ±a. Hence (pn(x) − pn−2(x))/(x2 − a2) is a polynomial of degree
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432 T. H. Koornwinder

n−2. It is immediately seen that xk (k < n−2) is orthogonal to this polynomial with
respect to the weight function w(x)(a2 − x2) on [−1, 1]. We conclude that

pn(x) − pn−2(x) = kn
k′
n−2

(
x2 − a2

)
qn−2(x) (n ≥ 2).

Now specialize to the weight function (3.11) and use (3.12) and (3.10). 	


From [16, (14.10.17)] we have

Rβ;q
n (cos θ) = q

1
4 nβ

1
2 n

(
q

1
2 β; q

)

n(
qβ2; q)

n

einθ
2φ1

(
q−n, q

1
2 β

q−n+ 1
2 β−1

; q, q
1
2 β−1e−2iθ

)
.

(3.14)
A limit case of (3.14) yields the continuous q-Hermite polynomials (see [16,
(14.26.1)]):

Hn (cos θ | q) := einθ
2φ0

(
q−n, 0

− ; q, qne−2iθ
)

. (3.15)

So by (3.14) and (3.15) we have

Hn(x | q) = q− 1
4 n lim

β↓0 β− 1
2 n Rβ;q

n (x). (3.16)

3.3 q-Racah polynomials

We will consider q-Racah polynomials [16, §14.2]

Rn

(
q−x + γ δqx+1;α, β, γ, δ | q

)
:= 4φ3

(
q−n, qn+1αβ, q−x , qx+1γ δ

qα, qβδ, qγ
; q, q

)

(3.17)
for γ = q−N−1, where N ∈ {1, 2, . . .}, and for n ∈ {0, 1, . . . , N }. They are discrete
cases of the Askey–Wilson polynomials (3.1). The polynomials (3.17) are orthogonal
polynomials on the finite q-quadratic set {q−x + γ δqx+1 | x ∈ {0, 1, . . . , N }}:

N∑

x=0

(RmRn)
(
q−x + γ δqx+1;α, β, γ, δ | q

)
wα,β,γ,δ;q(x) = hn;α,β,γ,δ;q δm,n

(3.18)
with

wα,β,γ,δ;q(x) := 1 − γ δq2x+1

(αβq)x (1 − γ δq)

(αq, βδq, γ q, γ δq; q)x(
q, α−1γ δq, β−1γ q, δq; q)

x

, (3.19)

hn;α,β,γ,δ;q
h0;α,β,γ,δ;q

:= (1 − αβq)(qγ δ)n

1 − αβq2n+1

(q, qβ, qαβγ −1, qαδ−1; q)n

(qα, qαβ, qγ, qβδ; q)n
, (3.20)
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h0;α,β,γ,δ;q :=
N∑

x=0

wα,β,γ,δ;q(x) =
(
q2αβ, δ−1; q)

N(
qαδ−1, qβ; q)

N

(
γ = q−N−1

)
. (3.21)

Clearly Rn(1+q−N δ;α, β, q−N−1, δ | q) = 1while, by (3.17) and theq-Saalschütz
formula [14, (1.7.2)], we can evaluate the q-Racah polynomial for x = N :

Rn

(
q−N + δ;α, β, q−N−1, δ | q

)
=

(
qβ, qαδ−1; q)

n

(qα, qβδ; q)n
δn . (3.22)

The backward shift operator equation [16, (14.2.10)] can be rewritten as

wα,β,γ,δ;q(x)Rn

(
q−x + γ δqx+1;α, β, γ, δ | q

)

= 1 − q2γ δ

q−x − γ δqx+2 wqα,qβ,qγ,δ;q(x) Rn−1

(
q−x + γ δqx+2; qα, qβ, qγ, δ | q

)

− 1 − q2γ δ

q−x+1 − γ δqx+1 wqα,qβ,qγ,δ;q(x − 1)

× Rn−1

(
q−x+1 + γ δqx+1; qα, qβ, qγ, δ | q

)
. (3.23)

This holds for x = 1, . . . , N while for x = 0 (3.23) remains true if we put the second
term on the right equal to 0. In the case x = N the first term on the right is equal
to zero because of (3.19), and the identity (3.23) can be checked by using (3.19) and
(3.22).

Hence, for a function f on {0, 1, . . . , N } we have

N∑

x=0

wα,β,γ,δ;q(x)Rn

(
q−x + γ δqx+1;α, β, γ, δ | q

)
f (x)

=
N−1∑

x=0

1 − q2γ δ

q−x − γ δqx+2

×wqα,qβ,qγ,δ;q(x) Rn−1

(
q−x + γ δqx+2; qα, qβ, qγ, δ | q

)

× ( f (x) − f (x + 1)) . (3.24)

4 The dual addition formula for continuous q-ultraspherical
polynomials

4.1 The Rahman–Verma addition formula

The q-analogue of the product formula for ultraspherical polynomials [21, (18.17.5)]
was given by Rahman & Verma [22, (1.20)]. It uses a different choice of parameter
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434 T. H. Koornwinder

for the q-ultraspherical polynomials:

RR-V
n [z] = RR-V;a;q

n [z] := Rq− 1
2 a2;q

n [z], (4.1)

where we have our own notation (3.6) on the right. Then the duality (3.9) takes the
form

RR-V
n

[
q− 1

2ma−1
]

= RR-V
m

[
q− 1

2 na−1
]

(m, n = 0, 1, 2, . . .)

or, in terms of special Askey–Wilson polynomials,

Rn

[
q− 1

2ma−1; a, q
1
2 a,−a,−q

1
2 a | q

]

= Rm

[
q− 1

2 na−1; a, q
1
2 a,−a,−q

1
2 a | q

]
(m, n = 0, 1, 2, . . .). (4.2)

In terms of the polynomials (4.1) and with usage of (3.4), (3.5) the Rahman–Verma
product formula reads as follows:

RR-V
n [u] RR-V

n [v] =
∫

|z|=1
RR-V
n [z] w

[
z; auv, au−1v−1, auv−1, au−1v | q]

h0
(
auv, au−1v−1, auv−1, au−1v | q) dz

iz

with |u|, |v| = 1, 0 < a < 1. This suggests an expansion

RR-V
n [z] =

n∑

k=0

ck Rk

[
z; auv, au−1v−1, auv−1, au−1v | q

]
,

where the term c0 equals RR-V
n [u] RR-V

n [v]. Indeed, [22, (1.24)] gives the addition
formula

Rn

[
z; a, q

1
2 a,−a,−q

1
2 a | q

]

=
n∑

k=0

(−1)kq
1
2 k(k+1) (

q−n, a2, qna4, q−1a4; q)
k(

q, q
1
2 a2,−q

1
2 a2,−a2; q

)

k

(
q−1a4; q)

2k

× u−k
(
a2u2; q

)

k
Rn−k

[
u; q 1

2 ka, q
1
2 (k+1)a,−q

1
2 ka,−q

1
2 (k+1)a | q

]

× v−k
(
a2v2; q

)

k
Rn−k

[
v; q 1

2 ka, q
1
2 (k+1)a,−q

1
2 ka,−q

1
2 (k+1)a | q

]

× Rk

[
z; auv, au−1v−1, auv−1, au−1v | q

]
. (4.3)

The addition formula [21, (18.18.8)] for ultraspherical polynomials can be obtained
as limit case for q ↑ 1 of (4.3).
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Dual addition formulas: the case of continuous… 435

4.2 The dual addition formula

As mentioned in [6, (4.18)], Rogers already gave the linearization formula for con-
tinuous q-ultraspherical polynomials in 1895. Here we refer for this formula to [4,
(10.11.10)]. It can be written in notation (3.6) as

Rβ;q
� (x)Rβ;q

m (x) = (q; q)�(q; q)m(
qβ2; q)

�

(
qβ2; q)

m

min(�,m)∑

j=0

1 − q�+m−2 j+ 1
2 β

1 − q
1
2 β

(
q

1
2 β; q

)

j

(q; q) j

× (q
1
2 β; q)�− j

(q; q)�− j

(
q

1
2 β; q

)

m− j

(q; q)m− j

(
qβ2; q)

�+m− j(
q

3
2 β; q

)

�+m− j

(
q

1
2 β

) j

×Rβ;q
�+m−2 j (x). (4.4)

By the earlier assumption 0 < β < q− 1
2 the linearization coefficients in (4.4) are

non-negative.
From now on assumewithout loss of generality that � ≥ m. Specialization of (3.19)

and (3.21) gives

w
βq− 1

2 ,βq− 1
2 ,q−m−1,β−1q−�− 1

2 ;q( j)

=
(
q

1
2 β; q

)

�+m(
qβ2; q)

�+m

(q; q)�(
q

1
2 β; q

)

�

(q; q)m

(q
1
2 β; q)m

×1 − q�+m−2 j+ 1
2 β

1 − q
1
2 β

(
q

1
2 β; q

)

j

(q; q) j

(
q

1
2 β; q

)

�− j

(q; q)�− j

×

(
q

1
2 β; q

)

m− j

(q; q)m− j

(
qβ2; q)

�+m− j(
q

3
2 β; q

)

�+m− j

(
q

1
2 β

) j

and

h
0;βq− 1

2 ,βq− 1
2 ,q−m−1,β−1q−�− 1

2 ;q =
(
qβ2; q)

�

(
qβ2; q)

m(
qβ2; q)

�+m

(
q

1
2 β; q

)

�+m(
q

1
2 β; q

)

�

(
q

1
2 β; q

)

m

.

(4.5)
The linearization formula (4.4) can now be seen to have the equivalent concise expres-
sion

Rβ;q
� (x)Rβ;q

m (x) =
m∑

j=0

w
βq− 1

2 ,βq− 1
2 ,q−m−1,β−1q−�− 1

2 ;q( j)

h
0;βq− 1

2 ,βq− 1
2 ,q−m−1,β−1q−�− 1

2 ;q
Rβ;q

�+m−2 j (x). (4.6)
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436 T. H. Koornwinder

This identity can be considered as giving the constant term of an expansion of
Rβ;q

�+m−2 j (x) as a function of j in terms of q-Racah polynomials

Rk

(
q− j + β−1q j−�−m− 1

2 ;βq− 1
2 , βq− 1

2 , q−m−1, β−1q−�− 1
2 | q

)
.

The general terms of this expansion will be obtained by evaluating the sum

Sβ;q
k,�,m(x) :=

m∑

j=0

w
βq− 1

2 ,βq− 1
2 ,q−m−1,β−1q−�− 1

2 ;q( j) R
β;q
�+m−2 j (x)

× Rk

(
q− j + β−1q j−�−m− 1

2 ;βq− 1
2 , βq− 1

2 , q−m−1, β−1q−�− 1
2 | q

)
,

(4.7)

where we still assume l ≥ m and where k ∈ {0, . . . ,m}.
Theorem 4.1 The sum (4.7) can be evaluated as

Sβ;q
k,�,m(x) =

(
q

1
2 (�+m+1)β

)k (
β−1q−�−m+ 1

2 ; q
)

k(
−q

1
2 β,±qβ; q

)

k

(
±q

1
4 β

1
2 z,±q

1
4 β

1
2 z−1; q 1

2

)

k

× (q2k+1β2; q)�−k(q2k+1β2; q)m−k(
q2k+1β2; q)

�+m−2k

×
(
qk+ 1

2 β; q
)

�+m−2k(
qk+ 1

2 β; q
)

�−k

(
qk+ 1

2 β; q
)

m−k

Rqkβ;q
�−k (x)Rqkβ;q

m−k (x). (4.8)

Here we use the conventions that (±a; q)n := (a; q)n(−a; q)n and x = 1
2 (z + z−1).

Proof In (4.7) put f ( j) := Rβ;q
�+m−2 j (x). Then comparison of (4.7) with (3.24) gives

Sβ;q
k,�,m(x) =

m∑

j=0

w
βq− 1

2 ,βq− 1
2 ,q−m−1,β−1q−�− 1

2 ;q( j)

× Rk(q
− j + β−1q j−�−m− 1

2 ;βq− 1
2 , βq− 1

2 , q−m−1, β−1q−�− 1
2 | q) f ( j)

=
m−1∑

j=0

1 − β−1q−�−m+ 1
2

q− j − β−1q−�−m+ j+ 1
2

w
βq

1
2 ,βq

1
2 ,q−m ,β−1q−�− 1

2 ;q( j)

× Rk−1

(
q− j + β−1q j−�−m+ 1

2 ;βq
1
2 , βq

1
2 , q−m, β−1q−�− 1

2 | q
)

× ( f ( j) − f ( j + 1)) .
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We can handle the factor f ( j) − f ( j + 1) in the right part above by using (3.13):

f ( j) − f ( j + 1) = Rβ;q
�+m−2 j (x) − Rβ;q

�+m−2 j−2(x)

=
4β2q

1
2 �+ 1

2m+1
(
q− j − β−1q−�−m+ j+ 1

2

)

(
1 + q

1
2 β

) (
1 − q2β2

)

×
(

1
4

(
q

1
4 β

1
2 + q− 1

4 β− 1
2

)2 − x2
)

Rqβ;q
�+m−2 j−2(x).

So, with x = 1
2 (z + z−1),

Sβ;q
k,�,m(x) =

4βq− 1
2 �− 1

2m+ 3
2

(
1 − βq�+m− 1

2

)

(
1 + q

1
2 β

) (
1 − q2β2

)

×
(

1
4

(
q

1
4 β

1
2 + q− 1

4 β− 1
2

)2 − x2
) m−1∑

j=0

w
βq

1
2 ,βq

1
2 ,q−m ,β−1q−�− 1

2 ;q( j)

× Rk−1

(
q− j + β−1q j−�−m+ 1

2 ;βq
1
2 , βq

1
2 , q−m, β−1q−�− 1

2 | q
)

× Rqβ;q
�+m−2 j−2(x)

=
q

1
2 �+ 1

2m+ 1
2 β

(
1 − β−1q−l−m+ 1

2

)

(
1 + q

1
2 β

) (
1 − q2β2

)

×
(
1 + q

1
4 β

1
2 z

) (
1 − q

1
4 β

1
2 z

) (
1 + q

1
4 β

1
2 z−1

) (
1 − q

1
4 β

1
2 z−1

)

× Sqβ,q
k−1,�−1,m−1(x).

Iteration gives

Sβ;q
k,�,m(x) =

(
q

1
2 (�+m+1)β

)k (
β−1q−�−m+ 1

2 ; q
)

k(
−q

1
2 β,±qβ; q

)

k

×
(
±q

1
4 β

1
2 z,±q

1
4 β

1
2 z−1; q 1

2

)

k
Sq

kβ;q
0,�−k,m−k(x). (4.9)

By (4.7)

Sβ;q
0,�,m(x) = h

0;βq− 1
2 ,βq− 1

2 ,q−m−1,β−1q−�− 1
2 ;q R

β;q
� (x)Rβ;q

m (x). (4.10)

Hence, by (4.5),

Sq
kβ;q

0,�−k,m−k(x) = h
0;βqk− 1

2 ,βqk−
1
2 ,qk−m−1,β−1q−�− 1

2 ;q R
qkβ;q
�−k (x)Rqkβ;q

m−k (x)
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=
(
q2k+1β2; q)

�−k

(
q2k+1β2; q)

m−k(
q2k+1β2; q)

�+m−2k

×
(
qk+ 1

2 β; q
)

�+m−2k(
qk+ 1

2 β; q
)

�−k

(
qk+ 1

2 β; q
)

m−k

Rqkβ;q
�−k (x)Rqkβ;q

m−k (x).

Substitution of this last result in (4.9) yields (4.8). 	

Remark 4.2 An integrated form of (4.8) is the same as a special case of the formula
given in [3, Remark 6.5] (corrected version of [2, Remark 6.5]). Indeed, in (4.8)
rewrite the three continuous q-ultraspherical polynomials in the standard notation

(3.7), replace � by n and β by q− 1
2 β, multiply both sides by Cm+n−2t (x;β | q) (0 ≤

t ≤ m) times its weight function, and integrate both sides over x ∈ [−1, 1] (see [16,
(14.10.18)]). Then write the Racah polynomial on the right-hand side by (3.17) as a
balanced 4φ3 and apply to this Sears’ transformation [14, (III.15)] (with n, a, b, c, d,
e, f replaced by k, qk−1β2, q−t , q−n−m+tβ−1, q−m , q−n , β). We arrive at the formula
in [3, Remark 6.5] for α = q−1β.

Note that (4.8) is not equivalent to its integrated forms if we consider these only for
0 ≤ t ≤ m. The right-hand side of (4.8) is a polynomial of degree � + m in x , so we
have to consider also the integrals for m < t ≤ 1

2 (� + m), of which we know a priori
that they vanish. But [3, Remark 6.5] does not consider integrals for t > m. However,
in [3, Lemma 6.4] (the case β = 1, α = 0 of [3, Remark 6.5]) the integral for t > m
is stated to be zero.

As observed in [18, end of §4], integrated forms of the q = 1 limit [18, (4.5)] of
(4.8) coincide with special cases of [17, (2.6)].

Theorem 4.3 (Dual addition formula) For j ∈ {0, . . . ,m} there is the expansion

Rβ;q
�+m−2 j (x) =

min(l,m)∑

k=0

q
1
2 k(k+�+m+2)βk 1 − β2q2k

1 − β2qk

(
q−�, q−m, qβ2; q)

k

(qβ, qβ, q; q)k

×
∏k−1

i=0

(
4qi+ 1

2 βx2 −
(
1 + qi+ 1

2 β
)2)

(
−q

1
2 β; q 1

2

)2
2k

Rqkβ;q
�−k (x)Rqkβ;q

m−k (x)

× Rk(q
− j + β−1q j−�−m− 1

2 ;βq− 1
2 , βq− 1

2 , q−m−1, β−1q−�− 1
2 | q).

(4.11)

Proof Assume l ≥ m. By (4.9) and (4.10)

Sβ;q
k,�,m(x) = (−1)kq

1
2 k(k−�−m+1)

(
−q

1
2 β; q

)2
k

(
q2β2; q2)2k

(
qβ2; q)

�+k

(
qβ2; q)

m+k

(
q

1
2 β; q

)

�+m(
q

1
2 β; q

)

�+m

(
qβ2; q)

�

(
qβ2; q)

m

×h
0;βq− 1

2 ,βq− 1
2 ,q−m−1,β−1q−�− 1

2 ;q
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×
(
±q

1
4 β

1
2 z,±q

1
4 β

1
2 z−1; q 1

2

)

k
Rqkβ,q

�−k (x)Rqkβ,q
m−k (x).

By Fourier-q-Racah inversion we obtain

Rβ,q
�+m−2 j (x)

=
m∑

k=0

(−1)kq
1
2 k(k−�−m+1)

(
−q

1
2 β; q

)2
k

(
q2β2; q2)2k

(
qβ2; q)

�+k

(
qβ2; q)

m+k

(
q

1
2 β; q

)

�+m(
q

1
2 β; q

)

�+m

(
qβ2; q)

�

(
qβ2; q)

m

×
h
0;βq− 1

2 ,βq− 1
2 ,q−m−1,β−1q−�− 1

2 ;q
h
k;βq− 1

2 ,βq− 1
2 ,q−m−1,β−1q−�− 1

2 ;q

(
±q

1
4 β

1
2 z,±q

1
4 β

1
2 z−1; q 1

2

)

k

× Rqkβ;q
�−k (x)Rqkβ;q

m−k (x)

× Rk(q
− j + β−1q j−�−m− 1

2 ;βq− 1
2 , βq− 1

2 , q−m−1, β−1q−�− 1
2 | q).

Now use (3.20). 	


If we put β = qα in (4.11) and take the limit for q ↑ 1 then we arrive at the dual
addition formula (2.7) for ultraspherical polynomials.

For j = 0 (4.11) takes the form

Rβ;q
�+m(x) =

min(l,m)∑

k=0

q
1
2 k(k+�+m+2)βk 1 − β2q2k

1 − β2qk
(q−�, q−m, qβ2; q)k

(qβ, qβ, q; q)k

×
∏k−1

i=0

(
4qi+ 1

2 βx2 − (1 + qi+ 1
2 β)2

)

(−q
1
2 β; q 1

2 )22k

Rqkβ;q
�−k (x)Rqkβ;q

m−k (x). (4.12)

It has a similar structure as [14, Exercise 8.12]. However, the formula there expands
Rβ;q

�+m(x) in terms of Rβ;q
�−k(x)R

β;q
m−k(x) (k = 0, 1, . . . ,min(�,m)). A variant of (5.3)

given by the specialization of [15, (9.4)] to the case of continuous q-ultraspherical
polynomials is also essentially different from our formula.

Just as with (2.7), formula (4.12) can be rewritten as a matrix decomposition S =
LDU with S symmetric, L lower triangular, its transpose U = Lᵀ upper triangular
and D diagonal. Aldenhoven [1, Theorem 1.1] earlier gave the inverse of the matrix
L .

4.3 A second proof of the dual addition formula

Wewill now show that the addition formula (4.3) and the dual addition formula (4.11)
coincide when both formulas are suitably restricted in their x or z variable. This will
follow from the duality (4.2).
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In (4.11) put β = q− 1
2 a2, x = 1

2 (z + z−1) and use (4.1). Then the dual addition
formula takes the form

R�+m−2 j

[
z; a, q

1
2 a,−a,−q

1
2 a | q

]

=
m∑

k=0

(−1)kq
1
2 k(k+�+m+1)a2k

1 − a4q2k−1

1 − a4qk−1

(
q−�, q−m, a4; q)

k(
q

1
2 a2, q

1
2 a2, q; q

)

k

×
(
a2z2, a2z−2; q)

k(
−a2; q 1

2

)2
2k

× R�−k

[
z; q 1

2 ka, q
1
2 (k+1)a,−q

1
2 ka,−q

1
2 (k+1)a | q

]

× Rm−k

[
z; q 1

2 ka, q
1
2 (k+1)a,−q

1
2 ka,−q

1
2 (k+1)a | q

]

× Rk

(
q− j + q j−�−ma−2; q−1a2, q−1a2, q−m−1, q−�a−2 | q

)
. (4.13)

Since both sides of (4.13) are symmetric Laurent polynomials in z, verification of

the identity for z = q− 1
2 na−1 (n = m,m + 1,m + 2, . . .) will settle the identity for

all z. Thus put z = q− 1
2 na−1 in (4.13) and use the duality (4.2) in the polynomials

R�+m−2 j , R�−k and Rm−k occurring in (4.13). Furthermore, use (3.17) and (3.1) in
order to substitute

Rk(q
− j + q j−�−ma−2; q−1a2, q−1a2, q−m−1, q−�a−2 | q)

= 4φ3

(
q−k, qk−1ak, q− j , q j−�−ma−2

a2, q−�, q−m
; q, q

)

= Rk

[
q− 1

2 (�+m−2 j)a−1; q− 1
2 (�+m)a−1, q

1
2 (�+m)a3, q

1
2 (�−m)a, q

1
2 (m−�)a | q

]
.

We obtain

Rn

[
q− 1

2 (�+m−2 j)a−1; a, q
1
2 a,−a,−q

1
2 a | q

]

=
n∑

k=0

(−1)kq
1
2 k(k+�+m+1)a2k

1 − a4q2k−1

1 − a4qk−1

(
q−�, q−m, a4; q)

k(
q

1
2 a2, q

1
2 a2, q; q

)

k

(
q−n, qna4; q)

k(
−a2; q 1

2

)2
2k

× Rn−k

[
q− 1

2 �a−1; q 1
2 ka, q

1
2 (k+1)a,−q

1
2 ka,−q

1
2 (k+1)a | q

]

× Rn−k

[
q− 1

2ma−1; q 1
2 ka, q

1
2 (k+1)a,−q

1
2 ka,−q

1
2 (k+1)a | q

]

× Rk

[
q− 1

2 (�+m−2 j)a−1; q− 1
2 (�+m)a−1, q

1
2 (�+m)a3, q

1
2 (�−m)a, q

1
2 (m−�)a | q

]
.

(4.14)

Because of the factor (q−m; q)k on the right-hand side and since n ≥ m, there was no
harm to replace m by n as the upper bound of the summation.
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On the other hand, for integers j,m, � such that 0 ≤ j ≤ m ≤ � and m ≤ n,

substitute z = q− 1
2 (�+m−2 j)a−1, u = q− 1

2 �a−1, v = q− 1
2ma−1 in (4.3) in order to

obtain

Rn

[
q− 1

2 (�+m−2 j)a−1; a, q
1
2 a,−a,−q

1
2 a | q

]

=
n∑

k=0

(−1)kq
1
2 k(k+�+m+1)a2k

(
q−n, q−�, q−m, a2, qna4, q−1a4; q)

k(
q, q

1
2 a2,−q

1
2 a2,−a2; q

)

k

(
q−1a4; q)

2k

× Rn−k

[
q− 1

2 �a−1; q 1
2 ka, q

1
2 (k+1)a,−q

1
2 ka,−q

1
2 (k+1)a | q

]

× Rn−k

[
q− 1

2ma−1; q 1
2 ka, q

1
2 (k+1)a,−q

1
2 ka,−q

1
2 (k+1)a | q

]

× Rk

[
q− 1

2 (�+m−2 j)a−1; q− 1
2 (�+m)a−1, q

1
2 (�+m)a3, q

1
2 (�−m)a, q

1
2 (m−�)a | q

]
.

(4.15)

An easy computation shows that (4.14) can be rewritten as (4.15). Thuswe have shown
that the addition formula (4.3) implies the dual addition formula (4.11).

5 A limit to continuous q-Hermite polynomials

This section gives the q-analogue of the results in [18, §5]. The treatment given here
is completely parallel to the one given there.

We will do a rescaling in the dual addition formula (4.11) such that we can take
the limit for β ↓ 0. For this purpose observe that the q-Racah polynomial (3.17) has
limits

lim
β↓0 β j Rn

(
q− j + β−1q−m−l+ j− 1

2 ; βq− 1
2 , βq− 1

2 , q−m−1, β−1q−l− 1
2 ; q

)

=
(
q−n; q)

j(
q−l , q−m; q)

j

q

(
j−m−l− 1

2

)
j
,

lim
β↓0 βn Rn

(
q− j + β−1q−m−l+ j− 1

2 ; βq− 1
2 , βq− 1

2 , q−m−1, β−1q−l− 1
2 ; q

)

= (q− j ; q)n

(q−l , q−m; q)n
q( j−m−l− 1

2 )n,

(5.1)
where l,m ≥ max( j, n). Otherwise said,

Rn

(
q− j + β−1q−m−l+ j− 1

2 ; βq− 1
2 , βq− 1

2 , q−m−1, β−1q−l− 1
2 ; q

)

= O
(
β−min(n, j)

)

as β ↓ 0 with the order constant given in (5.1).
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Now, in (4.11), multiply both sides by β− 1
2 (l+m−2 j) and let β ↓ 0. By (3.16) and

(5.1) we obtain for l ≥ m that

q(l+m− j) j
(
q−l , q−m; q

)

j
Hl+m−2 j (x | q)

=
m∑

k= j

(−1)kqk(l+m)q− 1
2 k(k−1)

(
q−l , q−m; q

)

k

×Hl−k(x | q)Hm−k(x | q)
(q−k; q) j

(q; q)k
, (5.2)

which may be called the dual addition formula for continuous q-Hermite polynomials.
When written equivalently as

Hl+m−2 j (x | q) =
m∑

k= j

(−1)k− j q
(k− j)

(
l+m−2 j+ 1

2

)

q− 1
2 (k− j)2

× (q−l+ j , q−m+ j ; q)k− j

(q; q)k− j
Hl−k(x | q)Hm−k(x | q),

it is seen to be equivalent to its special case j = 0, which can be written as

Hl+m(x | q) =
min(l,m)∑

k=0

(−1)kq
1
2 k(k−1)(q; q)k

[
l

k

]

q

[
m

k

]

q
Hl−k(x | q)Hm−k(x | q),

(5.3)
where

[
l

k

]

q
:= (q; q)l

(q; q)k(q; q)l−k

is a q-binomial coefficient. Formula (5.3) was first given, with two different proofs,
by Carlitz [9, (1.8)], [10, (3)]. Here our Hn(x | q) is related to Carlitz’ Hn(z) by
Hn(

1
2 (z + z−1) | q) = z−nHn(z2). An (essentially different) variant of (5.3) is given

in [15, (9.5)].
The q = 1 limit of (5.3) is [13, 10.13(36)], which goes back to Nielsen (1918) and

Burchnall (1941), see [15, §1] for historical details.
Note that (5.3) gives a matrix decomposition S = LDU with S symmetric, L lower

triangular, its transpose U = Lᵀ upper triangular and D diagonal. Aldenhoven [1,
Corollary 5.2] earlier gave the inverse of the matrix L .

Next we want to consider the limit as β ↓ 0 of (4.8) with Sβ;q
k,�,m given by (4.7).

Recall that (4.8) togetherwith (4.7) is the dual of (4.11) in the sense of Fourier-q-Racah
inversion. Observe from (3.19)–(3.21) that

lim
β↓0 β− j w

βq− 1
2 ,βq− 1

2 ,q−m−1,β−1q−l− 1
2 ;q( j) = (q−l , q−m; q) j

(q; q) j
q(l+m− j+ 3

2 ) j , (5.4)
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lim
β↓0 βn h

n;βq− 1
2 ,βq− 1

2 ,q−m−1,β−1q−l− 1
2 ;q = (q; q)n

(q−l , q−m; q)n
q−(l+m+ 1

2 )n . (5.5)

In (4.8) multiply both sides by β− 1
2 (l+m)+k and let β ↓ 0. By (3.16), (5.1) and (5.4)

we obtain for l ≥ m that

m∑

j=k

q j(l+m)q− j2(q−l , q−m; q) j Hl+m−2 j (x | q)
(q− j ; q)kq j(k+1)

(q; q) j

= (−1)kqk(l+m)q− 1
2 k(k−1)

(
q−l , q−m; q

)

k
Hl−k(x | q)Hm−k(x | q). (5.6)

When written equivalently as

m∑

j=k

q( j−k)(l+m−2k)q−( j−k)( j−k−1)

(
q−(l−k), q−(m−k); q)

j−k

(q; q) j−k
Hl+m−2 j (x | q)

= Hl−k(x | q)Hm−k(x | q),

it can be seen, just as with (5.2), to be equivalent to its special case k = 0, which can
be written as

min(l,m)∑

j=0

(q; q) j

[
l

j

]

q

[
m

j

]

q
Hl+m−2 j (x | q) = Hl(x | q)Hm(x | q). (5.7)

This is the linearization formula for continuous q-Hermite polynomials, see [4,
(10.11.17)].

Just as with (4.11) and (4.8), the identities (5.2) and (5.6) can be obtained from
each other by a Fourier type inversion. This no longer involves an orthogonal system
as the q-Racah polynomials but a biorthogonal system implied by the biorthogonality
relation ∞∑

j=0

(q−n; q) j

(q; q) j

(q− j ; q)k q j(k+1)

(q; q)k
= δk,n (5.8)

(see Carlitz [12, Theorem 2] or Krattenthaler [20, (1.2)] for a j = 1, b j = 0). Note that
the above sum in fact runs from j = k to n. For k < n formula (5.8) is also equivalent

to 1φ0(qk−n;−; q, q) = ∑n−k
j=0

(qk−n;q) j
(q;q) j

q j = 0.
The biorthogonality (5.8) is also a limit case of the q-Racah orthogonality relation

(3.18). Indeed, replace α, β, γ, δ by βq− 1
2 , βq− 1

2 , q−m−1, β−1q−l− 1
2 , multiply both

sides of (3.18) by βn , let β ↓ 0, and use (5.1), (5.4) and (5.5).
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