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Abstract
In this paper, we will establish some double-angle formulas related to the inverse
function of

∫ x
0 dt/

√
1 − t6. This function appears in Ramanujan’s Notebooks and is

regarded as a generalized version of the lemniscate function.
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1 Introduction

Let 1 < p, q < ∞ and

Fp,q(x) :=
∫ x

0

dt

(1 − tq)1/p
, x ∈ [0, 1].

We will denote by sinp,q the inverse function of Fp,q , i.e.,

sinp,q x := F−1
p,q(x).
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Clearly, sinp,q x is an increasing function mapping [0, πp,q/2] to [0, 1], where

πp,q := 2Fp,q(1) = 2
∫ 1

0

dt

(1 − tq)1/p
.

We extend sinp,q x to (πp,q/2, πp,q ] by sinp,q (πp,q − x) and to the whole real line
R as the odd 2πp,q -periodic continuation of the function. Since sinp,q x ∈ C1(R), we
also define cosp,q x by cosp,q x := (d/dx)(sinp,q x). Then, it follows that

| cosp,q x |p + | sinp,q x |q = 1.

In case (p, q) = (2, 2), it is obvious that sinp,q x, cosp,q x and πp,q are reduced to
the ordinary sin x, cos x and π , respectively. This is a reason why these functions and
the constant are called generalized trigonometric functions (with parameter (p, q))
and the generalized π , respectively.

The generalized trigonometric functions are well studied in the context of nonlinear
differential equations (see [4,6,7] and the references given there). Suppose that u is a
solution of the initial value problem of the p-Laplacian

−(|u′|p−2u′)′ = (p − 1)q

p
|u|q−2u, u(0) = 0, u′(0) = 1,

which is reduced to the equation −u′′ = u of simple harmonic motion for u = sin x
in case (p, q) = (2, 2). Then,

d

dx
(|u′|p + |u|q) =

(
p

p − 1
(|u′|p−2u′)′ + q|u|q−2u

)

u′ = 0.

Therefore, |u′|p +|u|q = 1. It is possible to show that u coincides with sinp,q defined
as above. The generalized trigonometric functions are often applied to the eigenvalue
problem of the p-Laplacian.

Now, we are interested in finding double-angle formulas for generalized trigono-
metric functions. It is possible to discuss addition formulas for these functions: for
instance sin2,6 has the addition formula (3) with (2) below (see also [5] for sin4/3,4),
but for simplicity we will not develop this point here.

We have known the double-angle formulas of sin2,q , sinq∗,q , and sinq∗,2 for q =
2, 3, 4 except for sin3/2,2, where q∗ := q/(q − 1) (Table 1). For details for each
formula, we refer the reader to [8] (after having proved the formula for sin2,3 in the
co-authored paper [8], the author noticed that the formula has already been obtained
as “ϕ(2s)” by Cox and Shurman [3, p. 697]). It is worth pointing out that Lemma 3.1
(resp. Lemma 3.2) below connects the parameter (2, q) to (q∗, q) (resp. (q∗, 2)) and
yields the possibility to obtain the other formula from one formula. Indeed, in this
way, the formulas of sin4/3,4 and sin4/3,2 follow from that of sin2,4 ([10, Subsect. 3.1]
and [8, Theorem 1.1], respectively), and the formula of sin2,3 follows from that of
sin3/2,3 ([8, Theorem 1.2]). Nevertheless, the parameter (3/2, 2) is still open because
of the difficulty of the inverse problem corresponding to (10).
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Table 1 The parameters for which the double-angle formulas have been obtained

q (q∗, 2) (2, q) (q∗, q)

2 (2, 2) by Abu al-Wafa’ (2, 2) by Abu al-Wafa’ (2, 2) by Abu al-Wafa’

3 (3/2, 2) open (2, 3) by Cox–Shurman (3/2, 3) by Dixon

4 (4/3, 2) by Sato–Takeuchi (2, 4) by Fagnano (4/3, 4) by Edmunds et al.

6 (6/5, 2) Theorem 1.2 (2, 6) by Shinohara (6/5, 6) Theorem 1.1

In this paper, we wish to investigate the double-angle formula of the function
sin2,6 x , whose inverse function is defined as

sin−1
2,6 x =

∫ x

0

dt√
1 − t6

.

The function sin2,6 x appears as the inverse of “H(v)” in Ramanujan’s Notebooks [1,
p. 246] and is regarded as a generalized version of the lemniscate function sin2,4 x .
For the function, Shinohara [9] gives the novel double-angle formula

sin2,6 (2x) = 2 sin2,6 x cos2,6 x√
1 + 8 sin62,6 x

, x ∈ [0, π2,6/2]. (1)

In fact, he found (1) in “trial and error calculations” (according to private communica-
tion), but instead we will give a proof of (1) in Sect. 2. Moreover, as mentioned above,
we can show the following counterparts of (1) for sin6/5,6 and sin6/5,2, respectively.

Theorem 1.1 Let (p, q) = (6/5, 6). Then, for x ∈ [0, π6/5,6/4],

sin6/5,6 (2x)

=
21/6 sin6/5,6 x cos

1/5
6/5,6 x

(

3 +
√
1 + 32 sin66/5,6 x cos

6/5
6/5,6 x

)1/2

(
1 + 32 sin66/5,6 x cos

6/5
6/5,6 x

)1/4 (

1 +
√
1 + 32 sin66/5,6 x cos

6/5
6/5,6 x

)1/6 .

Theorem 1.2 Let (p, q) = (6/5, 2). Then, for x ∈ [0, π6/5,2/2],

sin6/5,2 (2x) =

√√
√
√
√1 −

⎛

⎝
9 − 8 sin26/5,2 x − 4 sin26/5,2 x cos

2/5
6/5,2 x

9 − 8 sin26/5,2 x + 8 sin26/5,2 x cos
2/5
6/5,2 x

⎞

⎠

3

.
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2 Proof of (1)

The change of variable s = t2 leads to the representation

sin−1
2,6 x = 1

2

∫ x2

0

ds
√
s(1 − s3)

, 0 ≤ x ≤ 1.

The furthermore change of variable ([2, 576.00 in p. 256])

cn u = 1 − (
√
3 + 1)s

1 + (
√
3 − 1)s

, k2 = 2 − √
3

4

gives

sin−1
2,6 x = 1

2

∫ cn−1 φ(x)

0

((
√
3 + 1) + (

√
3 − 1) cn u)2

2 · 33/4 sn u dn u
× 2

√
3 sn u dn u

((
√
3 + 1) + (

√
3 − 1) cn u)2

du

= 1

2 · 31/4
∫ cn−1 φ(x)

0
du

= 1

2 · 31/4 cn
−1 φ(x),

where sn u = sn (u, k), cn u = cn (u, k), and dn u = dn (u, k) are the Jacobian
elliptic functions (see e.g., [11, Chap. XXII] for more details), and

φ(x) = 1 − (
√
3 + 1)x2

1 + (
√
3 − 1)x2

. (2)

Thus,

sin2,6 u = φ−1(cn (2 · 31/4u)), 0 ≤ u ≤ π2,6/2 = K/(31/4),

where K = K (k) is the complete elliptic integral of the first kind and

φ−1(x) =
√

1 − x

(
√
3 + 1) + (

√
3 − 1)x

.

Now, we use the addition formula of cn. For u, v, u ± v ∈ [0, K/(31/4)],

sin2,6 (u ± v) = φ−1(cn (ũ ± ṽ)) = φ−1
(
cn ũ cn ṽ ∓ sn ũ sn ṽ dn ũ dn ṽ

1 − k2 sn2 ũ sn2 ṽ

)
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where ũ := 2 · 31/4u and ṽ := 2 · 31/4v. Recall that sn2 x + cn2 x = 1 and k2 sn2 x +
dn2 x = 1; then the last equality gives

sin2,6 (u ± v)

= φ−1

(
φ(U )φ(V ) ∓

√
(1 − φ(U )2)(1 − φ(V )2)(1 − k2(1 − φ(U )2))(1 − k2(1 − φ(V )2))

1 − k2(1 − φ(U )2)(1 − φ(V )2)

)

,

(3)

where U := sin2,6 u and V := sin2,6 v.
With u = v and the observation that

1 − φ(U )2 = 4
√
3U 2(1 −U 2)

(1 + (
√
3 − 1)U 2)2

,

1 − k2(1 − φ(U )2) = 1 +U 2 +U 4

(1 + (
√
3 − 1)U 2)2

,

this implies that

sin2,6 (2u) = φ−1
(

φ(U )2 − (1 − φ(U )2)(1 − k2(1 − φ(U )2))

1 − k2(1 − φ(U )2)2

)

= φ−1

(
1 − 4(

√
3 + 1)U 2 + 8U 6 + 4(

√
3 + 1)U 8

1 + 4(
√
3 − 1)U 2 + 8U 6 − 4(

√
3 − 1)U 8

)

.

Routine simplification now results in the formula

sin2,6 (2u) = 2U
√
1 −U 6

√
1 + 8U 6

= 2 sin2,6 u cos2,6 u√
1 + 8 sin62,6 u

,

and the proof is complete.

3 Proofs of theorems

To prove Theorem 1.1, we use the following multiple-angle formulas.

Lemma 3.1 ([10]) Let 1 < q < ∞ and q∗ := q/(q − 1). If x ∈ [0, π2,q/(22/q)] =
[0, πq∗,q/2], then

sin2,q (22/q x) = 22/q sinq∗,q x cos
q∗−1
q∗,q x, (4)

cos2,q (22/q x) = cosq
∗

q∗,q x − sinqq∗,q x

= 1 − 2 sinqq∗,q x = 2 cosq
∗

q∗,q x − 1. (5)
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Proof of Theorem 1.1 Let x ∈ [0, π6/5,6/4]. Applying (4) of Lemma 3.1 in case q = 6
with x replaced by 2x ∈ [0, π6/5,6/2], we get

sin2,6 (2 · 21/3x) = 21/3 sin6/5,6 (2x)(1 − sin66/5,6 (2x))1/6. (6)

First, we consider the case

0 ≤ x <
π6/5,6

8
.

Then, since 0 ≤ 2 sin66/5,6 (2x) < 1 by [10, Lemma 2.1], Eq. (6) gives

2 sin66/5,6 (2x) = 1 −
√
1 − sin62,6 (2 · 21/3x).

Set S = S(x) := sin2,6 (21/3x). Using the double-angle formula (1) for sin2,6 x , we
have

2 sin66/5,6 (2x) = 1 −
√√
√
√1 −

(
2S

√
1 − S6√

1 + 8S6

)6

= 1 −
√
1 − 40S6 + 384S12 + 320S18 + 64S24

(1 + 8S6)3/2

= 1 − |1 − 20S6 − 8S12|
(1 + 8S6)3/2

.

Since 0 ≤ S6 < sin62,6 (π2,6/4) = (3
√
3 − 5)/4, evaluated by (1), we see that

1 − 20S6 − 8S12 > 0. Thus,

2 sin66/5,6 (2x) = 1 − 1 − 20S6 − 8S12

(1 + 8S6)3/2

= (
√
1 + 8S6 − 1)(

√
1 + 8S6 + 3)3

8(1 + 8S6)3/2

= S6(3 + √
1 + 8S6)3

(1 + 8S6)3/2(1 + √
1 + 8S6)

. (7)

Therefore, by (4),

sin6/5,6 (2x) =
21/6 sin6/5,6 x cos

1/5
6/5,6 x

(

3 +
√
1 + 32 sin66/5,6 x cos

6/5
6/5,6 x

)1/2

(
1 + 32 sin66/5,6 x cos

6/5
6/5,6 x

)1/4 (

1 +
√
1 + 32 sin66/5,6 x cos

6/5
6/5,6 x

)1/6 .
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In the remaining case

π6/5,6

8
≤ x ≤ π6/5,6

4
,

it follows easily that 1 ≤ 2 sin66/5,6 (2x) < 2 and 1 − 20S6 − 8S12 ≤ 0, hence we
obtain (7) again. The proof is complete. 	


To show Theorem 1.2, the following lemma is useful.

Lemma 3.2 ([5,6]) Let 1 < p, q < ∞. For x ∈ [0, 2],

qπp,q = p∗πq∗,p∗ ,

sinp,q

(πp,q

2
x
)

= cosq
∗−1

q∗,p∗
(πq∗,p∗

2
(1 − x)

)
.

Proof of Theorem 1.2 Let x ∈ [0, π6/5,2/2]. Then, since 4x/π6/5,2 ∈ [0, 2], it follows
from Lemma 3.2 that

sin6/5,2 (2x) = cos2,6

(
π2,6

2

(

1 − 4x

π6/5,2

))

= cos2,6

(
π2,6

2
− 2x

3

)

.

Thus,

sin6/5,2 2x =
√

1 − sin62,6

(
π2,6

2
− 2x

3

)

. (8)

The function sin2,6 has the addition formula (3). Letting u = π2,6/2 and v = 2x/3,
we have

sin2,6

(
π2,6

2
− 2x

3

)

= φ−1(−φ(V )) =
√

1 − V 2

1 + 2V 2 , (9)

where V := sin2,6 (2x/3). Applying (9) to the right-hand side of (8), we obtain

sin6/5,2 2x =
√√
√
√1 −

(
1 − sin22,6 (2x/3)

1 + 2 sin22,6 (2x/3)

)3

.

Let f (x) := sin6/5,2 x and g(x) := sin2,6 (2x/3). Then

f (2x) =
√

1 −
(

1 − g(x)2

1 + 2g(x)2

)3

. (10)
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Therefore, it is easy to see that

g(x) =
√

1 − (1 − f (2x)2)1/3

1 + 2(1 − f (2x)2)1/3
. (11)

On the other hand, by (1) with x replaced with x/2, we see that g(x) satisfies

g(x) = 2g(x/2)
√
1 − g(x/2)6

√
1 + 8g(x/2)6

.

Applying (11) with x replaced with x/2 to the right-hand side, we obtain

g(x) = 2 f (x)(1 − f (x)2)1/6
√
9 − 8 f (x)2

. (12)

Substituting (12) into (10), we can express f (2x) in terms of f (x), i.e.,

f (2x) =
√

1 −
(
9 − 8 f (x)2 − 4 f (x)2(1 − f (x)2)1/3

9 − 8 f (x)2 + 8 f (x)2(1 − f (x)2)1/3

)3

.

Since 1 − f (x)2 = cos6/56/5,2 x , the proof is complete. 	
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