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Abstract
We prove that for a large class of multiplicative functions, referred to as generalized
divisor functions, it is possible to find a lower bound for the corresponding variance in
arithmetic progressions. As a main corollary, we deduce such a result for any α-fold
divisor function, for any complex number α /∈ {1} ∪ −N, even when considering a
sequence of parameters α close in a proper way to 1. Our work builds on that of Harper
and Soundararajan, who handled the particular case of k-fold divisor functions dk(n),
with k ∈ N≥2.

Keywords Variance of complex sequences in arithmetic progressions · Divisor
functions and their generalization · Circle method · Ramanujan sums · Mean value of
multiplicative functions
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1 Introduction

Let f be a complex arithmetic function. It is believed that many f are roughly
uniformly distributed in arithmetic progressions, or equivalently that there is an
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approximation

∑

n≤N
n≡a (mod q)

f (n) ≈ 1

φ(q)

∑

n≤N
(n,q)=1

f (n)

for any a (mod q) with (a, q) = 1. Here N is a large positive integer and φ(q)

indicates theEuler totient function,which counts the number of reduced residue classes
mod q, i.e. classes a = 1, . . . , q with the greatest common divisor (a, q) = 1. In
order to understand whether this point of view may be correct or not we study the
variance

Vq( f ) = 1

φ(q)

∑

a=1,...,q
(a,q)=1

∣∣∣∣
∑

n≤N
n≡a (mod q)

f (n) − 1

φ(q)

∑

n≤N
(n,q)=1

f (n)

∣∣∣∣
2

.

In a series of works, Elliott [5,6] and Hildebrand [13] found upper bounds for Vq( f ),
for single moduli q, when f is a multiplicative function with absolute value bounded
by 1. Their results were improved by Balog et al. [1], who understood the asymptotic
of such variance, at worst in terms of certain exceptional moduli that naturally arise
in the context of distribution of functions in arithmetic progressions. We would also
like to draw the reader’s attention to a recent result of Klurman et al. [16] about the
variance of 1-bounded multiplicative functions in short arithmetic progressions.

For the specific case of d2(n) = ∑
d|n 1, the function which counts the number

of divisors of an integer n, such problem has been tackled in the paper of Banks et
al. [2]. More generally, for the k-th divisor function dk(n) = ∑

e1e2...ek=n 1, which
counts all the possible ways of decomposing n into a product of k positive integers, a
conjecture on the asymptotic behaviour of its variance in arithmetic progressions has
been suggested in the work of Keating et al. [15]. For another instance of this see the
paper of Gorodetsky and Rodgers [10], in which the authors provided also a prediction
on the behaviour of the variance in arithmetic progressions of the indicator function
of sums of two squares.

We now introduce an averaged version of the previous variance, defined in the
following way.

Definition 1.1 We define the variance of f in arithmetic progressions by

V (Q, f ) =
∑

q≤Q

∑

h|q

∑

a mod q
(a,q)=h

∣∣∣∣
∑

n≤N
n≡a mod q

f (n) − 1

φ(q/h)

∑

n≤N
(n,q)=h

f (n)

∣∣∣∣
2

. (1.1)

An asymptotic equality for V (Q, d2) has been established byMotohashi [23], whereas
for V (Q, dk) by de la Bretèche and Fiorilli [3]; for a smooth version of V (Q, dk), in
which the function dk(n) is twisted with a smooth weight, the result is contained in
the paper of Rodgers and Soundararajan [28]. It is important to note that the last two
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Lower bounds for the variance of generalized divisor functions in APs 625

articles deal only with values of Q lying in a limited range. More specifically, for any
δ > 0 it is roughly required that N 1/(1+2/k−δ) ≤ Q ≤ N 1/δ .

Finally, we would like to remark that the behaviour of the divisor functions in
arithmetic progressions has been studied also from other points of view. For instance,
Fouvry et al. [9] computed all the moments of the error terms in the distribution of the
d2-function in arithmetic progressions (see [9, Theorem 1.2]), showing that they obey
to a Gaussian law (see [9, Theorem 1.1]). These results were later generalized to all
the dk-functions by Kowalski and Ricotta [17].

1.1 Statement of themain results

The present paper studies the question of finding a lower bound for the quantity
V (Q, f ) when considering suitable generalizations f of the divisor functions intro-
duced above. The main reference on this problem is the Harper and Soundararajan’s
paper [12], in which the authors set up the bases for the study of lower bounds of vari-
ances of complex sequences in arithmetic progressions. More precisely, they showed
that for a wide class of functions with a controlled growth we can lower bound the
variance (1.1) with the L2-norm of the exponential sum with coefficients f (n) over
a large portion of the circle, namely, the so-called union of minor arcs. Since for
functions that fluctuate like random we usually expect that such integral makes the
largest contribution compared to that on the complementary portion (note how here
the situation is the opposite of what happens in some common additive problems, like
in the three-primes problem), we are led to the following heuristic:

V (Q, f ) � Q
∫ 1

0

∣∣∣∣∣∣

∑

n≤N

f (n)e(nϕ)

∣∣∣∣∣∣

2

dϕ,

where e(nϕ) stands for e2π inϕ , which by Parseval’s identity can be rewritten as

V (Q, f ) � Q
∑

n≤N

| f (n)|2. (1.2)

We would like to stress the importance of the exponent 2 in the comparison above.
Since the variance is a second (centred) moment, it is natural to compare it with a
mean square integral. In the Harper and Soundararajan’s method, such integral is over
the union of minor arcs. If we were looking at higher moments instead, the main
contribution over the circle might come from the complementary portion of the union
of major arcs, which are as usual defined as little arcs around fractions with small
denominator. This is essentially due to the fact that the peaks of the exponential sum
with coefficients f (n) over small neighbourhoods of such fractionsmight be amplified
by the effect of a higher power inside the integral.

The lower bound (1.2) has been proven to hold when f (n) = �(n) and f (n) =
dk(n), for k ≥ 2 a positive integer and Q in the range N 1/2+δ ≤ Q ≤ N , for any small
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626 D. Mastrostefano

δ > 0, by Theorems 1 and 2 in [12]. Here �(n) indicates as usual the Von Mangoldt
function.

The aimof this paper is to show that the newpowerfulmethod introduced in [12] can
be used to prove the validity of (1.2) for every α-fold divisor function dα(n), defined
as the n-th coefficient in the Dirichlet series of ζ(s)α on the half-plane 	(s) > 1,
except for some specific values of α. The result is contained in the following theorem.

Theorem 1.1 Let δ > 0 sufficiently small and consider N 1/2+δ ≤ Q ≤ N. For any
complex number α /∈ −N ∪ {1}, we have

V (Q, dα) �α,δ Q
∑

n≤N

|dα(n)|2 (1.3)

if N is large enough with respect to α and δ.

We now introduce the following class of functions, which extends that of divisor
functions.

Definition 1.2 A generalized divisor function is a multiplicative function for which
there exist a complex number α and positive real numbers β, A1, A2 such that the
following statistics hold:

∑

p≤x

f (p) log p = αx + O

(
x

(log x)A1

)
(2 ≤ x ≤ N ), (1.4)

∑

p≤x

| f (p) − 1|2 log p = βx + O

(
x

(log x)A2

)
(2 ≤ x ≤ N ) (1.5)

and such that | f (n)| ≤ dκ(n), for a constant κ > 0 and every N -smooth positive
integer n, i.e. for any n divisible only by prime numbers smaller than N .

In (1.4) and (1.5) the sums are over prime numbers p and we will keep such notation
throughout the rest of this paper.

Remark 1.2 From (1.4) we deduce that when α 
= 0

|α|N
(
1 + O

(
1

(log N )A1

))
=

∣∣∣∣∣∣

∑

p≤N

f (p) log p

∣∣∣∣∣∣

≤
∑

p≤N

| f (p)| log p

≤
∑

p≤N

κ log p

= κN

(
1 + O

(
1

(log N )A1

))
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Lower bounds for the variance of generalized divisor functions in APs 627

by the prime number theorem (see e.g. [22, Theorem 6.9]). We conclude that for any
α we have |	(α)| ≤ |α| ≤ κ(1+ O(1/(log N )A1)). Similarly, but using (1.5), we get
β ≤ (κ + 1)2(1 + O(1/(log N )A2)). In particular, we deduce that |α| ≤ κ + 1 and
β ≤ (κ + 2)2, if N is large enough in terms of κ, A1, A2 and the implicit constants
(1.4)–(1.5). By the monotonicity of dκ(n) as function of κ > 0 and by replacing κ

with κ + 1, we may thus assume that κ > 1 and |α| ≤ κ and β ≤ (κ + 1)2.

We define for future reference and for the sake of readiness the quantity

κ(α, β) := (κ + 1)2 + κ − 	(α) − β + 4 ≥ 4.

We observe that when f = dα(n) Eqs. (1.4)–(1.5) are trivially satisfied by the
prime number theorem, whose reference above, with β = |α − 1|2, κ = |α| + 2 and
any A1, A2 > 0. When α 
= 0, Theorem 1.1 is then a corollary of the following main
result.

Theorem 1.3 Let δ be a sufficiently small positive real number and N be a large
positive integer. Suppose that N 1/2+δ ≤ Q ≤ N. Let f (n) be a generalized divisor
function as in Definition 1.2 with α /∈ −N ∪ {0}. Furthermore, assume that

A1 > max{κ(α, β), κ + 2},
A2 > A1 − κ(α, β) + 1,

β ≥ (log N )κ(α,β)−A1 ,

|�(α)| ≤ log N , (1.6)

where �(α) is the Gamma function. Finally, let

c0 =
∏

p≤N

(
1 + f (p)

p
+ f (p2)

p2
+ · · ·

)(
1 − 1

p

)α

and suppose that
(log N )1−δ|c0| ≥ 1. (1.7)

Then we have

V (Q, f ) �
∣∣∣∣
c0β

�(α)

∣∣∣∣
2

Q
∑

n≤N

| f (n)|2. (1.8)

The implicit constant above may depend on δ, κ, A1, A2 and the implicit constants in
(1.4)–(1.5) and we take N large enough depending on all of these parameters.

Remark 1.4 We note that we clearly have A1, A2 > 1. Also, the implicit constant in
(1.8) does not depend on α.

Remark 1.5 The last condition in (1.6) has been inserted to avoid the scenario in which
α is too close to a pole of the Gamma function, which would make us losing control on
the average of f (n) over integers n ≤ N , thus precluding us from producing a lower
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628 D. Mastrostefano

bound for V (Q, f ). However, by slightly modifying the conditions on A1, A2 and β

in (1.6), as well as the definition of other parameters involved in the proof, it may be
possible to relax such restriction to make |�(α)| indeed smaller than a suitable larger
power of log N .

Remark 1.6 Condition (1.7) makes sure that f looks nice on the primes p ≤ κ , thus
excluding certain patterns of f (p) where c0 is too close to 0. However, in this last
situation, one could still be able to replace (1.8) with a lower bound of a different
shape by carefully understanding some non-trivial derivatives of the Euler product of
the Dirichlet series of f .

Theorem 1.3 is quite technical, but it does not merely represent an improvement
upon Theorem 1.1. Indeed it allows us to lower bound the variance of multiplicative
functions that arise from divisor functions, such as for instance positive integer powers
of d2(n) or products of divisor functions as d2(n)d3(n), but also, andmost importantly,
of those that behave very differently from the simple divisor functions. As a concrete
example of this last case we state here the following corollary.

Corollary 1.7 Let δ > 0 be sufficiently small and consider N 1/2+δ ≤ Q ≤ N. Let S
be the set of all integer sums of two squares. Then we have

V (Q, 1S) �δ

QN√
log N

(1.9)

if N is large enough with respect to δ.

Remark 1.8 Note that the lower bound (1.9) is consistent with the Parseval heuristic
(1.2).

The distribution of sums of two squares in arithmetic progressions has been studied
by a number of authors, among which Fiorilli [8], Iwaniec [14], Lin–Zhan [19] and
Rieger [26,27].

1.2 About the variance of certain multiplicative functions in arithmetic
progressions

For suitably chosen parameters K , Q and Q0,we are going to define the so-called set of
major arcsM = M(Q0, Q; K ), consisting of thoseϕ ∈ R/Zhaving an approximation
|ϕ − a/q| ≤ K/(qQ), with q ≤ K Q0 and (a, q) = 1. Let m, the minor arcs, denote
the complement of the major arcs in R/Z. Clearly, this last set occupies almost the
totality of the circle, depending on K , Q and Q0, and it consists of real numbers well
approximated by rational fractions with large denominator.

The idea exploited in [12] was to connect the variance in arithmetic progressions
with the minor arc contribution of the exponential sum with coefficients f (n). This
point of view was already widespread and present in the literature, like for example in
the works of Liu [20,21] and Perelli [25]. However, as explained in [12], the previous
arguments relied on the connection between character sums and exponential sums
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Lower bounds for the variance of generalized divisor functions in APs 629

(similarly as in the usual deductions of themultiplicative large sieve inequality), which
can only be made to work for the �-function sequence or for other sequences without
small prime factors. In contrast, as pointed out in [12], Harper and Soundararajan
avoided the use of Dirichlet characters in favour of Hooley’s approach, connecting
the variance of f (n) in arithmetic progressions with the variance of the exponential
sums

∑
n≤N f (n)e(na/q). By positivity of the variance one can discard the major

arc contribution to the latter, leaving only a minor arc contribution and some terms
involving Ramanujan sums cd(n) with d fairly large. Those sums are simply defined
as

cd(n) =
∑

a=1,...,d
(a,d)=1

e(an/d)

and characterized by their main property that we will make use of several times in the
future

cd(n) =
∑

k|(n,d)

kμ(d/k), (1.10)

whereμ(n) is theMobius function. In details, the result proved in [12] is the following.

Proposition 1.9 Let N be a large positive integer, K ≥ 5 be a parameter and Q, Q0
be such that

K
√
N log N ≤ Q ≤ N and

N log N

Q
≤ Q0 ≤ Q

K 2 . (1.11)

Keeping notations as above, we then have

V (Q, f ) ≥Q
(
1 + O

( log K
K

)) ∫

m
|F(ϕ)|2dϕ + O

(NK

Q0

∑

n≤N

| f (n)|2
)

+ O

( ∑

q≤Q

1

q

∑

d|q
d>Q0

1

φ(d)

∣∣∣
∑

n≤N

f (n)cd(n)

∣∣∣
2
)

, (1.12)

where F(ϕ) := ∑
n≤N f (n)e(nϕ).

It is clear that Proposition 1.9 boils the variance question down to find a lower bound
for the integral over the minor arcs of |F(ϕ)|2. The particular form of the above result
suggests a heuristic leading to (1.2). Indeed, if the contribution of F(ϕ) on the minor
arcs exceeds that on the major arcs, we can approximate the integral in (1.12) with the
integral over all the circle, obtaining

∫

m
|F(ϕ)|2dϕ ≈

∑

n≤N

| f (n)|2

by Parseval’s identity. For instance, we expect such behaviour for all the functions
f (n) = dα(n) with α 
= 1. Indeed, we believe that those divisor functions do not
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630 D. Mastrostefano

correlate with the exponential phase. However, when α equals a negative integer, the
situation is possibly subtle, as shownby the following discussion.Consider for instance
α = −1. Now the sum F(ϕ) over the major arcs would be close to

∑
n≤N μ(n) and

by the square root cancellation principle it should be at most N 1/2+ε, for an arbitrary
small ε. On the other hand, F(ϕ) roughly coincides with

∑
n≤N μ(n)e(nϕ) over the

minor arcs, where by the random fluctuations of the prime numbers we expect a value
of roughly

√
N , being a sum of N pseudorandom phases. In conclusion, it is difficult

to distinguish between major and minor arc contribution in the case of the Mobius
function.

When instead α is either 0 or 1 the simple form of those divisor functions allows
us to elementarily study the associated variance. The result is contained in the next
proposition, which in the latter case highlights a different variance behaviour from the
Parseval heuristic compared to the other divisor functions.

Proposition 1.10 For any Q ≥ 1, we have

V (Q, d0) = Q + O(log Q),

V (Q, d1) � Q2.1

Proof Let us start with the function d0(n). It is clear that the contribution to (1.1)
is not zero only if h = 1 and in such case the term inside the square reduces to
1a≡1 (mod q)(a) − 1/φ(q). Thus we get

V (Q, d0) =
∑

q≤Q

(
1 − 1

φ(q)

)2

+
∑

q≤Q

∑

a (mod q)
(a,q)=1

a 
≡1 (mod q)

1

φ(q)2

=
∑

q≤Q

(
1 − 1

φ(q)

)
= Q + O(log Q)

by Landau’s result [18, p. 184]. This concludes the proof of the first part of Proposition
1.10 and of the case α = 0 in Theorem 1.1.

Let us now consider the function d1(n) ≡ 1, for all n ∈ N. We immediately see
that

∑

n≤N
n≡a (mod q)

d1(n) = N

q
+ O(1).

On the other hand, we have

∑

n≤N
(n,q)=h

d1(n) = N

q
φ(q/h) + O(d2(q/h))

1 In a forthcoming paper we will prove a corresponding matching lower bound, for values of Q ≥ CN2/3,
where C is a sufficiently large positive constant and N is large enough.
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Lower bounds for the variance of generalized divisor functions in APs 631

using [31, ch. I, Theorem 2.8] and [31, ch. I, Theorem 2.13]. Inserting these two
identities in (1.1), we get

V (Q, f ) �
∑

q≤Q

∑

h|q

∑

a (mod q)
(a,q)=h

1 ≤
∑

q≤Q

q � Q2,

where we used that d2(n)/φ(n) � 1, for any n ∈ N.
This concludes the proof of Proposition 1.10. 
�

We insert here a discussion about the case α = 0, in which the variance of a specific
class of functions can be easily estimated and its value does not match the Parseval
heuristic.

Indeed, all the positive monotone non-increasing multiplicative functions satisfy
(1.4) and (1.5) with α = 0 and β = 1, since such functions must be of the shape
f (n) = n−γ , for a certain γ > 0. Thus we observe that (1.2), if true, holds only for
certain values of Q in the range N 1/2+δ ≤ Q ≤ N . In fact, if we assume γ < 1/2,
then the variance (1.1) can be seen to be � Q2, which can be fairly small compared
to Q

∑
n≤N f (n)2 � QN 1−2γ . This is because for such class of functions we have

the following bound:

∣∣∣∣
∑

n≤N
n≡a (mod q)

f (n) − 1

φ(q/h)

∑

n≤N
(n,q)=h

f (n)

∣∣∣∣ � f (1) = 1

for any triple a, q, h with (a, q) = h. Similar considerations hold if we replace non-
increasing with non-decreasing.

When α = 1, Proposition 1.10 states that the corresponding variance in arithmetic
progression is at most a possibly large constant times Q2, whereas the Parseval heuris-
tic would suggest a lower bound of QN . However, one might wonder what happens
for a sequence of divisor functions f = dαN for values of αN close to 1. In this case,
Theorem 1.3 still gives us a lower bound for the variance.

Theorem 1.11 Let A > 0 be a real number and αN = 1 + 1/R(N ), where R(N ) is
a real non-vanishing function such that |R(N )| ≤ (log N )A. Let δ > 0 small enough
and N 1/2+δ ≤ Q ≤ N. Then there exists a constant C > 0 such that if |R(N )| ≥ C
we have 2

V (Q, dαN ) �δ,A
QN

R(N )4
exp

((
2 + 1

R(N )

)
log log N

R(N )

)
, (1.13)

2 In a forthcoming paper we will prove a stronger lower bound valid for larger values of R(N ), by pursuing
a different approach fromwhat has been done here. In particular, wheneverC log log N ≤ |R(N )| ≤ N δ/12,
for a suitably large constant C > 0, we are able to improve (1.13) to

V (Q, dαN ) �δ
QN

R(N )2
log

(
log N

log(N/Q)

)
+ Q2

if N is large enough with respect to δ, which we expect to be best possible.
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if N is large enough with respect to δ and A.

1.3 Lower bounding the integral over theminor arcs

The two error terms in (1.12) can be fairly easily estimated and I will insert the details
in due course. Regarding the main term we first follow the idea introduced in [12] to
apply the Cauchy–Schwarz inequality to get

∫

m
|F(ϕ)|2dϕ ≥

( ∫

m
|F(ϕ)F̃(ϕ)|dϕ

)2(∫

m
|F̃(ϕ)|2dϕ

)−1

, (1.14)

where

F̃(ϕ) =
∑

n≤N

⎛

⎜⎜⎝
∑

r |n
r≤R

g(r)

⎞

⎟⎟⎠ e(nϕ)

for a suitable function g(r). In this way we are reduced to estimate integrals of expo-
nential sums in which the coefficients are an opportune approximation of the function
f (n). The heart of the proof in [12] was in the observation that we can move from
integrals of exponential sums with coefficients f (n) to sums where f (n) is twisted by
a Ramanujan sum cq(n). The result is contained in the following proposition, which
is a minor modification and a simplified version of [12, Proposition 3], in which a
smooth weight in the average of f has been removed by introducing a small error
term.

Proposition 1.12 Keep notations as above, and assume that K Q0 ≤ R ≤ √
N and

| f (n)| �ε N ε for any ε > 0 and n ≤ N. Then

∫

m

∣∣∣F(ϕ)F̃(ϕ)

∣∣∣ dϕ ≥
∑

KQ0<q≤R

∣∣∣
∑

r≤R
q|r

g(r)

r

∣∣∣
∣∣∣
∑

n≤N

f (n)cq(n)

∣∣∣

+Oε(�RN
1
2+ε + N/ logB N ), (1.15)

where � = maxr≤R |g(r)| and B any positive real constant.

In [12] Proposition 1.12 has been applied to deduce the lower bound for the variance
of primes in arithmetic progressions as well as for the sequence of divisor functions
dk(n), for a positive integer k ≥ 2. In the former case, the computations are relatively
straightforward because (n, q) = 1 for almost all prime (or prime power) values of
n, so the Ramanujan sum cq(n) takes the value μ(q) for almost all such values. In
the latter, the argument is more intricate and requires a lot more work. The authors
showed that it is possible to find a lower bound for

∑
n≤N dk(n)cq(n), when suitably

restricting the range in which q varies. However, their techniques do not extend to the
case of any general divisor function of parameter α ∈ C.
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Lower bounds for the variance of generalized divisor functions in APs 633

Indeed, the main difference between our approach and that of Harper and
Soundararajan is in the computation of themean value of f (n) twistedwith a Ramanu-
jan sum. More precisely, Harper and Soundararajan used the classical approach of
rewriting the sum in question as an integral of the corresponding Dirichlet series,
by means of Perron’s formula and then concluding the estimate by using a residue
computation. This strategy is admissible since the aforementioned Dirichlet series is
a slight variation of ζ(s)k ; since k is a positive integer, it can be extended to a mero-
morphic function on the whole complex plane with just one pole at 1. On the other
hand, when replacing k with any complex number α, the function ζ(s)α may have an
essential singularity at s = 1; more generally, for the class of functions f (n) intro-
duced in Definition 1.2, the corresponding Dirichlet series may only be defined on
the half-plane of complex numbers with real part greater than or equal to 1 and there
represents a smooth function. One possible way to handle these differences, and to
work on full generality at the same time, is to apply the Selberg–Delange’s method (or
better, a suitable generalization for multiplicative functions proved by Granville and
Koukoulopoulos [11]) to compute asymptotically the sum

∑
n≤N f (n)cq(n). Clearly,

the product f (n)cq(n) is not a multiplicative function and this is an obstruction to
an immediate application of such a result. To overcome this, the idea is to break the
above sum down into smaller chunks that are easier to understand and in particu-
lar, to reduce ourselves to apply the Selberg–Delange’s method to the much more
manageable average of f over a coprimality condition. More precisely, we notice that

∑

n≤N

f (n)cq(n) =
∑

b≤N
p|b⇒p|q

f (b)cq(b)
∑

a≤N/b
(a,q)=1

f (a) (1.16)

using the substitution n = ab, with (a, q) = 1 and b = n/a, which is unique,
and properties of the Ramanujan sums. Thanks to this decomposition we can apply
the Selberg–Delange’s method to the simple average of f (a) over the coprimality
condition (a, q) = 1.

Since we are seeking for a lower bound of the integral in (1.15), we can restrict the
sum over q to a subset of integers between K Q0 and R satisfying certain conditions
that will help us to compute a lower bound for (1.16). In the following we set for future
reference all the conditions we ask q to be subject to. Let ε be a small positive real
number to be chosen at the end in terms of δ, κ, A1, A2 and the implicit constants in
(1.4)–(1.5). Moreover, let A, B,C and D positive real constants to be chosen in due
course. Then we ask that

(1) q ∈ [K Q0, N 1/2−3δ/4] squarefree.
(2) ω(q) ≤ A log log N , where ω(.) is the prime divisors counting function. Equiv-

alently, we are asking that the number of prime factors of q is bounded by the
expected one.

(3) q = tss′, with

(a) p|s ⇒ p ≤ (log N )B , i.e. s is (log N )B-smooth.
(b) s′ ≤ N ε, with p|s′ ⇒ p > (log N )B , i.e. s′ smaller than a suitably small

power of N and (log N )B-rough.
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(c) s′ ∈ A′, where

A′ :=
{
s′ :

∑

p|s′
log p

min{| f (p) − 1|, 1} ≤ ε log N

κ

}
.

It is equivalent to ask that f is never too close to 1 on several prime factors of
s′.

(d) t a prime in [N 1/2−3δ/4−ε, N 1/2−3δ/4−ε/2], supposing the existence of a unique
large prime factor in the prime factorization of q.

(4) for any prime p|q we have p > C , i.e. q does not have any very small prime factor.
(5) (a) | f (p) − 1| > 1/

√
log log N , if p|ss′, i.e. on those primes f is never too close

to 1.
(b) p > C/| f (p) − 1| for any p|ss′.
(c) f (t) 
= 1.

(6) To avoid the scenario in which q has lots of small prime factors, we require q ∈ A,

where

A :=
{
q :

∑

p|q

(log p)A1+1

p3/4
≤ D

}
.

Under the restrictions (1), (4) and (6) on q, we can develop the average of f under
the coprimality condition (a, q) = 1 as

∑

a≤N/b
(a,q)=1

f (a) = N

b
(log(N/b))α−1

×
⎛

⎝
J∑

j=0

λ j

(log(N/b)) j
+ O((log(N/b))κ−A1−1(log log N ))

⎞

⎠

(1.17)

for any b ≤ N , where J = �A1� and λ j = λ j ( f , α, q) are certain coefficients with
a controlled growth on average over q. Here we see the need to restrict ourselves to
values of α /∈ −N∪{0}. Indeed, each λ j turns out to be a multiple of the reciprocal of
�(α − j) and−N∪{0} is exactly the set of poles of the Gamma function. If α belongs
to it, all the terms in the sum over j vanish and we no longer have an asymptotic
expansion for the average of f . Losing control on (1.17) does not allow us to find an
explicit lower bound for the variance (1.1), with the method developed here.

Plugging (1.17) into (1.16), we are basically left to evaluate the truncated Dirichlet
series

∑

b≤N :
p|b⇒p|q

f (b)cq(b)

b
(log(N/b))α̃
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with α̃ ∈ {α − 1, α − 2, . . . , α − J − 1}. Heuristically, we might expect they behave
like

(log N )α̃
∑

b|q
f (b)μ(q/b). (1.18)

Indeed, the above sums have their major contribution coming from the squarefree
b ≤ N sharing their prime factors only with q. On those integers they reduce to a sum
over the divisors of q. Inserting now (1.10), swapping summations and assuming that
(log(N/b))α̃ may be replaced by (log N )α̃ on average over b ≤ N , we arrive for them
to an expression like

(log N )α̃
∑

b|q
f (b)μ(q/b)

∑

k| qb

f (k)

k
.

Here the innermost sum is

∑

k| qb

f (k)

k
=

∏

p| qb

(
1 + f (p)

p

)
,

which thanks to the uniform boundedness of f on primes does not affect our compu-
tation on average over q, thus leaving us essentially with understanding the behaviour
of (1.18). However, this is a very rough prediction based on arithmetic properties of
the Ramanujan sums and of our generalized divisor functions. Technically speaking,
there are several details to take into account which make the evaluation of those sums
quite complicated, as for instance the presence of possibly very large divisors of q, for
which the value of (log(N/b))α̃ cannot be approximated with (log N )α̃ . Thus, the idea
is to exploit the structure of the Ramanujan sums, leading to a useful decomposition of
these truncated series given by splitting the integers q = rs ≤ N 1/2, with s supported
only on small prime numbers as in condition (3.a), whereas r will be written as r = ts′
later on, with t and s′ subject to conditions (3.b) − (3.d). In view of this factorization
and using the Dirichlet hyperbola method we have the following identity:

∑

b≤N
p|b⇒p|q

f (b)cq(b)

b
(log(N/b))α̃

=
∑

b1≤
√
N

p|b1⇒p|r

f (b1)cr (b1)

b1

∑

b2≤N/b1
p|b2⇒p|s

f (b2)cs(b2)

b2
(log(N/b1b2))

α̃

+
∑

b2≤
√
N

p|b2⇒p|s

f (b2)cs(b2)

b2

∑
√
N<b1≤N/b2
p|b1⇒p|r

f (b1)cr (b1)

b1
(log(N/b1b2))

α̃, (1.19)

since by multiplicativity of cq(n) as function of q and definition of r , s we have

cq(b) = cr (b)cs(b) = cr (b1)cs(b2).
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We will show that the contribution from the second double sum on the right-hand side
of (1.19) is negligible, because the innermost sum there is a tail of a convergent series.
We are left then with finding an estimate for the first one. Regarding the innermost
sum there, this can be done by expanding the α̃-power of the logarithm log(N/b1b2),
using the generalized binomial theorem. In this way we obtain a sum of successive
derivatives of the Dirichlet series in question, which can be handled by means of sev-
eral applications of the Faà di Bruno’s formula, which is a combinatorial expression
for the derivative of the composition of two functions (see for instance Roman’s paper
[29]). It remains to estimate the outermost sum twisted again with a fractional power
of log(N/b1). In order to compute this we insert a key hypothesis on the structure
of q, i.e. to be divisible by an extremely large prime number of roughly the size of√
N , as in condition (3.d). Indeed, it seems crucial to avoid the situation in which r

has several large divisors, thus gaining more control on the factor log(N/b1). This is
another main difference with the approach employed in [12], where the restriction on
q consisted only on taking N ε-smooth numbers, for a carefully chosen small ε > 0.
Under our assumption, the aforementioned sums can be handled by using the multi-
nomial coefficient formula, which gives the expansion for a positive integer power of
a multinomial sum (see for example Netto [24]).

We will end up with

|
∑

n≤N

f (n)cq(n)| � |c0|N (log N )	(α)−1

|�(α)| |( f ∗ μ)(q)|,

where c0 is as in the statement of Theorem 1.3. Here we indicate with f ∗ g the
Dirichlet convolution between any two functions f and g. Inserting this final lower
bound in (1.15), plugging this in Proposition 1.9 and estimating the remaining minor
quantities, we deduce that

V (Q, f ) � |c0|QN (log N )−β+2(	(α)−1)

|�(α)|2

⎛

⎝
′∑

q≤N

| f ∗ μ(q)|2
q

⎞

⎠
2

, (1.20)

where the sum
∑′

is over all the integers q satisfying the restrictions (1)–(6). The
proof now ends after showing that

′∑

q≤N

| f ∗ μ(q)|2
q

� β(log N )β and
∑

n≤N

| f (n)|2 � N (log N )β+2(	(α)−1)

so that to deduce

V (Q, f ) �
∣∣∣∣
c0β

�(α)

∣∣∣∣
2

QN (log N )β+2(	(α)−1) �
∣∣∣∣
c0β

�(α)

∣∣∣∣
2

Q
∑

n≤N

| f (n)|2.
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2 Proof of corollaries of Theorem 1.3

This section is devoted to the proof of some applications of our main theorem that
have already been mentioned in the introduction.

Proof of Theorem 1.1 The case α = 0 has already been handled by Proposition 1.10.
When instead α /∈ −N ∪ {0, 1}, Theorem 1.3 can be applied.

Notice than that c0 = 1 as we can see from the following identities:

∑

k≥0

dα(pk)

pk
=

(
1 − 1

p

)−α

for any prime p and any complex number α. Thus, assumption (1.7) is satisfied.
Moreover, since α /∈ −N∪{0, 1} and β = |α − 1|2 > 0 are constant and equations

(1.4)–(1.5) are satisfied with any A1, A2 > 0, also the relations (1.6) hold.
Theorem 1.3 now gives the thesis. 
�

Proof of Corollary 1.7 The function1S ismultiplicative and satisfies (1.4) and (1.5)with
α = β = 1/2 and any A1, A2 > 0, by the prime number theorem for the arithmetic
progression 1 (mod 4) (see e.g. [22, Corollary 11.20]). Thus, the inequalities (1.6)
hold.

By Mertens’ theorem for the arithmetic progressions 1 (mod 4) and 3 (mod 4)
(see e.g. [22, Corollary 4.12]) we have c0 � 1, thus implying assumption (1.7).

We again conclude by using (1.8). 
�
Proof of Theorem 1.11 We let f (n) = dαN (n), with αN = 1 + 1/R(N ) as in the
statement. By choosingC large enough, we may assume 1/2 ≤ α2

N ≤ 3/2. Using [11,
Theorem 1] with A1 = 4 we see that

∑

n≤N

f 2(n) =
3∑

j=0

c j (α2
N )

�(α2
N − j)

N (log N )α
2
N− j−1 + O

(
N log log N

log N

)
(2.1)

with coefficients c j (α2
N ) defined by

c j (α
2
N ) = d j

dz j
(z − 1)α

2
N F(z)

z

∣∣∣∣
z=1

,

where F(z) is the Dirichlet series of f 2(n). By adapting the proof of the C4-
continuation of F(z)(z−1)α

2
N to the half-plane	(z) ≥ 1 at the start of [11, Sect. 2], we

can easily check that every c j (α2
N ) is uniformly bounded, for every 1/2 ≤ α2

N ≤ 3/2.
Moreover, for any j ≥ 1

�(α2
N − j) = �(α2

N )

(α2
N − j)(α2

N − j + 1) · · · (α2
N − 1)
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from which we deduce that

|�(α2
N )| � 1 and |�(α2

N − j)| � 1

thanks to the continuity of �(z) and our hypothesis on αN . Hence, we conclude that

∑

n≤N

f 2(n) � N (log N )α
2
N−1 = N exp

((
2 + 1

R(N )

)
log log N

R(N )

)
(2.2)

if N is large enough, where we also used that

c0(α
2
N ) =

∏

p

(
1 + f (p)2

p
+ f (p2)2

p2
+ · · ·

)(
1 − 1

p

)α2
N � 1.

Similarly, we have

c0 =
∏

p≤N

(
1 + f (p)

p
+ f (p2)

p2
+ · · ·

)(
1 − 1

p

)αN

� 1.

We notice that relations (1.6) are trivially satisfied, with β = 1/R(N )2, since R(N ) is
allowed to grow at most as a large power of log N and we can take A1, A2 arbitrarily
large.

An application of Theorem 1.3, together with equation (2.2), leads to (1.13), since
again by the continuity of the Gamma function we have |�(αN )| � 1. 
�

3 Mean value of multiplicative functions under a coprimality
condition

In this section we will show how to handle averages of multiplicative functions satis-
fying (1.4) under a coprimality condition. Since we are going to use the full strength
of [11, Theorem 1], we report it here for the sake of readiness and in a form more
suitable for our purposes.

Theorem 3.1 Let f be a multiplicative function satisfying (1.4) and such that there
exists κ > 1 with | f (n)| ≤ dκ(n), for any N-smooth positive integer n. Let J be the
largest integer < A1 and the coefficients c j = c j ( f , α) defined by

c j = 1

j !
d j

dz j

(
ζN (z)−αF(z)

((z − 1)ζ(z))α

z

)

z=1
for any j ≤ J

with

F(z) =
∑

n:
p|n⇒p≤N

f (n)

nz
, ζN (z) =

∑

n:
p|n⇒p≤N

1

nz
.
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Then we have

∑

n≤x

f (n) = x
J∑

j=0

c j
(log x)α− j−1

�(α − j)
+ O(x(log x)κ−1−A1(log log x)) (2 ≤ x ≤ N ).

(3.1)
The big-Oh constant depends at most on κ, A1 and the implicit constant in (1.4). The
dependence on A1 comes from both its size and its distance from the nearest integer.
Moreover, the condition | f (n)| ≤ dκ(n) can be relaxed to the following two ones on
average over prime powers

∑

p≤x

| f (p)| log p

p
≤ κ log x + O(1) (2 ≤ x ≤ N )

∑

p≤x
j≥1

| f (p j )|2
p j

≤ κ2 log log x + O(1) (2 ≤ x ≤ N ), (3.2)

where the big-Oh terms here depend only on κ .

Proof We first note that [11, Theorem 1] gives an asymptotic for the mean value of
multiplicative functions for which we know their behaviour on average over all the
prime numbers, including those much larger than N , whereas here we are interested
only in the value of f (pk), for prime powers pk with p ≤ N . However, we can freely
replace f with the function equal to f itself on such prime powers and such that

f (pk) = dα(pk) for any p > N and k ≥ 1.

Then Theorem 3.1 readily follows from [11, Theorem 1]. Indeed, it is clear that the
statistic [11, Eq. 1.2] corresponds to (1.4) here. Moreover, the condition | f (n)| ≤
dκ(n), for every n ≤ N , trivially translates to our condition only on N -smooth
numbers, since it is equivalent to the corresponding one on prime powers. Same con-
siderations for the statistics (3.2), which are slightly weaker than the corresponding
conditions [11, Eq. (7.1)–(7.2)].

The only main difference is in the representation of the coefficients c j . Indeed, in [11]
such coefficients are defined as

c j = 1

j !
d j

dz j
(z − 1)α F̃(z)

z

∣∣∣∣
z=1

,

with F̃(z) the Dirichlet series of f (n). Here we multiply and divide the above expres-
sion by ζ(z)−α and notice that

ζ(z)−α F̃(z) = ζN (z)−αF(z),

where ζN (z) and F(z) are defined as in the statement of the theorem. Since the function
((z − 1)ζ(z))α is a holomorphic function on 	(z) ≥ 1 for any α ∈ C, we see that
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each coefficient c j is basically the j-th derivative of an Euler product. In particular,
we have

c0 =
∏

p≤N

(
1 + f (p)

p
+ f (p2)

p2
+ · · ·

)(
1 − 1

p

)α

.

Potentially, the coefficients c j could grow together with N and α. However, the next
lemma shows that under our hypotheses on f they are indeed uniformly bounded.

Lemma 3.2 Let f be a multiplicative function satisfying (1.4) for some α ∈ C and
such that | f (n)| ≤ dκ(n), for some κ > 1 and every N-smooth number n. Then

c j � 1 for any 0 ≤ j ≤ J ,

where the implicit constant may depend on κ, A1 and the implicit constant in (1.4)
and we take N large enough with respect to these parameters.

Proof It is clear that c0 is uniformly bounded in N and α. Indeed, since by hypothesis
f (pk) ≤ dκ(pk), for any prime p ≤ N and integer k ≥ 0, either c0 = 0 or we can
write

c0 = exp

( ∑

p≤N

(
f (p) − α

p
+ Oκ

(
1

p2

)))
� 1

by partial summation from (1.4), where the implicit constant may depend on κ, A1
and the implicit constant in (1.4) and we take N large enough with respect to these
parameters.

It is not that straightforward though to show that each c j , for j ≥ 1, is uniformly
bounded in N and α. To this aim we employ the following procedure borrowing some
ideas from the discussion in [11, Sect. 2]. Since c j is the j-th derivative at z = 1 of
the product between H(z) = ζN (z)−αF(z) and Zα(z) = ((z − 1)ζ(z))α/z, we only
need to show that all the l-derivatives of H(z) at z = 1 are uniformly bounded, for
any l ≤ J . Indeed, this is certainly true for all the m-derivatives of Zα(z) at z = 1, for
any m ≤ J , and we have

(H(z)Zα(z))( j)(1) =
∑

l+m= j

(
j

l

)
H (l)(1)Z (m)

α (1).

We have F(z) = F1(z)F2(z), where

F1(z) =
∑

n≥1:
p|n⇒p≤N

d f (n)

nz
=

∏

p≤N

(
1 − 1

pz

)− f (p)

,

where d f (n) is the multiplicative function satisfying

d f (p
k) =

(
f (p) + k − 1

k

)
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over all the prime powers pk , with p ≤ N , and

F2(z) =
∑

n≥1:
p|n⇒p≤N

R f (n)

nz

with f (n) = d f ∗R f (n).Since R f is supported only on square-full integers, |R f (n)| ≤
d2κ(n) and for every l ≥ 0 we have

F (l)
2 (1) =

∑

n≥1:
p|n⇒p≤N

R f (n)(− log n)l

n
,

it is clear that all the derivatives of F2 at z = 1 are uniformly bounded.
Arguing similarly as before, we are left with showing that all the derivatives of

H1(z) = ζN (z)−αF1(z) =
∏

p≤N

(
1 − 1

pz

)− f (p)+α

at z = 1 are uniformly bounded.
To this aim, for any 1 ≤ l ≤ J we use the Faà di Bruno’s formula [29, p. 807,

Theorem 2] to find

H (l)
1 (1) = H1(1)l!

∑

m1+2m2+···+lml=l

∏l
i=1(h

(i−1)(1))mi

1!m1m1!2!m2m2! · · · l!mlml ! , (3.3)

where

h(z) = H ′
1

H1
(z) =

∑

p≤N

(α − f (p)) log p
∞∑

k=0

dα− f (pk)

p(k+1)z
,

where as before dα− f (n) is the multiplicative function satisfying

dα− f (p
k) =

(
α − f (p) + k − 1

k

)

over all the prime powers pk , with p ≤ N . From this we deduce that

h(i−1)(1) =
∑

p≤N

(α − f (p))(log p)i
∞∑

k=0

dα− f (pk)(−k − 1)i−1

p(k+1)

= (−1)i−1
∑

p≤N

(α − f (p))(log p)i

p
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+
∑

p≤N

(α − f (p))(log p)i
∞∑

k=1

dα− f (pk)(−k − 1)i−1

p(k+1)

= (−1)i−1
∑

p≤N

(α − f (p))(log p)i

p
+ Oi,κ

( ∑

p≤N

(log p)i

p2

)

= (−1)i−1
∑

p≤N

(α − f (p))(log p)i

p
+ Oi,κ (1),

where we used that |dα− f (n)| ≤ d2κ(n). The last sum above can be estimated
with a partial summation argument from (1.4), for any 1 ≤ i ≤ J . We thus find
|h(i−1)(1)| � 1, with an implicit constant depending on κ, A1, i and the implicit con-
stant in (1.4). Inserting this into (3.3) also gives H (l)(1) � 1, with now an implicit
constant depending on κ, A1, l and the implicit constant in (1.4), since we can prove
that H(1) is uniformly bounded in much the same way as we did for c0. Together with
previous considerations this concludes the proof of the lemma. 
�
The previous lemma shows that the coefficients in the asymptotic expansion (3.1)
are well defined and indeed uniformly bounded independently of N and α, for given
A1. This will also turn out to be useful in several future applications of Theorem 3.1,
in which in order to make sure that the first term in the asymptotic expansion (3.1)
dominates, we will need a careful control on the other terms.

Together with previous observations, it proves this version of [11, Theorem 1]. 
�
We are going to apply the above theorem to prove its slight variation about sums

restricted to those integers up to x coprime with a parameter q, satisfying certain
suitable properties.

Theorem 3.3 Let f (n) be amultiplicative function with complex values such that there
exists κ > 1 with | f (n)| ≤ dκ(n), for any N-smooth positive integer n, and satisfying
(1.4)withα ∈ C\{{0}∪−N}.Moreover, suppose that q is a positive squarefree number
smaller than N satisfying condition (4), i.e. for any prime p|q we have p > C, where
C > κ2 will be chosen later on in terms of δ, κ, A1 and the implicit constant in (1.4).
Then for any 4 ≤ x ≤ N we have

∑

n≤x
(n,q)=1

f (n) = x(log x)α−1
J∑

j=0

λ j

(log x) j

+ O(|G̃(2�A1�+2)
q (1)|x(log x)κ−A1−1(log log x))

+ O

(
x3/4

∑

d|q

dκ(d)

d3/4

)
, (3.4)

where J is the largest integer < A1, �A1� is the integer part of A1 and we define

λ j = λ j ( f , α, q) = 1

�(α − j)

∑

l+h= j

(H−1
q )(h)(1)cl

h!
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with

Hq(z) =
∏

p|q

(
1 + f (p)

pz
+ f (p2)

p2z
+ · · ·

)
and G̃q(z) =

∏

p|q

(
1 + | f (p)|

pz

)

on 	(z) ≥ 1. Here the big-Oh constant depends on κ, A1 and the implicit constant in
(1.4).

Proof To begin with, let us define an auxiliary multiplicative function f̃ such that

f̃ (p j ) =
{
f (p j ) if p � q;
f (p) j otherwise.

Then we may rewrite the sum in question as

∑

n≤x
(n,q)=1

f̃ (n) =
∑

n≤x

f̃ (n)
∑

d|n,d|q
μ(d) =

∑

d|q
μ(d)

∑

n≤x
d|n

f̃ (n) =
∑

d|q
μ(d)

∑

k≤x/d

f̃ (dk)

=
∑

d|q
d≤x/2

μ(d)
∑

k≤x/d

f̃ (dk) +
∑

d|q
x/2<d≤x

μ(d) f̃ (d). (3.5)

The completely multiplicative structure of f̃ on the numbers divisible only by prime
factors of q allows us to rewrite the first double sum in (3.5) as

∑

d|q
d≤x/2

μ(d) f̃ (d)
∑

k≤x/d

f̃ (k). (3.6)

Moreover, since f̃ equals f on the primes, we have
∑

p≤x f̃ (p)
log p = ∑

p≤x f (p) log p and it is not difficult to show that the two conditions

(3.2) hold for f̃ as well, if C > κ2. Thus, an application of Theorem 3.1 leads to an
evaluation of (3.6) as

= x
J∑

l=0

c̃l
�(α − l)

∑

d|q
d≤x/2

μ(d) f̃ (d)

d
(log(x/d))α−l−1

+ O

(
x

∑

d|q
d≤x/2

| f̃ (d)|
d

(log(x/d))κ−A1−1(log log x)

)
, (3.7)

where analogously to the definition of cl we define

c̃l = 1

l!
dl

dzl

(
ζN (z)−α F̃(z)

((z − 1)ζ(z))α

z

)

z=1

123



644 D. Mastrostefano

with

F̃(z) := Gq(z)
−1

∏

p≤N
p�q:

∞∑

k=0

f (pk)

pkz
and Gq(z) :=

∏

p|q

(
1 − f (p)

pz

)
.

The second double sum in (3.5) instead is upper bounded by

� x3/4
∑

d|q

| f̃ (d)|
d3/4

≤ x3/4
∑

d|q

dκ(d)

d3/4
, (3.8)

since q is squarefree. We see that we may rewrite F̃(z) as F(z)Gq(z)−1Hq(z)−1.
Hence, c̃l will be

c̃l =
l∑

k=0

dk

dzk
(Gq(z)−1Hq(z)−1)|z=1

k! cl−k .

By Lemma 3.2 each cl−k(α) is uniformly bounded by a constant depending on κ, A1
and the implicit constant in (1.4). The coefficients c̃l may potentially depend on q.
However, we have

Gq(z)Hq(z) =
∏

p|q

(
1 − f (p)

pz

)(
1 + f (p)

pz
+ f (p2)

p2z
+ · · ·

)

=
∏

p|q

(
1 + Oκ

(
1

p2	(z)

))
,

as we can see from | f (p j ) − f (p j−1) f (p)| ≤ (κ + 1)(dκ(p j ) + dκ(p j−1)), for any
j ≥ 2.
We deduce thatGq(z)Hq(z) defines a non-vanishing analytic function on	(z) ≥ 1

and so does its inverse. This shows the possibility to estimate the coefficient c̃l with a
bound free on the dependence of q. Another way to show this could be to argue as in
the proof of Lemma 3.2, because (Gq(z)Hq(z))−1 coincides with the Dirichlet series
of a function with a controlled growth and supported only on square-full integers.

Let us now focus on studying the sums over d in the main term of (3.7). By the
generalized binomial expansion (see e.g. the first paragraph in chapter II.5 of [31]),
we find for any 0 ≤ l ≤ J
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∑

d|q
d≤x/2

μ(d) f̃ (d)

d
(log(x/d))α−l−1

= (log x)α−l−1
J−l∑

h=0

(
α−l−1

h

)
(−1)h

logh x

∑

d|q
d≤x/2

μ(d) f̃ (d)

d
logh d

+ Oκ,J

(
(log x)	(α)−J−2

∑

d|q

| f̃ (d)|
d

(log d)J−l+1
)

. (3.9)

Completing the above sums to all the divisors of q gives an error in (3.9) of at most

�κ,J 2E (log x)	(α)−l−1−E
∑

d|q

| f̃ (d)|
d

(log d)J−l+E

for any E > 0, since x/2 ≥ √
x on x ≥ 4. Similarly, the error term in (3.7) can be

estimated with

�κ,A1 (log x)κ−A1−1(log log x)

( ∑

d|q

| f̃ (d)|
d

+
∑

d|q

| f̃ (d)|
d

log d

log x

)
. (3.10)

Next, since q is squarefree we have

∑

d|q

| f̃ (d)|
dz

=
∏

p|q

(
1 + | f (p)|

pz

)
= G̃q(z)

and we can rewrite (3.9) as

= (log x)α−l−1
J−l∑

h=0

(
α−l−1

h

)

logh x
G(h)

q (1)

+ Oκ,J

(
(log x)	(α)−J−2|G̃(J−l+1)

q (1)|
)

+ Oκ,J

(
2E (log x)	(α)−l−1−E |G̃(J−l+E)

q (1)|
)

(3.11)

and (3.10) as

�κ,A1 (log x)κ−A1−1(log log x)

(
|G̃q(1)| + |G̃(1)

q (1)|
log x

)
. (3.12)
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Inserting (3.11) and (3.12) into (3.7) and rearranging, we have overall found

∑

n≤x
(n,q)=1

f (n) =x
J∑

j=0

(log x)α− j−1

�(α − j)

∑

h+l= j

G(h)
q (1)c̃l
h!

+ O

(
x(log x)	(α)−J−2

J∑

l=0

|c̃l G̃(J−l+1)
q (1)|

|�(α − l)|
)

+ O

(
2E x(log x)	(α)−1−E

J∑

l=0

|c̃l G̃(J−l+E)
q (1)|

|�(α − l)|(log x)l
)

+ O

(
x(log x)κ−A1−1(log log x)

(
|G̃q(1)| + |G̃(1)

q (1)|
log x

))

+ O

(
x3/4

∑

d|q

dκ(d)

d3/4

)
. (3.13)

By definition of c̃l , the j-th coefficient in the sum in the main term in the displayed
equation above can be rewritten as

1

�(α − j)

j∑

h=0

G(h)
q (1)

h!
j−h∑

k=0

(Gq(z)−1Hq(z)−1)(k)(1)

k! c j−h−k

= 1

�(α − j)

j∑

l=0

c j−l

∑

k+h=l

G(h)
q (1)

h!
(Gq(z)−1Hq(z)−1)(k)(1)

k!

= 1

�(α − j)

j∑

l=0

c j−l

l! (Hq(z)
−1)(l)(1)

= 1

�(α − j)

∑

l+h= j

(H−1
q )(l)(1)ch

l!

and in this way is presented as in the statement of the theorem.
Regarding the error term instead, by Lemma 3.2 and previous considerations, we

can prove that all the coefficients c̃l are uniformly bounded, thus finding an upper
bound of

�κ,J |G̃(J+1)
q (1)|x(log x)	(α)−J−2 + 2E |G̃(J+E)

q (1)|x(log x)	(α)−1−E

+ (|G̃q(1)| + |G̃(1)
q (1)|)x(log x)κ−A1−1(log log x) + x3/4

∑

d|q

dκ(d)

d3/4
,
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where we also used the continuity of �(α − l)−1 over the compact set |α| ≤ κ .
Moreover, since we have

|G̃(h)
q (1)| =

∑

d|q

| f̃ (d)| logh d
d

,

for any h ≥ 0, it is clear that |G̃(a)
q (1)| ≤ |G̃(b)

q (1)|, for any 0 ≤ a ≤ b. Thanks to this
last inequality we may simplify the error term in (3.13) further to

�κ,A1 |G̃(2�A1�+2)
q (1)|x(log x)κ−A1−1(log log x) + x3/4

∑

d|q

dκ(d)

d3/4
,

if we let E := �A1� + 2 ≥ A1 + 1 + |	(α)| − κ . Hence also the error term above is
in the form contained in the statement of the theorem, thus concluding its proof. 
�

4 The error terms in Proposition 1.9

From now on we are going to specialize the function f to be as in the statement of
Theorem 1.3, considering α, β, A1, A2 as in (1.6). To begin with, we start with the
following useful lemma.

Lemma 4.1 Under theusual notation,wehave |α−1|2 ≤ β+Oκ ((log N )−min{A1,A2}) �
β, if N is large enough with respect to A1, A2, κ and the implicit constants (1.4)–(1.5).

Proof If α = 1, the result is trivial. Assume then α 
= 1. By an application of the
Cauchy–Schwarz inequality, we have

∣∣∣∣
∑

p≤N

( f (p) − 1) log p

∣∣∣∣
2

≤
∑

p≤N

| f (p) − 1|2 log p
∑

p≤N

log p

= (βN + O(N (log N )−A2))(N + O(Ne−c
√
log N )),

for a suitable c > 0, by the prime number theorem and Eq. (1.5). The left-hand side
of the above inequality instead is |α − 1|2N 2 + Oκ(N 2(log N )−A1), by (1.4). This
implies the thesis if we assume N as in the statement of the lemma and thanks to
conditions (1.6). 
�

An application of [22, Theorem 2.14] leads to

∑

n≤N

| f (n)|2 �κ

N

log N

∑

n≤N

| f (n)|2
n

≤ N

log N

∏

p≤N

(
1 + | f (p)|2

p
+ | f (p2)|2

p2
+ · · ·

)
.

By Mertens’ theorem we deduce

∑

n≤N

| f (n)|2 �κ c0(| f |2, β + 2	(α) − 1)N (log N )β+2	(α)−2, (4.1)
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where

c0(| f |2, β + 2	(α) − 1)

=
∏

p≤N

(
1 + | f (p)|2

p
+ | f (p2)|2

p2
+ · · ·

)(
1 − 1

p

)β+2	(α)−1

is a positive constant. In particular, it is uniformly bounded in terms of κ, A1, A2 and
the implicit constants in (1.4)–(1.5), as we may see by applying partial summation
from (1.4)–(1.5) and considering the relations (1.6). In conclusion, the first error term
in (1.12) is

� K N 2(log N )β+2(	(α)−1)

Q0
, (4.2)

with the implicit constant depending on all the aforestated parameters.
We now turn to the estimate of the second error term in (1.12), but first let us state

the following result which we will make use of several times later on.

Lemma 4.2 For any non-negative multiplicative function g(n) uniformly bounded on
the prime numbers by a positive real constant B and such that the sum S = ∑

q g(q)/q

over all the prime powers q = pk, with k ≥ 2, converges, we have

1 �B,S

∑

n≤x

g(n)

n

∏

p≤x

(
1 + g(p)

p

)−1

�B,S 1 (x ≥ 1). (4.3)

Proof This is [7, Lemma 20] of Elliott and Kish. 
�

Proposition 4.3 We have

∑

q≤Q

1

q

∑

d|q
d>Q0

1

φ(d)

∣∣∣
∑

n

f (n)cd(n)

∣∣∣
2 �κ

N 2(log N )κ
2+4κ+2

Q0
. (4.4)

Proof We initially observe that

∣∣∣
∑

n≤N

f (n)cd(n)

∣∣∣ ≤
∑

n≤N

dκ(n)
∑

e|(n,d)

e ≤
∑

e|d
e

∑

n≤N
e|n

dκ(n), (4.5)

by (1.10). Since κ > 1

∑

n≤N
e|n

dκ(n) =
∑

k≤N/e

dκ(ek) ≤ dκ(e)

e
N

∑

k≤N/e

dκ(k)

k
�κ

N

e
dκ(e)(log N )κ ,
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by Lemma 4.2, which inserted in (4.5) gives

∣∣∣
∑

n≤N

f (n)cd(n)

∣∣∣
2 �κ N 2(log N )2κd2κ+1(d).

From this we deduce that the left-hand side in (4.4) is

�κ N 2(log N )2κ
∑

Q0<d≤Q

d2κ+1(d)

φ(d)

∑

q≤Q
d|q

1

q
≤ N 2(log N )2κ

∑

Q0<d≤Q

d2κ+1(d)

dφ(d)

∑

q≤Q/d

1

q

� N 2(log N )2κ+1
∑

Q0<d≤Q

d2κ+1(d)

dφ(d)

�κ

N 2(log N )κ
2+4κ+2

Q0
,

again by Lemma 4.2. 
�

From now on, we consider K as a large constant so that the term (log K )/K in
Proposition 1.9 is small enough. Since we are assuming N 1/2+δ ≤ Q ≤ N , with
δ > 0 small, we let R := N 1/2−δ/2.

5 Lower bounding the integral over theminor arcs

It remains to lower bound the integral in (1.12). To this aim, following the idea and
the notations introduced in [12], we apply the Cauchy–Schwarz inequality to get

∫

m
|F(ϕ)|2dϕ ≥

(∫

m
|F(ϕ)F̃(ϕ)|dϕ

)2( ∫

m
|F̃(ϕ)|2dϕ

)−1

, (5.1)

where F̃(ϕ) = ∑
n≤N f̃ (n)e(nϕ) with

f̃ (n) =
∑

r |n
r≤R

g(r)�

(
n

N

)
.

Here g(n) is a suitable arithmetic function and �(t) is a suitable smooth function,
compactly supported in [0, 1], with 0 ≤ �(t) ≤ 1 for all 0 ≤ t ≤ 1. The choice
of g is fundamental for succeeding in the proof of our main result. We consider a
multiplicative function supported on the squarefree integers and zero on all the prime
numbers smaller than C , where C is as in condition (4) on q. On the prime numbers
C < p ≤ N we put g(p) = f (p)− 1, if 	(α) ≥ 1, and g(p) = 1− f (p), otherwise.
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We observe that

∫

m
|F̃(ϕ)|2dϕ ≤

∑

n≤N

| f̃ (n)|2 ≤
∑

n≤N

∣∣∣∣
∑

r |n
r≤R

g(r)

∣∣∣∣
2

, (5.2)

by Parseval’s identity. Regarding the integral of F(ϕ)F̃(ϕ) we first report the full
proposition proved in [12] that was used to find a manageable lower bound for its
integral over minor arcs.

Proposition 5.1 Keep notations as above and assume that K Q0 ≤ R ≤ √
N and

| f (n)| �ε N ε for any ε > 0 when n ≤ N. Then

∫

m
|F(ϕ)F̃(ϕ)|dϕ ≥

∑

KQ0<q≤R

∣∣∣
∑

r≤R
q|r

g(r)

r

∣∣∣
∣∣∣
∑

n≤N

f (n)cq (n)�(n/N )

∣∣∣ + Oε,�(�RN
1
2 +ε),

where� = maxr≤R |g(r)|and�(t) is a suitable smooth functionas in [12, Proposition
3].

Next, we show how to remove in our set up the smooth cut-off in the sum above.

Lemma 5.2 Let R = N 1/2−δ/2 and assume that K Q0 ≤ R. Then there exists a smooth
function �(t) satisfying the hypotheses in [12, Proposition 3] such that

∫

m
|F(ϕ)F̃(ϕ)|dϕ ≥

∑

KQ0<q≤R

∣∣∣
∑

r≤R
q|r

g(r)

r

∣∣∣
∣∣∣
∑

n≤N

f (n)cq(n)

∣∣∣ + Oδ,κ (N 1−δ/11)

if N is large enough in terms of δ and κ .

Proof Let �(t) : R → [0, 1] be a smooth function compactly supported on [−1, 1]
with

∫

R
�(t)dt = 1.

Then consider the following convolution:

�(t) = T 1[1/T ,1−1/T ](t) ∗ �(T t) = T
∫ 1−1/T

1/T
�(T (s − t))ds,

for any real number T ≥ 4. A quick analysis of this integral reveals that �(t) is a
smooth function such that

�(t) =
⎧
⎨

⎩

1 if 2/T ≤ t ≤ 1 − 2/T
∈ [0, 1] if 1 − 2/T ≤ t ≤ 1 or 0 ≤ t ≤ 2/T
0 if t ≥ 1 or t ≤ 0.
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In particular, �(t) is a smooth function, compactly supported in [0, 1], with 0 ≤
�(t) ≤ 1 for all 0 ≤ t ≤ 1, and with

∫ 1

0
�(t)dt ≥ 1 − 4

T
.

It is easy to see that

�(k)(t) � T k ||�(k)||L1

for every k ≥ 0. Let

F(ξ) =
∫

R
�(t)e−2π iξ t dt

be the Fourier transform of �(t). Then F is continuous and F(0) = ∫
R �(t)dt <

∞. Moreover, by using k times integration by parts and the definition of �(t) we
immediately deduce that

F(ξ) = 1

(2π iξ)k

∫ 1

1−2/T
�(k)(t)e−2π iξ t dt

+ 1

(2π iξ)k

∫ 2/T

0
�(k)(t)e−2π iξ t dt � T k−1||�(k)||L1

(2π |ξ |)k ,

where the implicit constant is absolute. In particular, we get for all ξ ∈ R that F(ξ) �
T (1+|ξ |)−2. This is equivalent to say that � as defined satisfies the conditions of the
smooth weight introduced in [12]. Moreover, since in the proof of [12, Proposition
3], which corresponds to Proposition 5.1 here, it was only used the bound F(ξ) �
(1+|ξ |)−2, where the implicit constant here is directly proportional to that in the error
term of Proposition 5.1, we may conclude that this last one is indeed

�ε T�RN 1/2+ε .

For any 4 ≤ T ≤ √
N , we may write

∑

n≤N

f (n)cq(n)�
( n

N

)

=
∑

n≤N

f (n)cq(n) + O

( ∑

N (1−2/T )<n≤N

dκ(n)(q, n) +
∑

n≤2N/T

dκ(n)(q, n)

)
.

We can estimate the first sum in the big-Oh term with

� ∑
e|q edκ (e)

∑
N (1−2/T )/e<l≤N/e dκ(l) �δ dκ+1(q) N

T log N exp

( ∑
p≤N

κ
p

)

�δ,κ dκ+1(q)
N (log N )κ−1

T
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for every 4 ≤ T ≤ √
N , using Shiu’s theorem [30, Theorem 1], Mertens’ theorem

and considering δ small enough. On average over q in Lemma 5.2, by upper bounding
|g(r)| ≤ dκ+1(r), it will contribute

�δ,κ

N (log N )κ−1

T

∑

q≤R

dκ+1(q)dκ+1(q)

q

∑

r≤R

dκ+1(r)

r
�κ

N (log N )(κ+1)2+2κ

T

= N (log N )κ
2+4κ+1

T
,

say, for any 4 ≤ T ≤ √
N . The second sum in the big-Oh term above can be estimated

similarly, but replacing the application of Shiu’s theoremwith an application ofLemma
4.2, and gives the same contribution.

Finally, observing that� satisfies� � ROκ (1/ log log R) (see e.g. [31, ch. I, Theorem
5.4] for the case of d2, which can be easily generalized to a general dκ ), it is easy to
see that letting ε := δ/4, say, the error term in Proposition 5.1 becomes

�δ T N 1−δ/4+Oκ (1/ log log N ) ≤ T N 1−δ/5 ≤ N 1−δ/10,

if N is large enough in terms of δ and κ , by letting T := N δ/10. Putting the above
considerations together we can now deduce the lemma from Proposition 5.1. 
�

We now find an upper bound for the sum of | f̃ (n)|2, but before we state the next
lemma which will be useful later.

Lemma 5.3 Let g(n) be a multiplicative function supported on squarefree integers
such that |g(n)| ≤ dκ+1(n) and

∑

p≤x

|g(p)|2 log p = βx + O

(
x

(log x)A2

)
(2 ≤ x ≤ R), (5.3)

with κ, β, A2 and R as usual. Then we have

∑

q≤R

|g(q)|2
q

(∑

d|q

dκ+1(d)

d3/4

)2

� (log N )β (5.4)

with an implicit constant depending on κ, A2 and that in (5.3).

Proof Expanding the square out and swapping summation we find that the sum in
(5.4) is

∑

d1,d2≤R squarefree

dκ+1(d1)dκ+1(d2)

d3/41 d3/42

∑

q≤R
q≡0 (mod [d1,d2])

|g(q)|2
q

≤
∑

d1,d2≤R

dκ+1(d1)dκ+1(d2)|g([d1, d2])|2(d1, d2)
d7/41 d7/42

∑

k≤R

|g(k)|2
k

,
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where [a, b] stands for the least common multiple of integers a and b. The innermost
sum is � (log N )β , by Lemma 4.2 and partial summation from (5.3), with an implicit
constant depending on κ, A2 and that of (5.3). On the other hand, the double sum over
d1, d2 is

≤
∑

d1,d2≤R

dκ+1(d1)3dκ+1(d2)3(d1, d2)

d7/41 d7/42

≤
∑

e≤R

dκ+1(e)6

e5/2

(∑

k

dκ+1(k)3

k7/4

)2

.

Since

∑

k

dκ+1(k)3

k7/4
�κ 1,

by using e.g. dκ+1(k) �κ k3/24, we obtain that the final double sum above is

�κ

∑

e≤R

dκ+1(e)6

e5/2
�κ 1.

Collecting the above estimate together we get (5.4). 
�
Proposition 5.4 Let R = N 1/2−δ/2 as before. Then we have

∑

n≤N

| f̃ (n)|2 � N (log N )β+2|	(α)−1|, (5.5)

where the implicit constant may depend on δ, κ, A1, A2 and that in (1.4)–(1.5).

Remark 5.5 It is crucial to have a sharp upper bound for the sum in (5.5) to guarantee
a sharp lower bound for the variance in arithmetic progressions. Indeed, (5.5) provides
an upper bound for the integral in (5.2) which coincides with the denominator in (5.1).
Finding a sharp lower bound for the L2-integral in (5.1) is a key step towards proving
Theorem 1.3.

Proof To begin with, we expand the square in (5.2) out and swap summations to find
that the average square of f̃ is

≤ N
∑

r ,r ′≤R

g(r)ḡ(r ′)
[r , r ′] + O

( ∑

r≤R

|g(r)|
)2

. (5.6)

Regarding the error term in (5.6), we notice the sum may be upper bounded by

R
∑

r≤R

|g(r)|
r

�κ R(log R)κ+1 ≤ N 1/2−δ/2(log N )κ+1 (5.7)

by an application of Lemma 4.2.
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Using a manipulation which occurs in the work of Dress, Iwaniec and Tenenbaum
(see e.g. [4, equation 1]), we may rearrange the sum in the main term of (5.6) as

∑

r ,r ′≤R

g(r)ḡ(r ′)
rr ′

∑

q|r ,q|r ′
φ(q) =

∑

q≤R

φ(q)

∣∣∣∣
∑

r≤R
q|r

g(r)

r

∣∣∣∣
2

=
∑

q≤R

φ(q)|g(q)|2
q2

∣∣∣∣
∑

k≤R/q
(q,k)=1

g(k)

k

∣∣∣∣
2

. (5.8)

We now need a careful estimate for the innermost sum in the second line of (5.8). We
restrict first to the case 	(α) ≥ 1. If α = 1, we define the auxiliary multiplicative
function g̃ such that

g̃(p j ) =
{
g(p j ) if p � q;
g(p) j otherwise.

In this way the innermost sum above may be rewritten as

∑

k≤R/q
(q,k)=1

g̃(k)

k
=

∑

d|q

g(d)μ(d)

d

∑

l≤R/dq

g̃(l)

l

since q is squarefree and arguing as at the start of the proof of Theorem 3.3. We notice
that since α = 1, we have

∑

p≤x

g̃(p) log p =
∑

p≤x

g(p) log p � x/ logA1 x (2 ≤ x ≤ N ).

By Theorem 3.1, we deduce that

∑

n≤x

g̃(l) � x(log x)κ−A1−1 log log x (2 ≤ x ≤ N )

and by partial summation, remembering A1 > κ + 2 from the hypothesis of Theorem
1.3, that

∑

l≤R/dq

g̃(l)

l
� 1 for any d|q and q ≤ R,

thus concluding that

∑

q≤R

φ(q)|g(q)|2
q2

∣∣∣∣
∑

k≤R/q
(q,k)=1

g(k)

k

∣∣∣∣
2

�
∑

q≤R

|g(q)|2
q

(∑

d|q

|g(d)|
d

)2

� (log N )β,
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for anyβ > 0,with an implicit constant depending on κ, A1, A2 and that in (1.4)–(1.5).
The last estimate follows from Lemma 5.3.

From now on we will work under the hypothesis α 
= 1 and 	(α) ≥ 1. We first
note that (5.8) is bounded by

�κ

∑

q≤R

|g(q)|2
q

+
∑

q≤R/4

|g(q)|2
q

∣∣∣∣
∑

4≤k≤R/q
(q,k)=1

g(k)

k

∣∣∣∣
2

= Oκ((log N )β) +
∑

q≤R/4

|g(q)|2
q

∣∣∣∣
∑

4≤k≤R/q
(q,k)=1

g(k)

k

∣∣∣∣
2

. (5.9)

By Theorem 3.3, we have

∑

4≤k≤x
(k,q)=1

g(k)= x(log x)α−2
J∑

j=0

λ j

(log x) j
+ O(|G̃(2�A1�+2)

q (1)|x(log x)κ−A1(log log x))

+ O

(
x3/4

∑

d|q

dκ+1(d)

d3/4

)
, (5.10)

where

λ j = λ j (g, α, q) = 1

�(α − 1 − j)

∑

l+h= j

(H−1
q )(h)(1)cl

h! =: λ′
j

�(α − 1 − j)

with

Hq(z) =
∏

p|q

(
1 + g(p)

pz

)
, cl = 1

l!
dl

dzl

(
ζN (z)−(α−1)G(z)

((z − 1)ζ(z))α−1

z

)

z=1

and

G(z) =
∑

n:
p|n⇒p≤N

g(n)

nz
, G̃q(z) =

∑

d|q

|g(d)|
dz

=
∏

p|q

(
1 + |g(p)|

pz

)

on 	(z) ≥ 1. Here each cl = cl(g, α) is uniformly bounded on |α| ≤ κ , thanks to an
application of Lemma 3.2 with f replaced by g here and α by α − 1.

Using partial summation, we get

∣∣∣∣
∑

4≤k≤R/q
(k,q)=1

g(k)

k

∣∣∣∣ � (log(R/q))	(α)−1

|�(α)|
( J∑

j=0

|λ′
j | + |G̃(2�A1�+2)

q (1)| +
∑

d|q

dκ+1(d)

d3/4

)
,

(5.11)
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where the implicit constant depends on κ, A1 and the implicit constant in (1.4). Here
we used that �(α)−1 is an entire function on the whole complex plane satisfying two
main properties:

|�(α)| ≤ �(	(α)) and �(α − l) = �(α)

(α − l) · · · (α − 1)
,

for any l ≥ 1 and α ∈ C such that 	(α) ≥ 1 and |α| ≤ κ . We can pretty easily deduce
that |λ′

j | �κ, j
∑ j

h=0 |(H−1
q )(h)(1)|. Likewise as in the proof of Theorem 3.3, we can

write

H−1
q (z) =

∏

p|q

(
1 − g(p)

pz

)∏

p|q

(
1 + g(p)

pz

)−1(
1 − g(p)

pz

)−1

:= H̃q(z)
˜̃Hq(z)

and show that we can bound all the derivatives of ˜̃Hq(z) with a constant independent
of q. By linearity, all the derivatives of H−1

q will be a linear combination with complex

coefficients of those of H̃q , which are given by

(H̃q)
(h)(1) = (−1)h

∑

d|q

μ(d)g(d)

d
(log d)h �

∑

d|q

|g(d)|
d

(log d)h,

for any 0 ≤ h ≤ J . Hence

J∑

j=0

|λ′
j | �κ,J

J∑

j=0

j∑

h=0

∑

d|q

|g(d)|
d

(log d)h �κ,J

J∑

j=0

∑

d|q

|g(d)|
d

((log d) j + 1)

�κ,J

∑

d|q

|g(d)|
d

((log d)J + 1).

Thus we deduce (5.11) is

� (log(R/q))	(α)−1

|�(α)|
(∑

d|q

|g(d)|
d

((log d)2A1+2 + 1) +
∑

d|q

dκ+1(d)

d3/4

)
,

where the implicit constant depends on κ, A1 and that one in (1.4). We conclude that
(5.9) is

� (log N )β + (log N )2(	(α)−1)

|�(α)|2

×
∑

q≤R

|g(q)|2
q

( ∑

d|q

|g(d)|
d

((log d)2A1+2 + 1) +
∑

d|q

dκ+1(d)

d3/4

)2

� (log N )β+2(	(α)−1)

|�(α)|2 �κ (log N )β+2(	(α)−1),
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by Lemma 5.3, with an implicit constant depending on δ, κ, A1, A2 and that in (1.4)–
(1.5). This concludes the proof when	(α) ≥ 1, since the error (5.6) will be negligible,
thanks to (5.7).

When instead 	(α) < 1, by definition of g we now get from Theorem 3.3

∑

4≤k≤x
(k,q)=1

g(k) = x(log x)−α
J∑

j=0

λ j

(log x) j
+ O(|G̃(2�A1�+2)

q (1)|x(log x)κ−A1(log log x))

+ O

(
x3/4

∑

d|q

dκ+1(d)

d3/4

)
,

where

λ j = λ j (g, α, q) = 1

�(1 − α − j)

∑

l+h= j

(H−1
q )(h)(1)cl

h! =: λ′
j

�(1 − α − j)

with

cl = 1

l!
dl

dzl

(
ζN (z)−(1−α)G(z)

((z − 1)ζ(z))1−α

z

)

z=1

and G(z), G̃q(z) and Hq(z) defined as before. Again by partial summation we get

∣∣∣∣
∑

4≤k≤R/q
(k,q)=1

g(k)

k

∣∣∣∣ � (log(R/q))1−	(α)

|�(2 − α)|
( J∑

j=0

|λ′
j | + |G̃(2�A1�+2)

q (1)| +
∑

d|q

dκ+1(d)

d3/4

)
,

from which we can conclude as before, since all the other considerations and compu-
tations carry over exactly the same. 
�
Regarding the summation over r in Lemma 5.2 we are going to prove the following
proposition.

Proposition 5.6 Let q be a positive integer with K Q0 ≤ q ≤ N 1/2−3δ/4 satisfying
condition (4), i.e. any prime divisor of q is larger than C, and (6). Then we have

∣∣∣
∑

r≤R
q|r

g(r)

r

∣∣∣ � |g(q)|
q

(log N )|	(α)−1|, (5.12)

where the implicit constant may depend on δ, κ, A1, D and the implicit constant in
(1.4). Moreover, we are assuming N and C sufficiently large with respect to all of
these parameters.

Before starting with the proof we insert here a lemma which will be useful later.
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Lemma 5.7 Let g be a multiplicative function supported on the squarefree numbers
and such that |g(n)| ≤ dκ+1(n), for a certain real positive constant κ > 1 and any
N-smooth integer n. Assume moreover that g(p) = 0, for any prime p ≤ C, and
define the following Euler products

Hq(z) =
∏

p|q

(
1 + g(p)

pz

)
, G̃q(z) =

∏

p|q

(
1 + |g(p)|

pz

)
(	(z) ≥ 1),

where q is a squarefree positive integer smaller than N satisfying conditions (4) and
(6). Then for every positive integer h we have

max{|(H−1
q )(h)(1)|, |G̃(h)

q (1)|} �h,κ,D C−1/5,

if C = C(κ, h) > κ + 1 is sufficiently large. Moreover, under our assumptions on q
we also have

max{|H−1
q (1)|, |G̃q(1)|} �κ,D 1.

Proof Let us focus on G̃q , since similar computations also hold for H−1
q . For values

of h ≥ 1 we use the Faà di Bruno’s formula [29, p. 807, Theorem 2] to find

G̃(h)
q (1) = G̃q(1)h!

∑

m1+2m2+···+hmh=h

∏h
i=1(γ

(i−1)
q (1))mi

1!m1m1!2!m2m2! · · · h!mhmh ! ,

where

γq(z) = G̃ ′
q

G̃q
(z) = −

∑

n≥1

�g̃(n)

nz
= −

∑

p|q

∞∑

k=1

�g̃(pk)

pkz

if we indicate with g̃(n) = |g(n)|1n|q and define �g̃(n) exactly as the n-th coefficient
in the Dirichlet series corresponding to minus the logarithmic derivative of G̃q(z) =∑

n
g̃(n)
nz . Analysing the values of the �g̃ function, we see that it is supported only

on prime powers for primes dividing q. More precisely, on those powers we have the
following relation:

�g̃(p
k) = (−1)k+1|g(p)|k log p,

which in turn follows from

g̃(n) log(n) = �g̃ ∗ g̃(n) for any n. (5.13)

The above also shows that �g̃(pk) = 0 whenever p ≤ C , by the support of g, and
choosing C = C(κ) > κ + 1 large enough makes the series over k on 	(z) ≥ 1
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convergent. We clearly obtain

γ (i)
q (1) = −

∑

p|q

∞∑

k=1

(−1)k+i+1|g(p)|k(k log p)i+1

kpk

�i,κ

∑

p|q
p>C

(log p)i+1

p
≤ 1

C1/5

∑

p|q

(log p)i+1

p4/5
,

since |g(p)| is uniformly bounded by κ + 1 > 0 and supported only on large primes.
Remembering that q ∈ A by condition (6), we immediately deduce that the last sum
is bounded for i ≤ h − 1, implying that G̃(h)

q (1) �h,κ,D G̃q(1)/C1/5, for any h ≥ 1.
However, G̃q(1) is itself bounded, because

G̃q(1) = exp

(∑

p|q

|g(p)|
p

+ O(1)

)
= exp(Oκ,D(1)) �κ,D 1,

by condition (6) andC > κ+1. Similarly, we can show the same for all the derivatives
of H−1

q , by first showing that the bound for those of its logarithmic derivative coincides
with the bound for the derivative of γq . Indeed, since we have

d

dz
log(H−1

q (z)) =
∑

p|q

g(p) log p

pz + g(p)
=

∑

p|q
g(p) log p

∞∑

k=0

(−g(p))k

p(k+1)z
,

where the series converges since 	(z) ≥ 1 and p > C > κ + 1, its corresponding
j-th derivative is

∑

p|q
g(p)(log p) j+1

∞∑

k=0

(−g(p))k(−k − 1) j

p(k+1)z

from which by taking the absolute value we recover the analogous bound for γ
( j)
q .

Finally, note that since g vanishes on the primes smaller than a large constant C the
product Hq(1) is not zero. Moreover, we note that

H−1
q (1) = exp

(
−

∑

p|q

g(p)

p
+ O(1)

)
= exp(Oκ,D(1)) �κ,D 1,

again by condition (6) on q and C > κ + 1. 
�
Proof of Proposition 5.6 First of all, note that

∑

r≤R
q|r

g(r)

r
= g(q)

q

∑

1≤r≤R/q
(q,r)=1

g(r)

r
= g(q)

q

(
1 +

∑

C≤r≤R/q
(q,r)=1

g(r)

r

)
, (5.14)
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since g is supported on squarefree numbers larger than C , and on 1 where g(1) = 1.
In order to evaluate the last sum on the right-hand side of (5.14) we apply again

Theorem 3.3, as was done in Proposition 5.4, and conclude with a partial summation
argument. In this case our task is facilitated by restricting q to lie in the subset A ⊂
[K Q0, RN−δ/4], as in condition (6). In particular, since q ≤ RN−δ/4 we notice that
log(R/q) �δ log N and the condition q ∈ A allows us to simplify the asymptotic
expansion of the average of g(n). However, since here we are looking for a lower
bound, some difficulties arise when 	(α) is near 1, for which we will need to invoke
condition (4) on q and divide the argument into two different cases according to the
size of |	(α) − 1|.

We first restrict our attention to the case 	(α) ≥ 1 in which case we can compute
the average of g over the coprimality condition using Theorem 3.3. Assuming C > 4
sufficiently large, we obtain

∑

C≤k≤x
(k,q)=1

g(k) =
J∑

j=0

λ′
j

�(α − 1 − j)
(log x)α−2− j + O

(
x(log x)κ−A1(log log x)

)
,

where the big-Oh term depends on κ, A1, D and the implicit constant in (1.4) and
the λ′

j are as in (5.10). Here we simplified the expression in the error term by using
Lemma 5.7 and noticing that

∑

d|q

dκ(d)

d3/4
=

∏

p|q

(
1 + κ

p3/4

)
= exp

( ∑

p|q

κ

p3/4
+ Oκ(1)

)
�κ,D 1,

by conditions (4) and (6) on q, if C = C(κ, A1) > κ4/3. Moreover, note that

λ′
0 =

∏

p|q

(
1 + g(p)

p

)−1 ∏

p≤N

(
1 + g(p)

p

)(
1 − 1

p

)α−1

� 1, (5.15)

with an implicit constant depending on κ, A1,C, D and that in (1.4), since g(p) = 0
when p ≤ C with C > κ + 1, and using Lemma 5.7 and partial summation from
(1.4), as at the start of the proof of Lemma 3.2. By partial summation and similar
considerations to those employed in the proof of Proposition 5.4, remembering the
hypothesis (1.6) on A1, we deduce that

∣∣∣∣
∑

C≤r≤R/q
(q,r)=1

g(r)

r

∣∣∣∣ ≥ E

∣∣∣∣
λ′
0

�(α)

∣∣∣∣(log(R/q))	(α)−1, (5.16)

where E depends on δ, κ, A1, D and the implicit constant in (1.4), if we think of C
as large enough in terms of δ, κ, A1, D and take N sufficiently large to all of these
parameters.
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Now, write α = 1 + L/ log log N + iτ , with L ≥ 0, and suppose that L > L0,
where

L0 := min

{
l ∈ R

+ : el−1 ≥ 2

E

∣∣∣∣
�(κ)

λ′
0

∣∣∣∣

}

depends on δ, κ, A1, D and the implicit constant in (1.4). Then (5.16) is clearly

= E

∣∣∣∣
λ′
0

�(α)

∣∣∣∣e
L+O(| log δ|/ log log N ) ≥ 2

if we take N large enough. This, together with (5.15), concludes the proof in this
subcase.

Suppose now 0 ≤ L ≤ L0. We remark that when τ is either 0 or a possibly small
function of N and 	(α) is suitably close to 1, the above partial summation argument
could lose its efficiency. For this reason, a direct argument is needed, one in which
only the value of the 	(α) counts. Hence, we start again from (5.14) and note that

∑

1≤r≤R/q
(q,r)=1

g(r)

r
=

∑

(q,r)=1

g(r)

r
−

∑

r>R/q
(q,r)=1

g(r)

r
, (5.17)

where the complete series in (5.17) converges, since it is equal to

∏

p≤N
p�q

(
1 + g(p)

p

)
= H−1

q (1)
∏

p≤N

(
1 + g(p)

p

)
� 1,

with an implicit constant depending on κ, A1, D and that in (1.4). Indeed, Lemma 5.7
gives

H−1
q (1) �κ,D 1

and we have

∣∣∣∣
∏

p≤N

(
1 + g(p)

p

)∣∣∣∣ = exp

(
	

( ∑

C<p≤N

(
g(p)

p
+ Oκ

(
1

p2

))))

�κ exp

( ∑

C<p≤N

	(g(p))

p

)
� 1,

with an implicit constant depending on δ, κ, A1, D and that in (1.4), if C, N are
sufficiently large in terms of those parameters. The last estimate follows through
partial summation from (1.4).
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Finally, since R/q ≥ N δ/4, the tail of the series in (5.17) can be made arbitrary
small if we choose N large enough. Therefore, we simply have

∑

1≤r≤R
q|r

g(r)

r
� |g(q)|

q
,

with an implicit constant depending on δ, κ, A1, D and that in (1.4), if C, N are large
enough in terms of those parameters, which matches the expression in (5.12), since

|�(1 + L/ log log N + iτ)| ≤ �(1 + L/ log log N ) � 1,

choosing N sufficiently large, by the continuity of �(α).
This concludes the proof in the case 	(α) ≥ 1.
In the complementary case, i.e.	(α) < 1, we just note that g has average 1−α 
= 0

over the primes. All the above computations then carry over, with the opportune
modifications already explained at the end of the proof of Proposition 5.4, and the
overall result may be written as in (5.12). 
�

6 Twisting with Ramanujan’s sums

By inserting the conclusion of Proposition 4.3 and estimate (4.1) in Proposition 1.9,
so far we have found

V (Q, f ) ≥ Q
(
1 + O

( log K
K

)) ∫

m
|F(ϕ)|2dϕ

+Oκ,K

(
N 2(log N )κ

2+4κ+2

Q0
+ N 2(log N )β+2	(α)−2

Q0

)
,

where
∫
m |F(ϕ)|2dϕ may be lower bounded using the results of Lemma 5.2, Propo-

sition 5.4 and Proposition 5.6, with K a large constant. Hence, we have proved that

V (Q, f ) � Q

N (log N )β

( ′∑

KQ0≤q≤RN−δ/4

|g(q)|
q

∣∣∣
∑

n≤N

f (n)cq(n)

∣∣∣ + Oδ,κ (N 1−δ/11)

)2

+ Oκ

(
N 2(log N )κ

2+4κ+2

Q0
+ N 2(log N )β+2	(α)−2

Q0

)
, (6.1)

where �
′
indicates a sum over all the squarefree K Q0 ≤ q ≤ RN−δ/4 under the

restrictions (4) and (6) and the � constant may depend on δ, κ, A1, A2, D and the
implicit constants in (1.4)–(1.5). Moreover, we are assuming N sufficiently large with
respect to all of them as well as to C .

In the rest of this section we explain how to deal with the average of f (n) twisted
with Ramanujan’s sums, which is indeed the heart of the proof. We begin with the
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following observation:

∑

n≤N

f (n)cq(n) =
∑

b≤N
p|b⇒p|q

f (b)cq(b)
∑

a≤N/b
(a,q)=1

f (a) (6.2)

using the substitution n = ab, with (a, q) = 1 and b = n/a, which is unique, and
noticing that

cq(n) = μ(q/(n, q))φ(q)

φ(q/(n, q))
= μ(q/(b, q))φ(q)

φ(q/(b, q))
= cq(b),

which can be deduced from (1.10). For any b ≤ N/4 we can apply Theorem 3.3 to
find

∑

a≤N/b
(a,q)=1

f (a) = N

b
(log(N/b))α−1

J∑

j=0

λ j

(log(N/b)) j

+O

(
N

b
(log(N/b))κ−1−A1(log log N )

)
, (6.3)

where we simplified the expression in the error term by using Lemma 5.7 and noticing
that

∑

d|q

dκ(d)

d3/4
=

∏

p|q

(
1 + κ

p3/4

)
= exp

( ∑

p|q

κ

p3/4
+ Oκ(1)

)
�κ,D 1,

by the conditions (4) and (6) on q, if C = C(κ, A1) > κ4/3.

Here J is the largest integer < A1 and λ j as in the statement of Theorem 3.3. Since
the asymptotic holds only when N/b ≥ 4 we need to estimate

∑

N/4<b≤N
p|b⇒p|q

dκ(b)|cq(b)| ≤ N 3/4
∑

p|b⇒p|q

dκ(b)(q, b)

b3/4
. (6.4)

In future we will make use several times of the following lemma.

Lemma 6.1 For all positive integers q ∈ A, as in condition (6), we have

∑

p|b⇒p|q

dκ(b)(q, b)

b3/4
�κ,D q1/4dκ+1(q),

∑

p|b⇒p|q

dκ(b)(q, b)

b
�κ,D dκ+1(q).

Proof The first sum in the statement is upper bounded by

∑

e|q
e

∑

e|b
p|b⇒p|q

dκ(b)

b3/4
. (6.5)
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Since κ > 1, it is

≤
∑

e|q
e1/4dκ(e)

∑

f
p| f ⇒p|q

dκ( f )

f 3/4

≤ q1/4dκ+1(q)
∏

p|q

(
1 − 1

p3/4

)−κ

�κ,D q1/4dκ+1(q).

Similarly the second sum in the statement is bounded by

∑

e|q
e

∑

e|b
p|b⇒p|q

dκ(b)

b
, (6.6)

which is

≤
∑

e|q
dκ(e)

∑

f
p| f⇒p|q

dκ( f )

f
≤ dκ+1(q)

∏

p|q

(
1 − 1

p

)−κ

�κ,D dκ+1(q).


�
Therefore, we conclude that (6.4) is

� N 3/4q1/4dκ+1(q) �κ,D N 7/8−3δ/16dκ+1(q).

Plugging (6.3) into (6.2) we get

∑

n≤N

f (n)cq(n) = N
∑

b≤N/4
p|b⇒p|q

f (b)cq(b)

b
(log(N/b))α−1

( J∑

j=0

λ j

(log(N/b)) j

)

+ O

(
N

∑

b≤N/4
p|b⇒p|q

dκ(b)|cq(b)|
b

(log(N/b))κ−1−A1(log log N )

)

+ O(N 7/8−3δ/16dκ+1(q)). (6.7)

To estimate the sum in the error term here we use same considerations employed in
the case of (6.4). Since in the hypothesis of Theorem 1.3 we assumed A1 > κ +2, the
function (log(N/b))κ−1−A1 is an increasing function of b. Therefore, by an application
of Lemma 6.1 we immediately deduce that the sum in the error term corresponding to
values of b ≤ √

N is

� (log N )κ−1−A1(log log N )
∑

p|b⇒p|q

dκ(b)(q, b)

b
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�κ,D (log N )κ−1−A1(log log N )dκ+1(q).

On the other hand, the one corresponding to b >
√
N is simply

� N−1/8(log log N )
∑

p|b⇒p|q

dκ(b)(q, b)

b3/4
�κ,D N−3δ/16(log log N )dκ+1(q),

again by an application of Lemma 6.1. We conclude that

∑

n≤N

f (n)cq(n) = N
∑

b≤N/4
p|b⇒p|q

f (b)cq(b)

b
(log(N/b))α−1

( J∑

j=0

λ j

(log(N/b)) j

)

+ O

(
N (log N )κ−1−A1(log log N )dκ+1(q)

)
, (6.8)

where the constant in the big-Oh term may depend on δ, κ, A1, D and the implicit
constant in (1.4) and we take N large enough with respect to these parameters.

The principal aim from now on is to evaluate the following family of sums:

∑

b≤N/4
p|b⇒p|q

f (b)cq(b)

b
logα̃(N/b) (6.9)

with α̃ ∈ {α − 1, α − 2, . . . , α − J − 1}. In order to do that, we employ condition
(3.a) and write q = rs, with p|r ⇒ p > (log N )B and p|s ⇒ p ≤ (log N )B , for
a large constant B > 0 to be chosen later. In view of this factorization we have the
following identity:

∑

b≤N/4
p|b⇒p|q

f (b)cq(b)

b
logα̃(N/b)

=
∑

b1≤
√
N

p|b1⇒p|r

f (b1)cr (b1)

b1

∑

b2≤N/4b1
p|b2⇒p|s

f (b2)cs(b2)

b2
logα̃(N/b1b2)

+
∑

b2≤
√
N

p|b2⇒p|s

f (b2)cs(b2)

b2

∑

N1/2<b1≤N/4b2
p|b1⇒p|r

f (b1)cr (b1)

b1
logα̃(N/b1b2), (6.10)

since by multiplicativity of cq(n) as function of q and definition of r , s we have

cq(b) = cr (b)cs(b) = cr (b1)cs(b2).

We inserted the above structural information on q to reduce the estimate of (6.9) to
that of a sum over smooth integers, which is easier to handle, and one over integers
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divisible only by large primes which will turn out to be basically over squarefree
integers, notably simplifying its computation. Let us focus our attention on the second
double sum on the right-hand side of (6.10). By Lemma 6.1, the innermost sum there
is

� (log N )max{	(α)−1,0}

N 1/8

∑

p|b1⇒p|r

dκ(b1)|cr (b1)|
b3/41

�κ,D
(log N )max{	(α)−1,0}

N 1/8 r1/4dκ+1(r)

� (log N )max{	(α)−1,0}

N 3δ/16 dκ+1(r). (6.11)

Since this bound is independent of b2 we only need to consider

∑

b2≤
√
N

p|b2⇒p|s

| f (b2)cs(b2)|
b2

≤
∑

p|b2⇒p|s

dκ(b2)|cs(b2)|
b2

�κ,D dκ+1(s),

again by Lemma 6.1. In conclusion, the contribution from the second double sum in
(6.10) is

�κ,D
dκ+1(q)(log N )max{	(α)−1,0}

N 3δ/16 . (6.12)

7 The contribution from small prime factors

We are left with the estimate of the first double sum in (6.10). For brevity, let us write
M = N/b1. We need to consider first

∑

b2≤M/4
p|b2⇒p|s

f (b2)cs(b2)

b2
logα̃(M/b2)

=
K∑

k=0

(−α̃ + k − 1

k

)
(logM)α̃−k

∑

b2≤M/4
p|b2⇒p|s

f (b2)cs(b2)

b2
logk b2

+ Oκ,K

(
(logM)	(α̃)−K−1

∑

b2≤M/4
p|b2⇒p|s

| f (b2)cs(b2)|
b2

(log b2)
K+1

)
,

for a constant K that will be chosen in terms of A1 later on. Let us move on now to
estimate the sums

∑

b≤M/4, p|b⇒p|s

f (b)cs(b)

b
logk b (∀ 0 ≤ k ≤ K ).
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First, we observe that we can remove the condition b ≤ M/4, because using the
monotonicity of b1/4/(log b)k , for fixed k and b large, and applying Lemma 6.1, we
may deduce that

∑

b>M/4
p|b⇒p|s

f (b)cs(b)

b
logk b �k

logk M

M1/4

∑

p|b⇒p|s

dκ(b)|cs(b)|
b3/4

�k,κ,D
logk M

M1/4 s1/4dκ+1(s)

Therefore, the error in replacing the finite sums above with the complete series is

�k,κ,D
log	(α̃) M

M1/4 s1/4dκ+1(s) �δ,κ,A1

log	(α̃) N

N 3δ/16 dκ+1(s),

for any α̃, using that M ≥ N 1/2 and s ≤ q ≤ N 1/2−3δ/4. We have obtained so far

∑

b2≤M/4
p|b2⇒p|s

f (b2)cs(b2)

b2
logα̃(M/b2)

=
K∑

k=0

(−α̃ + k − 1

k

)
(logM)α̃−k

∑

p|b2⇒p|s

f (b2)cs(b2)

b2
logk b2

+ Oκ,K

(
(logM)	(α̃)−K−1

∑

p|b2⇒p|s

dκ(b2)(b2, s)

b2
(log b2)

K+1
)

+ Oδ,κ,A1,D,K

(
log	(α̃) N

N 3δ/16 dκ+1(s)

)
. (7.1)

Let us define the following Dirichlet series:

�(σ) :=
∑

p|b⇒p|s

f (b)cs(b)

bσ
, �̃(σ ) :=

∑

p|b⇒p|s

dκ(b)(b, s)

bσ
, (σ ≥ 1)

In order to find a better and manageable form for them, we will prove the following
lemma.

Lemma 7.1 For squarefree values of s, we have

�(σ) =
∏

p|s

(
− p + (p − 1)

∑

ν≥0

f (pν)

pνσ

)
,

�̃(σ ) =
∏

p|s

(
1 − p + p(1 − 1/pσ )−κ

)
.
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Proof For a general multiplicative function f (n) we have

∑

n

f (n)cs(n)

nσ
=

∑

n

f (n)

nσ

∑

d|n,d|s
μ(s/d)d =

∑

d|s
μ(s/d)d1−σ

∑

k

f (dk)

kσ

by (1.10). Let F(σ ) indicate the Dirichlet series of f . We denote with vp(n) the p-adic
valuation of n. Then we get

∑

k

f (dk)

kσ
=

∏

p

∑

ν≥0

f (pν+vp(d))

pνσ

=
∏

p�d

(
1 + f (p)

pσ
+ f (p2)

p2σ
+ · · ·

) ∏

pa ||d
a≥1

∑

ν≥0

f (pν+a)

pνσ
.

Therefore, we can write

∑

n

f (n)cs(n)

nσ
= F(σ )

∑

d|s
μ(s/d)d1−σ �(d),

where �(d) is the multiplicative function given by

�(d) =
∏

pa ||d
a≥1

(
1 + f (p)

pσ
+ f (p2)

p2σ
+ · · ·

)−1 ∑

ν≥0

f (pν+a)

pνσ
.

From this, we immediately find that

∑

n

f (n)cs(n)

nσ
= F(σ )Fs(σ ),

with Fs(σ ) equal to

∏

p|s

(
1 + f (p)

pσ
+ f (p2)

p2σ
+ · · ·

)−1 (
− 1 + (p − 1)

∑

ν≥1

f (pν)

pνσ

)
,

since s is squarefree. Therefore, it follows that

�(σ) =
∑

p|b⇒p|s

f (b)cs(b)

bσ
=

∏

p|s

(
− p + (p − 1)

∑

ν≥0

f (pν)

pνσ

)
.

This concludes the search for theEuler product formof�(σ). Regarding �̃(σ ) instead,
if we indicate with G(σ ) the Dirichlet series of dκ(n)1p|n⇒p|s , by using the identity
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(n, s) = ∑
d|n,d|s φ(d) we get

∑

n:
p|n⇒p|s

dκ(n)(n, s)

nσ

= G(σ )
∏

p|s

(
1 + (p − 1)

pσ

(
1 + dκ(p)

pσ
+ dκ(p2)

p2σ
+ · · ·

)−1 ∑

ν≥0

dκ(pν+1)

pνσ

)

= G(σ )
∏

p|s

(
p − (p − 1)

(
1 − 1

pσ

)κ)

=
∏

p|s

(
1 − p + p

(
1 − 1

pσ

)−κ)
,

since s is squarefree. The proof of the lemma is completed. 
�

We now show that each term in the sum on the right-hand side of (7.1) corresponding
to a k ≥ 1 gives a smaller contribution compared to the k = 0 term. Let us start by
noticing that

�(k)(σ ) = (−1)k
∑

p|b⇒p|s

f (b)cs(b)

bσ
logk b

and defining

θ(σ ) := �′

�
(σ) =

∑

p|s

γ ′
p(σ )

γp(σ )
, (7.2)

where

γp(σ ) := −p + (p − 1)
∑

ν≥0

f (pν)

pνσ
. (7.3)

Using the Faà di Bruno’s formula [29, p. 807, Theorem 2] we see that

�(k)(1) = (elog�(σ))(k)
∣∣
σ=1 = �(1)k!

∑

m1+2m2+···+kmk=k

∏k
j=1(θ

( j−1)(1))m j

1!m1m1! · · · k!mkmk ! .
(7.4)
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Consequently, we need an estimate for the logarithmic derivative of � and its deriva-
tives. To this aim we first note that (γ ′

p/γp)
(h)(1) = (log γp(σ ))(h+1)|σ=1, which

again by the Faà di Bruno’s formula is

= (h + 1)!
∑

m1+2m2+···+(h+1)mh+1=h+1

(−1 + m1 + m2 + · · · + mh+1)!
1!m1m1! · · · (h + 1)!mh+1mh+1!

×
h+1∏

j=1

(−γ
( j)
p (1)

γp(1)

)m j

. (7.5)

We observe that

γp(1) = −1 + f (p) − f (p)

p
+ f (p2)

p
− · · · =

∑

ν≥0

g(pν+1)

pν
,

where g(n) is the multiplicative function defined by f (n) = g ∗ 1(n). Hence,

|γp(1)| ≥ |g(p)| + Oκ(1/p),

since for any j ≥ 2 we have g(p j ) = f (p j ) − f (p j−1), from which |g(p j )| ≤
dκ(p j ) + dκ(p j−1). We note that |g(p)| coincides exactly with the absolute value of
the previously defined function g at p, without notational issues. Moreover, thanks
to restriction (5.b) we get |γp(1)| > 0, if we choose C = C(κ) large enough, thus
making (7.5) well defined.

On the other hand, we can rewrite γ ′
p(σ ) as

γ ′
p(σ ) = (p − 1)

∑

ν≥1

f (pν)

pνσ
(−ν log p)

from which we immediately deduce that

γ
( j)
p (1) = (p − 1)

∑

ν≥1

f (pν)

pν
(−ν log p) j ( j ≥ 1).

Clearly, |γ ( j)
p (1)| ≤ C j (log p) j , for fixed values of j ≥ 1 and a certain constant

C j = C j (κ) > 0.
Inserting the above estimates in (7.5) we obtain

∣∣∣∣

(
γ ′
p

γp

)(h)

(1)

∣∣∣∣ ≤ C̃h

(
log p

min{|γp(1)|, 1}
)h+1
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for fixed values of h and suitable constants C̃h = C̃h(κ) > 0, which inserted in (7.2)
gives

|θ( j−1)(1)| ≤ C̃ j

∑

p|s

(
log p

min{|γp(1)|, 1}
) j

≤ C̃ j γ̃
j
s max

p|s {(log p) j }ω(s)

≤ C̃ j B
j γ̃

j
s ω(s)(log log N ) j ,

defining γ̃s := maxp|s min{|γp(1)|, 1}−1. Finally, by restriction (2) on q, we deduce

|θ( j−1)(1)| ≤ AC̃ j B
j γ̃

j
s (log log N ) j+1.

Inserting this into (7.4) we obtain

�(k)(1) �k,κ |�(1)|ξ k γ̃ k
s (log log N )2k, (7.6)

for fixed values of k and a constant ξ = ξ(A, B, C̃1(κ), . . . , C̃h(κ)). For future refer-
ence we observe that the explicit multiplicative form of �(1) is given by

�(1) =
∏

p|s

(
− p + (p − 1)

∑

ν≥0

f (pν)

pν

)
=

∏

p|s

( ∑

ν≥0

g(pν+1)

pν

)
=

∏

p|s

(
g(p) + Oκ

(
1

p

))
.

(7.7)
We conclude this section by estimating the series in the first error term in (7.1). First,
since q ∈ A, we also have

�̃(1) =
∏

p|s

(
1 + κ + Oκ

(
1

p

))
�κ,D dκ+1(s).

Second, by Lemma 7.1 and arguing as above, we find

�̃(k)(1) �k,κ |�̃(1)|ξ̃ k(log log N )2k �κ,D ξ̃ kdκ+1(s)(log log N )2k, (7.8)

for a suitable ξ̃ = ξ̃ (A, B, κ) > 0. Inserting the bound for �̃(K+1)(1) inside the first
error term in (7.1), we obtain that this last one is

�κ,D,K ξ̃ K+1dκ+1(s)(log N )	(α̃)−K−1(log log N )2K+2, (7.9)

using that
√
N � M � N , which exceeds the second error term in (7.1), if N is large

enough in terms of δ, κ, A, A1, B, D, K . Collecting together (6.12), (7.1) and (7.9),
we conclude that
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∑

b≤N/4
p|b⇒p|q

f (b)cq(b)

b
logα̃(N/b)

=
K∑

k=0

(−1)k
(−α̃ + k − 1

k

)
�(k)(1)

∑

b1≤
√
N

p|b1⇒p|r

f (b1)cr (b1)

b1
(log(N/b1))

α̃−k

+ O

(
ξ̃ K+1

∑

b1≤
√
N

p|b1⇒p|r

dκ(b1)|cr (b1)|
b1

dκ+1(s)(log N )	(α̃)−K−1(log log N )2K+2
)

+ Oκ,D

(
(log N )κ−1

N 3δ/16 dκ+1(q)

)
,

which, by Lemma 6.1, can be rewritten as

K∑

k=0

(−1)k
(−α̃ + k − 1

k

)
�(k)(1)

∑

b1≤
√
N

p|b1⇒p|r

f (b1)cr (b1)

b1
(log(N/b1))

α̃−k

+ Oδ,κ,D,K

(
ξ̃ K+1dκ+1(q)(log N )	(α̃)−K−1(log log N )2K+2

)
, (7.10)

if we choose N large enough compared to δ, κ, A, A1, B, D and K .

8 The contribution from large prime factors

We now need to compute the innermost sums in (7.10). In order to simplify the
calculations we observe that the main contribution comes only from squarefree values.
Indeed, since κ > 1, we have

∑

b1≤
√
N

p|b1⇒p|r
b1 not-squarefree

f (b1)cr (b1)

b1
(log(N/b1))

α̃−k

�
∑

e|r
e

∑

b1≤
√
N

p|b1⇒p|r
b1 not-squarefree

e|b1

dκ(b1)

b1
(log(N/b1))

	(α̃)−k

� (log N )	(α̃)−k
∑

e|r
dκ(e)

∑

t≤√
N/e

p|t⇒p|r
t 
=1

dκ(t)

t
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≤ (log N )	(α̃)−k−B/4dκ+1(r)
∑

p|t⇒p|r

dκ(t)

t3/4

�κ,D (log N )	(α̃)−k−B/4dκ+1(r),

by condition (6) on q. Using (7.6) we find an overall contribution to (7.10) of at most

(log N )	(α̃)−B/4|�(1)|dκ+1(r)
K∑

k=0

∣∣∣∣

(−α̃ + k − 1

k

)∣∣∣∣ξ
k γ̃ k

s

(
(log log N )2

log N

)k

. (8.1)

Now, by conditions (4) and (5.a) on s, we have γ̃s � √
log log N . Moreover

|�(1)| ≤
∏

p|s

(
κ + 1 + Oκ

(
1

p

))
�κ,D dκ+1(s)

by condition (6) on q. Therefore, taking e.g. B = 4(K + 2) and remembering that
ξ = ξ(A, B, κ), where we will be taking A as a function of only κ and A1, we may
conclude that (8.1) will contribute �κ,A1,D,K dκ+1(q)(log N )	(α̃)−K−2, which will
be absorbed into the error term of (7.10), if we choose N sufficiently large with respect
to δ, κ, A1, D and K .

We are left with the estimate of

∑

b1≤
√
N

p|b1⇒p|r
b1 squarefree

f (b1)cr (b1)

b1
(log(N/b1))

α̃−k =
∑

b1|r

f (b1)cr (b1)

b1
(log(N/b1))

α̃−k

= μ(r)
∑

b1|r

f (b1)φ(b1)μ(b1)

b1

× (log(N/b1))
α̃−k (8.2)

since r is squarefree and r ≤ N 1/2−3δ/4. Note that we can replace the last sum with

μ(r)
∑

b|r
f (b)μ(b)(log(N/b))α̃−k (8.3)

at the cost of a small error term. Indeed
∣∣∣∣
φ(b)

b
− 1

∣∣∣∣ =
∣∣∣∣ exp

( ∑

p|b
log

(
1 − 1

p

))
− 1

∣∣∣∣ =
∣∣∣∣ exp

(
O

( ∑

p|b

1

p

))
− 1

∣∣∣∣

�
∑

p|b

1

p
� 1

(log N )B/4

∑

p|b

1

p3/4
�D

1

(log N )B/4 .

Arguing as before, its overall contribution to (7.10) will be absorbed in the big-Oh
term there.
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Now, assuming r of the form r = ts′, with t and s′ as in restrictions (3.b) − (3.d)

on q, we can rewrite (8.3) as

μ(r)
∑

b|s′
f (b)μ(b)(log(N/b))α̃−k − f (t)μ(r)

∑

b|s′
f (b)μ(b)(log(N/tb))α̃−k . (8.4)

For M ∈ {N , N/t}, we write

∑

b|s′
f (b)μ(b)(log(M/b))α̃−k =

∞∑

h=0

(−α̃ + k + h − 1

h

)
(logM)α̃−k−h

∑

b|s′
f (b)μ(b) logh b.

(8.5)
In the next section we will need estimates for

∑
b|s′ f (b)μ(b) logh b when h ≥ 1.

This is what we achieve next.

Lemma 8.1 For any h ≥ 1 and s′ as before, satisfying in particular condition (3.c)
and (5.a), we have

∣∣∣∣
∑

b|s′
f (b)μ(b) logh b

∣∣∣∣ ≤ |g(s′)|(ε log N )h .

Proof With the same spirit of what was previously done in Sect. 7, we can write

∑

b|s′
f (b)μ(b) logh b = (−1)h

dh

dσ h

( ∏

p|s′

(
1 − f (p)

pσ

))∣∣∣∣
σ=0

= (−1)h
∑

j1+ j2+···+ jω(s′)=h

(
h

j1, j2, . . . , jω(s′)

) ω(s′)∏

i=1

(
1 − f (pi )

pσ
i

)( ji )∣∣∣∣
σ=0

.

We have

(
1 − f (pi )

pσ
i

)( ji )∣∣∣∣
σ=0

=
{
1 − f (pi ) if ji = 0;
− f (pi )(− log pi ) ji if ji 
= 0.

Hence, we can rewrite the above expression as

(−1)h
∑

j1+ j2+···+ jω(s′)=h

(
h

j1, j2, . . . , jω(s′)

) ∏

i=1,...,ω(s′)
ji 
=0

(− f (pi ))

×
∏

i=1,...,ω(s′)
ji=0

(1 − f (pi ))
ω(s′)∏

i=1

(− log pi )
ji .
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Since s′ satisfies condition (5.a) and in particular for any prime p|s′ wehave f (p) 
= 1,
we may rewrite the above as

∏

p|s′
(1 − f (p))

∑

j1+ j2+···+ jω(s′)=h

(
h

j1, j2, . . . , jω(s′)

)

×
∏

i=1,...,ω(s′) ji 
=0

( − f (pi )

1 − f (pi )

) ω(s′)∏

i=1

(log pi )
ji .

Now, observe the above expression is upper bounded in absolute value by

≤ |g(s′)|
∑

j1+ j2+···+ jω(s′)=h

(
h

j1, j2, . . . , jω(s′)

) ω(s′)∏

i=1

(
max

{∣∣∣∣
f (pi )

g(pi )

∣∣∣∣, 1
}
log pi

) ji

= |g(s′)|
( ∑

p|s′
max

{∣∣∣∣
f (p)

g(p)

∣∣∣∣, 1
}
log p

)h

, (8.6)

by the multinomial theorem [24]. Finally, note that

max

{∣∣∣∣
f (p)

g(p)

∣∣∣∣, 1
}

≤ max

{
κ

|g(p)| , 1
}

≤ κ

min{|g(p)|, 1} .

Since s′ satisfies restriction (3.c), the second line of (8.6) is

≤ |g(s′)|(ε log N )h,

which proves the lemma. 
�

9 Combining the different pieces

Collecting the results (6.8), (7.10) and (8.4)–(8.5), we can see that
∑

n≤N f (n)cq(n)

equals to a main term of

N (log N )α−1
J∑

j=0

−λ j

(log N ) j

K∑

k=0

(−1)k
(−α + j + k

k

)
�(k)(1)

(log N )k

×
∞∑

h=0

(−α + j + k + h

h

)∑

b|s′
f (b)μ(s′/b)

× (log b)h

(log N )h

(
1 − f (t)

(
1 − log t

log N

)α−1− j−k−h)
, (9.1)
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since μ(r) = μ(t)μ(s′) = −μ(s′), plus an error term of

+ O

(
dκ+1(q)N

J∑

j=0

|λ j |(log N )	(α)− j−K−2(log log N )2(K+1)
)

+ O

(
dκ+1(q)N (log N )κ−1−A1(log log N )

)
, (9.2)

where the big-Oh terms may depend on δ, κ, A1, D, K and the implicit constant in
(1.4) and the λ j are as in Theorem 3.3. We remind that t indicates a prime number in
the interval

[N 1/2−3δ/4−ε, N 1/2−3δ/4−ε/2].

In order to estimate the contribution of the sum of the λ j ’s we are going to prove
the following lemma.

Lemma 9.1 Let f be a multiplicative function such that | f (n)| ≤ dκ(n), for a certain
real positive constant κ > 1 and any N-smooth integer n. Let q be a squarefree positive
integer smaller than N satisfying condition (4), with a large C = C(κ, A1) > κ + 1,
and (6).

Then the coefficients λ′
j = �(α − j)λ j , where λ j are as defined in the statement of

Theorem 3.3, satisfy λ′
j � 1, for j = 0, . . . , J , with an implicit constant depending

on κ, A1, D and that one in (1.4).

Proof We remind that the coefficients λ′
j are defined as

λ′
j = λ′

j ( f , α, q) =
∑

l+h= j

(H−1
q )(h)(1)cl

h! ,

where

Hq(z) :=
∏

p|q

(
1 + f (p)

pz
+ f (p2)

p2z
+ · · ·

)
(	(z) ≥ 1)

and for any 0 ≤ l ≤ J the cl are as in the statement of Theorem 3.1. By Lemma 3.2
each cl is uniformly bounded by a constant possibly depending on κ, A1, l and that in
(1.4).

Therefore, to conclude the proof of the lemma we only need to show that each
derivative (H−1

q )(h)(1) is bounded. However, we can write

Hq(z) =
∏

p|q

(
1 + f (p)

pz

) ∏

p|q

(
1 + f (p)

pz
+ f (p2)

p2z
+ · · ·

)(
1 + f (p)

pz

)−1

=: H̃q(z)
˜̃Hq(z).
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Now it is not difficult to show that all the derivatives of ˜̃Hq(z)−1 at z = 1 are uniformly
bounded in q and by Lemma 5.7 the same is true for those of H̃q(z)−1 at z = 1. Finally,
since we have

dh

dzh
H−1
q (z)|z=1 =

∑

l+k=h

(
h

l

)
dl

dzl
H̃−1
q (z)|z=1

dk

dzk
˜̃H−1
q (z)|z=1

we obtain the desired conclusion. 
�

By Lemma 9.1, choosing K := A1 and taking N large enough in terms of δ, κ, A1, D
and the implicit constant in (1.4), we see that the error term 9.2 reduces to

� dκ+1(q)N (log N )κ−1−A1(log log N ).

Let us now focus on the main term (9.1). In the following we will make use several
times of the following trivial estimates:

∣∣∣∣1 − f (t)

(
1 − log t

log N

)α−1− j−k−h∣∣∣∣ ≤ 1 + κ(1/2 + 3δ/4 + ε/2)−κ−1− j−k−h

≤ 1 + κ2κ+1+ j+k+h,

since t ∈ [N 1/2−3δ/4−ε, N 1/2−3δ/4−ε/2], if δ, ε small, and

∣∣∣∣

(−α + j + k + h

h

)∣∣∣∣

= |(−α + j + k + h)(−α + j + k + h − 1) · · · (−α + j + k + 1)|
h!

≤ (|α| + j + k + h)(|α| + j + k + h − 1) · · · (|α| + j + k + 1)

h!
=

(|α| + j + k + h

h

)
≤

(
κ + J + k + h

h

)

as well as similarly

∣∣∣∣

(−α + j + k

k

)∣∣∣∣ ≤
(

κ + J + k

k

)
.

The contribution of the sum over j ≥ 1 in (9.1) is

� N (log N )	(α)−1|g(s′)�(1)|
J∑

j=1

2 j |λ j |
(log N ) j

� N (log N )	(α)−2 |g(s′)�(1)(α − 1)|
|�(α)| ,
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by using in sequence Lemma 8.1, the upper bound (7.6), conditions (4) and (5.a) on
s, to estimate γ̃s , and Lemma 9.1. Thus, the main term in (9.1) reduces to

− N (log N )α−1λ0

K∑

k=0

(−1)k
(−α + k

k

)
�(k)(1)

(log N )k

×
∞∑

h=0

(−α + k + h

h

) ∑

b|s′
f (b)μ(s′/b)

× (log b)h

(log N )h

(
1 − f (t)

(
1 − log t

log N

)α−1−k−h)
. (9.3)

Working in a similar way as before, the contribution of the sum over k ≥ 1 in (9.3) is

� N (log N )	(α)−2(log log N )5/2
|c0g(s′)�(1)(α − 1)|

|�(α)| ,

where we noticed that

(−α + k

k

)
= (−α + 1)

k

(−α + 1 + k − 1

k − 1

)
,

for any k ≥ 1, and replaced λ0 with

λ0 = c0H−1
q (1)

�(α)
,

as in Theorem 3.3, and used Lemma 5.7 to estimate |H−1
q (1)|.

Thus, (9.3) reduces to

− N (log N )α−1λ0�(1)
∞∑

h=0

(−α + h

h

) ∑

b|s′
f (b)μ(s′/b) (log b)h

(log N )h

(
1 − f (t)

(
1 − log t

log N

)α−1−h)
.

Again, similar considerations lead to the following estimate for the contribution of the
sum over h ≥ 1 above:

� N (log N )	(α)−1 ε|c0g(s′)�(1)(α − 1)|
|�(α)| .

Assume now ε of the form ε := δ/V , with V ≥ 5 sufficiently large in terms of κ

in order to make the above binomial series convergent and to be determined later on
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in terms of the other parameters. Collecting the above error terms together, thanks to
(1.7) and taking N ≥ N0, with N0(δ, κ, A1, V ) sufficiently large, we have obtained

∑

n≤N

f (n)cq(n) = − c0
�(α)

( f ∗ μ)(s′)H−1
q (1)�(1)θN ,α(t)N (log N )α−1

+ O

(
N (log N )	(α)−1 ε|c0g(s′)�(1)(α − 1)|

|�(α)|
+ dκ+1(q)N (log N )κ−1−A1(log log N )

)
, (9.4)

where the big-Oh term may depend on δ, κ, A1, D and the implicit constant in (1.4)
and we define

θN ,α(p) := 1 − f (p)

(
1 − log p

log N

)α−1

for any prime p ≤ N .

10 AMertens’ type estimate with �N,˛

In this section we insert a lemma about θN ,α which will play a fundamental role in
the next section, where we will produce a lower bound for (9.4) on average over q.
Indeed, to do this, we will need to lower bound an expression involving θN ,α(t) on
average over t ∈ [N 1/2−3δ/4−δ/V , N 1/2−3δ/4−δ/2V ]. This is what we achieve next.
Lemma 10.1 Let f (n) : N −→ C be a generalized divisor function as in Definition
1.2, for parameters α, β, κ, A1, A2 satisfying (1.6). Then there exists a small δ0 =
δ0(κ), such that either for δ ≤ δ0 or for δ/2, we have

∑

t prime:
N1/2−3δ/4−δ/V ≤t≤N1/2−3δ/4−δ/2V

|θN ,α(t)( f (t) − 1)|
t

≥ ηβ
δ

V
(10.1)

for a certain η = η(δ, κ) > 0, if V is large enough with respect to δ, κ, A1, A2
and the implicit constants in (1.4)–(1.5) and N sufficiently large in terms of all these
parameters.

Proof We split the proof into three main cases. First of all, if α = 1 then

θN ,1(t) = 1 − f (t)

and the sum (10.1) reduces to

∑

t prime:
N1/2−3δ/4−δ/V ≤t≤N1/2−3δ/4−δ/2V

| f (t) − 1|2
t

=
∫ N1/2−3δ/4−δ/2V

N1/2−3δ/4−δ/V

d(βt + R(t))

t log t
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= β log

(
1 + δ/2V

1/2 − 3δ/4 − δ/V

)
+

∫ N1/2−3δ/4−δ/2V

N1/2−3δ/4−δ/V

d(R(t))

t log t

= β log

(
1 + δ/2V

1/2 − 3δ/4 − δ/V

)
+ O((log N )−A2),

by partial summation from (1.5), where R(t) = O(t(log t)−A2) and the implicit
constant in the big-Oh error term may depend on κ, A2 and that of (1.5).

By taking N , V sufficiently large, δ small enough and thanks to (1.6), the above
reduces to

β

(
δ

V
(1 + O(δ)) + O

(
δ

V

)2)
+ O

(
βδ2

V

)
= βδ

V
+ O

(
βδ2

V

)
,

where now the implicit constant in the big-Oh error term is absolute. It is clear that
now (10.1) follows with η = 1/2, say, by choosing δ suitably small.

In particular, we have proved that

∑

t prime:
N1/2−3δ/4−δ/V ≤t≤N1/2−3δ/4−δ/2V

| f (t) − 1|2
t

= βδ

V
+ O

(
βδ2

V

)
, (10.2)

∑

t prime:
N1/2−3δ/4−δ/V ≤t≤N1/2−3δ/4−δ/2V

1

t
= δ

V
+ O

(
δ2

V

)
, (10.3)

where (10.3) follows as a special case of (10.2).
Let us now assume α 
= 1 and |α − 1| ≤ δ. Then we can Taylor expand θN ,α(t) as

θN ,α(t) = 1 − f (t)(1 + (α − 1) log(1/2 + 3δ/4 + θ(t)) + O(|α − 1|2))
= 1 − f (t) − f (t)(α − 1) log(1/2 + 3δ/4 + θ(t)) + Oκ(|α − 1|2)
= (1 − f (t))(1 + (α − 1) log(1/2 + O(δ)))

− (α − 1) log(1/2 + O(δ)) + Oκ(|α − 1|2),

where θ(t) ∈ [δ/V , δ/2V ] is defined by t = N 1/2−3δ/4−θ(t) and we take V ≥ 5 and
δ small.

Inserting this into (10.1) and using the triangle inequality, we get a lower bound for
(10.1) of

≥ |1 + (α − 1) log(1/2 + O(δ))|
∑

t prime:
N1/2−3δ/4−δ/V ≤t≤N1/2−3δ/4−δ/2V

| f (t) − 1|2
t

− |(α − 1) log(1/2 + O(δ))|
∑

t prime:
N1/2−3δ/4−δ/V ≤t≤N1/2−3δ/4−δ/2V

| f (t) − 1|
t
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+ Oκ

(
|α − 1|2

∑

t prime:
N1/2−3δ/4−δ/V ≤t≤N1/2−3δ/4−δ/2V

| f (t) − 1|
t

)
.

By Cauchy–Schwarz inequality and equations (10.2)–(10.3) we immediately deduce

∑

t prime:
N1/2−3δ/4−δ/V ≤t≤N1/2−3δ/4−δ/2V

| f (t) − 1|
t

≤
√

βδ

V
+ O

(√
βδ2

V

)
(10.4)

and by Lemma 4.1, taking N sufficiently large with respect to δ, κ, A1, A2 and the
implicit constants (1.4)–(1.5), we also have

|α − 1| ≤ √
β + O(

√
βδ), (10.5)

thanks to (1.6). Hence, using (10.2) and (10.4) we can further lower bound (10.1) with

≥ |1 + (α − 1) log(1/2 + O(δ))|
(

βδ

V
+ O

(
βδ2

V

))

− |(α − 1) log(1/2 + O(δ))|
(√

βδ

V
+ O

(√
βδ2

V

))

+ Oκ

(
|α − 1|2

(√
βδ

V
+ O

(√
βδ2

V

)))
,

which thanks to (10.5) and the hypothesis that |α − 1| ≤ δ becomes

≥ βδ

V
(1 + O(δ)) − log(2 + O(δ))

βδ

V
(1 + O(δ)) + Oκ

(
βδ2

V
(1 + O(δ))

)

= βδ

V
(1 − log(2 + O(δ)) + O(δ)),

which proves the lemma with η = 1/10, say, if we take δ small enough.
Finally, we are left with the case |α − 1| > δ. In this case we split the set of prime

numbers into three sets:

A1 := {p : |θN ,α(p)| ≤ δ5}
A2 := {p : | f (p) − 1| ≤ δ5}
A3 := {p : |θN ,α(p)| > δ5, | f (p) − 1| > δ5}.


�
Remark 10.2 We expect the setA3, i.e. the set of primes where θN ,α and f are, respec-
tively, bounded away from 0 and 1, to contain a positive proportion of primes, at least
on a small scale. Indeed, their complementary conditions should force α to be either

123



682 D. Mastrostefano

very close to 1 (which case we handled before) or very close to 2, in which case we
will succeed by adjusting the value of δ.

We cover the interval I := [N 1/2−3δ/4−δ/V , N 1/2−3δ/4−δ/2V ] with dyadic subin-
tervals

I = I ′ ∪
� δ log N
2V log 2 �−1⋃

k=0

[N 1/2−3δ/4−δ/V 2k, N 1/2−3δ/4−δ/V 2k+1),

with I ′ the possible rest of the above dyadic dissection. However, since we are looking
for just a lower bound for (10.1), we can forget about I ′.

Let us first suppose that for any [x, 2x) in the above union we have

|A3 ∩ [x, 2x)| ≥ δ5
x

log x
.

Hence, in accordance with the prime number theorem, we are asking for a proportion
of at least δ5 primes in the intersectionA3∩[x, 2x), for any such x . From here it is easy
to conclude, since (10.1) will follow with a constant η proportional to δ15/(κ + 1)2,
since β ≤ (κ + 1)2.

Suppose now that there exists an interval

[x, 2x) := [N 1/2−3δ/4−δ/V 2k, N 1/2−3δ/4−δ/V 2k+1), (10.6)

for a certain k = 0, . . . , �(δ log N )/(2V log 2)� − 1, for which

|A3 ∩ [x, 2x)| < δ5
x

log x
.

This clearly implies that

|(A1 ∪ A2) ∩ [x, 2x)| ≥ (1 − δ5)
x

log x

and we let

|A1 ∩ [x, 2x)| = d1
x

log x
,

for a certain d1 ∈ [0, 1].
Remark 10.3 One specific dyadic interval does not in general supply us with enough
information on a function f verifying (1.4)–(1.5) for single fixed values of x . However,
we ask statistics (1.4)–(1.5) to hold uniformly on 2 ≤ x ≤ N . This imposes a rigidity
on the distribution of f along the prime numbers, from which the “local” behaviour of
f is determined by the “global” one. In particular, the information that f on average
over all the primes smaller than any x ≤ N is roughly α, which we are now supposing
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to be bounded away from 1, forces f to be on any dyadic interval [x, 2x), for large
x , not too close to 1, apart for a small proportion of primes. This, together with some
structural information on f over the primes that will be deducted from the definition
of the sets A1 and A2, will negate the assumption that the almost totality of primes
lies now in the union A1 ∪ A2.

We note that for primes in A2 we have

f (p) = 1 + O(δ5)

and for those in A1 we have instead

f (p) =
(
1

2
+ 3δ

4
+ θ(p)

)1−α

+ O(δ5) =
(
1

2
+ 3δ

4

)1−α

+ Oκ(δ5 + δ/V ).

Therefore, from (1.4) and choosing V = V (δ, κ) sufficiently large, we get

αx + O

(
x

(log x)A1

)
=

∑

p∈(A1∪A2∪A3)∩[x,2x)
f (p) log p

=
∑

p∈A1∩[x,2x)

((
1

2
+ 3δ

4

)1−α

+ Oκ(δ5)

)
log p

+
∑

p∈(A2\A1)∩[x,2x)
f (p) log p

+
∑

p∈A3∩[x,2x)
f (p) log p

=
∑

p∈A1∩[x,2x)

(
1

2
+ 3δ

4

)1−α

log p

+
∑

p∈(A2\A1)∩[x,2x)
log p + O(δ5x),

from which, since |(A1 ∪ A2) ∩ [x, 2x)| = (1 + O(δ5))x/ log x , we deduce that

αx + O

(
x

(log x)A1

)
=

∑

p∈A1∩[x,2x)

((
1

2
+ 3δ

4

)1−α

− 1

)
log p

+
∑

p∈(A1∪A2)∩[x,2x)
log p + O(δ5x)

=
((

1

2
+ 3δ

4

)1−α

− 1

)
log(x + O(1))d1

x

log x
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+ log(x + O(1))(1 + O(δ5))
x

log x
+ O(δ5x)

=
((

1

2
+ 3δ

4

)1−α

− 1

)
d1x + x + Oκ(δ5x + 1/ log x).

Finally, since x ∈ [N 1/2−3δ/4−δ/V , N 1/2−3δ/4−δ/2V ), by choosing N sufficiently large
with respect to δ, κ, A1 and the implicit constant in (1.4), and dividing through by x ,
we conclude that

α − 1 + Oκ(δ5) =
((

1

2
+ 3δ

4

)1−α

− 1

)
d1. (10.7)

Similar computations, but working with (1.5) instead, lead to

β + Oκ(δ5) =
∣∣∣∣

(
1

2
+ 3δ

4

)1−α

− 1

∣∣∣∣
2

d1, (10.8)

if now N is also sufficiently large with respect to A2 and the implicit constant in (1.5).
By substituting the value of d1 from (10.7) into (10.8), we find

β + Oκ(δ5) = (α − 1)

((
1

2
+ 3δ

4

)1−α

− 1

)
. (10.9)

By dividing through by α − 1, remembering that δ < |α − 1| ≤ κ + 1, and taking the
conjugate, we can rewrite the above as

β

ᾱ − 1
+ 1 =

(
1

2
+ 3δ

4

)1−α

+ Oκ(δ4).

If the left-hand side in the above equation vanishes, we have

(
1

2
+ 3δ

4

)1−α

= Oκ(δ4),

which already leads to a contradiction, since δ can be chosen sufficiently small with
respect to κ . Otherwise, we can pass to the logarithm on both sides and deduce that

1

1 − α
log

(
β

ᾱ − 1
+ 1

)
= log

(
1

2
+ 3δ

4

)
+ Oκ(δ3).

By Taylor expanding the logarithmic factor on the right-hand side above as

log

(
1

2
+ 3δ

4

)
= − log 2 + 3δ

2
+ O(δ2),
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and considering δ small enough in terms of κ , we finally get

1

1 − α
log

(
β

ᾱ − 1
+ 1

)
+ log 2 = 3δ

2
+ O(δ2).

A consequence of this is that, by shrinking δ if necessary, we should have

R(α, β) :=
∣∣∣∣

1

1 − α
log

(
β

ᾱ − 1
+ 1

)
+ log 2

∣∣∣∣ ∈
[
7δ

5
,
8δ

5

]
. (10.10)

Now, we either have R(α, β) = 0 and (10.10) fails for any δ > 0 or it does by possibly
replacing δ with δ/2. In both cases we reach a contradiction, thus concluding the proof
of the lemma. 
�

11 The lower bound for the variance

11.1 Collecting themain results

Plugging (9.4) into (6.1), we find for V (Q, f ) a lower bound of

� QN (log N )−β+2(	(α)−1)
( ′∑

KQ0≤q≤RN−δ/4

(∣∣∣∣
c0

�(α)

∣∣∣∣h1(q) + Rα(N , q)

)
+ E(N )

)2

+ Oκ

(
N 2(log N )κ

2+4κ+2

Q0
+ N 2(log N )β+2	(α)−2

Q0

)
, (11.1)

where we let

E(N ) := Oδ,κ

(
(log N )−	(α)+1

N δ/11

)
,

Rα(N , q) := Oδ,κ,A1,A2,D

(
ε|c0(α − 1)|h2(q)

|�(α)| + h3(q)(log log N )

(log N )−κ+	(α)+A1

)
,

with

h1(q) := |g(q)g(s′)H−1
q (1)�(1)θN ,α(t)|

q

h2(q) := |g(q)g(s′)�(1)|
q

h3(q) := |g(q)|dκ+1(q)

q
. (11.2)

Here
∑′

indicates a sum over all numbers q satisfying restrictions (1) to (6) and the
� constant may depend on δ, κ, A1, A2, D and the implicit constants in (1.4)–(1.5).
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11.2 The sum of R˛(N, q)

Wecan easily estimate the sumof Rα(N , q)byusingLemma4.2. For the sum involving
h3 the contribution will be

�κ (log N )(κ+1)2+κ−	(α)−A1(log log N ).

Regarding the sum involving h2 instead, it may be bounded by

� |c0|ε|α − 1|
|�(α)|

∑

s′≤N ε

p|s′⇒p>(log N )B

|g(s′)|2
s′

∑

t prime:
t∈Iδ(N )

|g(t)|
t

∑

s≤N1/2

p|s⇒p≤(log N )B

|�(1)g(s)|
s

,

(11.3)

where Iδ(N ) := [N 1/2−3δ/4−δ/V , N 1/2−3δ/4−δ/2V ].
Now, observe from (7.7) that |�(1)| ≤ ∏

p|s(|g(p)| + Oκ(1/p)) and trivially
|g(s)| = ∏

p|s |g(p)|. Hence, by Rankin’s trick the innermost sum in (11.3) is

≤
∏

p≤(log N )B

(
1 + |g(p)|2

p
+ Oκ

(
1

p2

))
�κ

∏

p≤(log N )B

(
1 + |g(p)|2

p

)
.

Regarding the sum over s′, arguing similarly and since (log N )B ≤ N ε, if we take
N large enough with respect to ε and A1, we see it is

�κ

∏

(log N )B<p≤N ε

(
1 + |g(p)|2

p

)
=

∏
p≤N ε

(
1 + |g(p)|2

p

)

∏
p≤(log N )B

(
1 + |g(p)|2

p

)

� εβ(log N )β

∏
p≤(log N )B

(
1 + |g(p)|2

p

) ,

by partial summation from (1.5), made possible thanks to the hypothesis (1.6) on
A2. Here the implicit constant depends on κ, A1, A2 and the implicit constants in
(1.4)–(1.5) and we take N large enough with respect to these parameters.

Finally we come to the sum over the primes t . By Cauchy–Schwarz and equations
(10.2)–(10.3) it is � √

βε.

Hence, overall we get a bound for (11.3) of

� ε2+β |c0(α − 1)|
|�(α)|

√
β(log N )β � |c0|βε2+β

|�(α)| (log N )β,
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Lower bounds for the variance of generalized divisor functions in APs 687

where we used |α − 1| � √
β from Lemma 4.1 and where again the implicit constant

depends on κ, A1, A2 and those in (1.4)–(1.5) and we take N sufficiently large with
respect to these parameters.

Remark 11.1 It is essential here to relate α − 1 to
√

β by means of the tight bound
supplied by Lemma 4.1; otherwise the above error coming from the sum involving h2
could potentially overcome the main term coming from the sum of h1.

11.3 Themain term

By expanding the definition of h1(q) and all the conditions q is subject to, we see that
the precise shape of �

′
qh1(q) is

∑

s′≤N ε

p|s′⇒p>(log N )B ,

p|s′⇒|g(p)|>(log log N )−1/2

s′∈A′
s′ squarefree

|g(s′)|2|H−1
s′ (1)|

s′
∑

t prime:
N1/2−3δ/4−ε≤t≤N1/2−3δ/4−ε/2

f (t)
=1

|θN ,α(t)g(t)H−1
t (1)|

t

×
∑

K Q0/ts′≤s≤RN−δ/4/ts′
p|s⇒C<p≤(log N )B , p>C/|g(p)|, |g(p)|>(log log N )−1/2

ω(tss′)≤A log log N
tss′∈A

s squarefree

|�(1)g(s)H−1
s (1)|

s
. (11.4)

We now insert a series of observations to simplify its estimate.

11.4 Removal of some extra conditions

To begin with, by Lemma 5.7 we have

|H−1
q (1)| �κ,D 1.

In the following we then replace h1(q) with the value in (11.2) without the factor
H−1
q (1).
Let us now focus on the condition (2). To this aim we note that

′∑

KQ0≤q≤RN−δ/4

ω(q)≤A log log N

h1(q) =
′∑

KQ0≤q≤RN−δ/4

h1(q) −
′∑

KQ0≤q≤RN−δ/4

ω(q)>A log log N

h1(q),

where now
∑′

indicates the sum over all of the other remaining restrictions on q. The
last sum on the right-hand side above can be upper bounded by

� 1

(log N )A

∑

q≤N

h1(q)eω(q).
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Using again

|�(1)| ≤
∏

p|s

(
|g(p)| + Oκ

(
1

p

))

and

|g(s′)| =
∏

p|s′
|g(p)|,

as well as the trivial

|θN ,α(t)| �κ 1,

we are left to estimate

1

(log N )A

∑

t≤√
N

t prime

1

t

∑

q ′≤N

∏
p|q ′(e(κ + 1)2 + O(1/p))

q ′ .

This can be done by means of Lemma 4.2 and Mertens’ theorem and the result will
be

�κ (log log N )(log N )e(κ+1)2−A.

So far, if we collect together all the error terms inside the parenthesis in (11.1), we
have got an overall error of

� (log log N )(log N )e(κ+1)2−A + (log N )(κ+1)2+κ−	(α)−A1(log log N )

+ |c0|βε2+β

|�(α)| (log N )β + (log N )−	(α)+1

N δ/11

� (log N )(κ+1)2+κ−	(α)−A1(log log N ) + |c0|βε2+β

|�(α)| (log N )βsss, (11.5)

choosing

A := A1 + e(κ + 1)2 + 1

and taking N sufficiently large in terms of δ and κ , where the implicit constant above
depends on δ, κ, A1, A2, D and those in (1.4)–(1.5).

We now concentrate on the condition (6). It is certainly equivalent to

(log t)A1+1

t3/4
+

∑

p|s

(log p)A1+1

p3/4
+

∑

p|s′
(log p)A1+1

p3/4
≤ D.
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Since t is extremely large and all the primes dividing s′ are at least (log N )B , with
B = 4(K +2) = 4(A1 +2), it is actually equivalent to the fact that the corresponding
sum over the prime factors of s must be slightly smaller than D. So we can lower
bound (11.4) with the same expression but having the innermost sum switched with
that over those numbers s satisfying

∑

p|s

(log p)A1+1

p3/4
≤ D − 1.

Now, this is the complete sum minus that under the complementary condition. This
last one is upper bounded by

≤
∑

KQ0/ts′≤s≤RN−δ/4/ts′
p|s⇒C<p≤(log N )B

∑
p|s

(log p)A1+1

p3/4
>D−1

∏
p|s(|g(p)|2 + O(1/p))

s

≤
∑

C<r≤(log N )B

r prime

(log r)A1+1

(D − 1)r3/4
∑

s≤RN−δ/4

p|s⇒C<p≤(log N )B

r |s

∏
p|s(|g(p)|2 + O(1/p))

s

�κ

∑

r≤(log N )B

(log r)A1+1

(D − 1)r7/4
∑

s≤RN−δ/4

p|s⇒C<p≤(log N )B

∏
p|s(|g(p)|2 + O(1/p))

s

�κ

∑

r≤(log N )B

(log r)A1+1

(D − 1)r7/4
∏

C<p≤(log N )B

(
1 + |g(p)|2 + Oκ(1/p)

p

)

�A1

1

D − 1

∏

C<p≤(log N )B

(
1 + |g(p)|2 + Oκ(1/p)

p

)
,

by Rankin’s trick. By the arbitrariness of D = D(κ, A1), this term will be negligible.
Indeed, we will now show that the complete sum over s contributes

�
∏

C<p≤(log N )B

(
1 + |g(p)|2 + Oκ(1/p)

p

)
.
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11.5 The estimate of the sum over s

We start by setting the value of Q0 as

Q0 := N (log N )η0

Qβ2 ,

where

η0 := (κ + 2)2 − β − 2(	(α) − 1) + 3 = (κ + 1)2 − β + 2(κ − 	(α)) + 8 ≥ 8

andβ is as in the statement of Theorem1.3.Note that this choice satisfies the conditions
in (1.11) and Lemma 5.2, if N is large enough in terms of δ, κ and A1. By condition
(1.6), we deduce that

K Q0

ts′ � (log N )η0N−δ/4+ε

β2 ≤ N−δ/4+ε(log N )η0+2(A1−κ(α,β))

with

κ(α, β) = (κ + 1)2 + κ − 	(α) − β + 4.

Thus, recalling that ε = δ/V , with V ≥ 5, and taking N large enough in terms of δ, κ

and A1, we have K Q0/ts′ < 1. Thanks to this the sum over s becomes a sum over a
long interval, which heavily simplifies its computation. In particular, it coincides with

∑

s≤RN−δ/4/ts′
p|s⇒C<p≤(log N )B , p>C/|g(p)|, |g(p)|>(log log N )−1/2

|g(s)∏
p|s(g(p) + O(1/p))|

s
.

Applying Lemma 4.2 we find it is

�κ

∏

C<p≤min{RN−δ/4/ts′,(log N )B }
p>C/|g(p)|, |g(p)|>(log log N )−1/2

(
1 + |g(p)|2 + Oκ(1/p)

p

)
.

We restrict now the sum over s′ to those numbers ≤ N ε/W , for a certain W ≥ 3 to
determine later. In this way, it is immediate to check that

RN−δ/4

ts′ = N 1/2−3δ/4

ts′ ≥ N 1/2−3δ/4

N 1/2−3δ/4−ε/2+ε/W

= exp

(
ε

(
1

2
− 1

W

)
log N

)
≥ (log N )B,
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for N large enough with respect to ε and A1. Thus the product above is indeed only
over the prime numbers C < p ≤ (log N )B and it equals P1/P2, where

P1 :=
∏

C<p≤(log N )B

p>C/|g(p)|

(
1 + |g(p)|2 + Oκ(1/p)

p

)
,

P2 :=
∏

C<p≤(log N )B

p>C/|g(p)|,
|g(p)|≤(log log N )−1/2

(
1 + |g(p)|2 + Oκ(1/p)

p

)
.

However P2 is of bounded order, since

∑

C<p≤(log N )B

p>C/|g(p)|, |g(p)|≤(log log N )−1/2

|g(p)|2 + Oκ(1/p)

p

≤
∑

p≤(log N )B

|g(p)|≤(log log N )−1/2

( |g(p)|2
p

+ Oκ

(
1

p2

))
�κ 1,

by Mertens’ theorem, if N is large compared to κ and A1. Regarding P1 instead, it
coincides with P3/P4, where

P3 :=
∏

C<p≤(log N )B

(
1 + |g(p)|2 + Oκ(1/p)

p

)
,

P4 :=
∏

C<p≤(log N )B

p≤C/|g(p)|

(
1 + |g(p)|2 + Oκ(1/p)

p

)
.

As before, one can show that P4 is bounded, which makes the sum over s at least of
order

�κ

∏

C<p≤(log N )B

(
1 + |g(p)|2 + Oκ(1/p)

p

)
�κ,C

∏

C<p≤(log N )B

(
1 + |g(p)|2

p

)
.

11.6 The estimate of the sum over t

We remind the reader that ε = δ/V and we assume δ, N and V to be as in Lemma
10.1. We then make use of (10.1) to lower bound the sum over t in (11.4).
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11.7 The estimate of the sum over s′

By previous considerations, the sum over s′ is

∑

s′≤N ε/W ,

p|s′⇒p>(log N )B

|g(p)|>(log log N )−1/2

s′∈A′

|g(s′)|2
s′ =

∑

s′≤N ε/W ,

p|s′⇒p>(log N )B

|g(p)|>(log log N )−1/2

|g(s′)|2
s′ −

∑

s′≤N ε/W ,

p|s′⇒p>(log N )B

|g(p)|>(log log N )−1/2

s′ /∈A′

|g(s′)|2
s′ .

(11.6)
We may deal with the second sum on the right-hand side of (11.6) using the definition
of the set A′ of condition (3.c) in the following way:

∑

s′≤N ε/W ,

p|s′⇒p>(log N )B

|g(p)|>(log log N )−1/2s′ /∈A′

|g(s′)|2
s′ �κ

1

ε log N

∑

s′≤N ε/W ,

p|s′⇒p>(log N )B

|g(p)|>(log log N )−1/2

|g(s′)|2
s′

×
∑

r |s′:
r prime

log r

min{| f (r) − 1|, 1}

= 1

ε log N

∑

(log N )B<r≤N ε/W

|g(r)|>(log log N )−1/2

r prime

log r

min{| f (r) − 1|, 1}

×
∑

s′≤N ε/W

r |s′
p|s′⇒p>(log N )B

|g(p)|>(log log N )−1/2

|g(s′)|2
s′

≤ 1

ε log N

∑

(log N )B<r≤N ε/W

|g(r)|>(log log N )−1/2

r prime

| f (r) − 1|2 log r
min{| f (r) − 1|, 1}r

×
∑

s′≤N ε/W

p|s′⇒p>(log N )B

|g(p)|>(log log N )−1/2

|g(s′)|2
s′

�κ

1

W

∑

s′≤N ε/W

p|s′⇒p>(log N )B

|g(p)|>(log log N )−1/2

|g(s′)|2
s′ ,

123



Lower bounds for the variance of generalized divisor functions in APs 693

where the fraction | f (r) − 1|2/min{| f (r) − 1|, 1} is easily seen to be bounded and
we used Mertens’ theorem to compute the sum over the primes.

Thus, choosing a value of W = W (κ) ≥ 3 large enough we deduce that (11.6) is

�κ

∏

(log N )B<p≤N ε/W

|g(p)|>(log log N )−1/2

(
1 + |g(p)|2

p

)
=

∏
(log N )B<p≤N ε/W

(
1 + |g(p)|2

p

)

∏
(log N )B<p≤N ε/W

|g(p)|≤(log log N )−1/2

(
1 + |g(p)|2

p

)

�
∏

(log N )B<p≤N ε/W

(
1 + |g(p)|2

p

)
,

by Lemma 4.2 and since the product in the denominator above is bounded.

11.8 Completion of the proof of Theorem 1.3

Collecting the above estimates together, we have found an overall lower bound for the
sum involving h1(q) in (11.1) of

�
∣∣∣∣

ηc0
�(α)

∣∣∣∣
βδ

V

∏

C<p≤N ε/W

(
1 + |g(p)|2

p

)
,

with c0 as in the statement of Theorem 1.3 and η as in Lemma 10.1.
The above product can be estimated through partial summation, giving a contribu-

tion of

�
(

ε

W

)β

(log N )β � εβ(log N )β,

where the � constant depends on κ, A2,C and that in (1.5).
Recalling that ε = δ/V , C depends on δ, κ, A1 and the implicit constant in (1.4)

and collecting the previous two estimates together, we have proved that the sum of
h1(q) in (11.1) is

�
∣∣∣∣

ηc0
�(α)

∣∣∣∣
δ1+β

V 1+β
β(log N )β,

where the above implicit constant may depend on δ, κ, A1, A2 and the implicit con-
stant in (1.4)–(1.5) and we consider N as sufficiently large with respect to all these
parameters. We deduce a lower bound for the term inside parenthesis in (11.1) of

�
∣∣∣∣

ηc0
�(α)

∣∣∣∣
δ1+β

V 1+β
β(log N )β
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694 D. Mastrostefano

+ O

(
(log N )(κ+1)2+κ−	(α)−A1(log log N ) + |c0|βε2+β

|�(α)| (log N )β
)

�
∣∣∣∣

ηc0
�(α)

∣∣∣∣
δ1+β

V 1+β
β(log N )β,

thanks to conditions (1.6)–(1.7), if we take V large enough in terms of δ, κ, A1, A2
and the implicit constants in (1.4)–(1.5), and N is sufficiently large in terms of all
these parameters.

Remembering that

Q0 = N (log N )η0

Qβ2 ,

where

η0 = (κ + 2)2 − β − 2(	(α) − 1) + 3,

as well as the relations (1.6), we have overall found that

V (Q, f ) �
∣∣∣∣
c0β

�(α)

∣∣∣∣
2(

δ

V

)2(1+β)

QN (log N )β+2(	(α)−1), (11.7)

where the implicit constant above may depend on δ, κ, A1, A2 and those in (1.4)–
(1.5) and N ≥ N0, with N0 large enough depending on all these parameters. Since the
term (δ/V )2(1+β) is uniformly bounded in terms of the aforementioned parameters,
it may be absorbed in the implicit constant in (11.7). Finally, recalling the estimate
(4.1), we notice that equation (11.7) is actually in the form stated in Theorem 1.3, thus
concluding its proof.
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