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Abstract
This paper concerns the number of lattice points in the plane which are visible along
certain curves to all elements in some set S of lattice points simultaneously. By propos-
ing the concept of level of visibility, we are able to analyze more carefully about both
the “visible” points and the “invisible” points in the definition of previous research.
We prove asymptotic formulas for the number of lattice points in different levels of
visibility.
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1 Introduction

1.1 Background

A lattice point (m, n) ∈ N×N is said to be visible to the lattice point (u, v) ∈ N×N

along lines if there are no other integer lattice points on the straight line segment
joining (m, n) and (u, v). In 1883, it was showed by Sylvester [15] that the proportion
of lattice points that are visible to the origin (0, 0) is 1/ζ(2) = 6/π2 ≈ 0.60793,
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where ζ(s) is the Riemann zeta function. Since then, the study of the distribution of
visible lattice points continues to intrigue mathematicians till now. For example, one
may refer to Adhikari and Granville [1], Baker [2], Boca et al. [4], Chaubey et al. [5],
Chen [6], Huxley and Nowak [10] for part of related works and some generalizations
in recent years.

In 2018, Goins et al. [7] considered the integer lattice points in the plane which
are visible to the origin (0, 0) along curves y = r xk with k ∈ N fixed and some
r ∈ Q. They showed that the proportion of such integer lattice points is 1/ζ(k+1). In
the same year, Harris and Omar [8] further considered the case of rational exponent
k. Recently, Benedetti et al. [3] studied the proportion of visible lattice points to the
origin along such curves in higher dimensional space.

All the above results are concerned about the lattice points visible to only one base
point. It is natural to consider the distribution of lattice points which are visible to
more base points simultaneously. For the case of visibility along straight lines, the
earliest work originates from Rearick in 1960s. In his Ph.D. thesis, Rearick [13] first
showed that the density of integer lattice points in the plane which are jointly visible
along straight lines to N (N = 2 or 3) base points is

∏
p

(
1 − N/p2

)
, where the base

points are mutually visible in pairs and the product is over all the primes. Then in [14],
he generalized this result to lattice points in higher dimensional space and larger N .

The joint visibility of lattice points along curves has not been considered yet. In
this paper, we focus on this topic and we also propose the concept of level of visibility.
Level-1 visibility matches the definition of “k-visible” in [7]. We use higher level of
visibility to analyze more carefully about the “invisible” points along certain curves.
We give asymptotic formulas for the number of lattice points which are visible to a
set of N base points along certain curves in different levels of visibility.

1.2 Our results

For any positive integer k and integer lattice points (u, v), (m, n) ∈ N×N, let r ∈ Q

be given by n − v = r(m − u)k and C be the curve y − v = r(x − u)k . If there is
no integer lattice points lying on the segment of C between points (m, n) and (u, v),
we say (m, n) is (Level-1) k-visible to (u, v). Further, if there is at most one integer
lattice points lying on the segment of C between points (m, n) and (u, v), we say point
(m, n) is Level-2 k-visible to (u, v).

One can see that k-visibility is mutual. Precisely, if a point (m, n) is Level-1 or
Level-2 k-visible to the point (u, v) along the curve y − v = r(x − u)k , then (u, v)

is also Level-1 or Level-2 k-visible to (m, n), respectively, along the curve y − n =
(−1)k+1r(x − m)k .

Throughout this paper, we always assume S is a given set of integer lattice points in
the plane. We say an integer lattice point (m, n) is Level-1 k-visible to S if it belongs
to the set

V 1
k(S) := {(m, n) ∈ N × N : (m, n) is k-visible to every point in S}.

Similarly, we say a point (m, n) ∈ N×N is Level-2 k-visible to S if it belongs to the
set
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V 2
k(S) := {(m, n) ∈ N × N : (m, n) is Level-2 k-visible to every point in S}.

Onemay define higher Level k-visible points to S this way. But in this paper, we focus
on Level-1 and Level-2 k-visible points.

For x ≥ 2,we consider visible lattice points along curves in the square [1, x]×[1, x].
Denote

N 1
k (S, x) := #{(m, n) ∈ V 1

k(S) : m, n ≤ x},

and

N 2
k (S, x) := #{(m, n) ∈ V 2

k(S) : m, n ≤ x}.

An important case is that the points of S are pairwise k-visible to each other. The
cardinality of such S can’t be too large. In fact, we have #S ≤ 2k+1 by Proposition 2.1
in the next section. For such type of S, we obtain the following asymptotic formulas
for N 1

k (S, x) and N 2
k (S, x).

Theorem 1.1 Assume the elements of S are pairwise k-visible to each other and N =
#S < 2k+1. For any k ≥ 2, we have

N 1
k (S, x) = x2

∏

p

(

1 − N

pk+1

)

+ E1(x), (1.1)

where p runs over all primes, and

E1(x) =
{
Ok(x logN x), if 1 ≤ N ≤ k;
Ok,ε(x

2− 2k
N+k +ε), if k < N < 2k+1.

Remark 1 If N = #S = 2k+1, by Proposition 2.1, there is no lattice point outside S
which is (Level-1) k-visible to all elements of S.

By the above Theorem, the density of (Level-1) k-visible points to every elements of
S is

∏
p

(
1 − N/pk+1

)
. For k = 1, it is done by the work in [14], where the author

studied the visible points along straight lines. The special case N = 1 for k ≥ 2 in
Theorem 1.1 covers the result in [7], where only the main term was given.

We also give asymptotic formulas for Level-2 k-visible points. Note that such set
actually includes some “invisible” points in the definition of previous research. We
are able to analyze more carefully about these “invisible” points.

Theorem 1.2 Assume the elements of S are pairwise k-visible to each other and N =
#S ≤ 2k+1. For any k ≥ 1, we have

N 2
k (S, x) = N 1

k (S, x) + x2
N

2k+1

(

1 − 1

2k+1

) ∏

p>2 prime

(

1 − N

pk+1

)

+ E2(x),

(1.2)
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Table 1 Densities of k-visible
points to set of two elements

Level-1 Level-2

k Numerical Theoretical Numerical Theoretical

2 0.67680152 0.67689274 0.87422663 0.87431979

3 0.84972063 0.84973299 0.96357826 0.96353652

4 0.92895008 0.92905919 0.98893214 0.98906093

5 0.96584343 0.96595054 0.99649707 0.99662336

6 0.98333499 0.98344709 0.99888344 0.99893540

7 0.99173415 0.99187962 0.99953337 0.99965918

8 0.99583374 0.99599147 0.99973335 0.99988969

9 0.99790020 0.99801286 0.99980001 0.99996401

where

E2(x) =
{
Ok(x logN x) if 1 ≤ N ≤ k;
Ok,ε(x

2− 2k
N+k +ε) if k < N ≤ 2k+1.

Remark 2 Note that when N = 2k+1, N 1
k (S, x) = 0, there is no Level-1 k-visible

points to S. But there are still positive proportion of lattice points in the plane which
are Level-2 k-visible to S.

For the special case N = 1 and k = 1, our problem is the same as the so-called
“primitive lattice problem” inside a square. Nowak [12], Zhai [17] and Wu [16] have
studied the number of primitive lattice points inside a circle. Primitive lattice points
in general planar domains have also been studied by Hensley [9], Huxley and Nowak
[10] and Baker [2] etc. Assuming the Riemann hypothesis(RH), they continuously
improved the error term of the concerned asymptotic formulas by estimating certain
exponential sums. One may wonder how much we can do to improve the estimates
of E1(x) and E2(x) by similar argument under RH. However, we do not focus on
pursuing the best possible error term in this paper.

Taking S = {(0, 0), (1, 1)}, we did numerical calculations for densities of Level-1
and Level-2 k-visible points for x = 10,000 and k = 2, 3, . . . , 9 (see Table 1 and
Fig. 1). We see that the numerical results match the theoretical predictions very well.

We also calculate the case when S = {(0, 0), (1, 2), (2, 1)}, and we get the follow-
ing data for densities of Level-1 and Level-2 k-visible points to S (see Table 2 and
Fig. 2).

Notations We use Z to denote the set of integers; N to denote the set of positive
integers; Q to denote the set of rational numbers; #S to denote the cardinality of a
set S. As usual, we use the expressions f = O(g) or f � g to mean | f | ≤ Cg for
some constant C > 0. In the case when this constant C > 0 may depend on some
parameters ρ, we write f = Oρ(g) or f �ρ g.
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Visible lattice points along curves 1077

Fig. 1 Densities of k-visible points to set of two elements

Table 2 Densities of k-visible
points to set of three elements

Level-1 Level-2

k Numerical Theoretical Numerical Theoretical

2 0.53443474 0.53456687 0.81503364 0.81521448

3 0.77729627 0.77737343 0.94553393 0.94555518

4 0.89379137 0.89401525 0.98333222 0.98360945

5 0.94873357 0.94899382 0.99464610 0.99493640

6 0.97490498 0.97518170 0.99822532 0.99840321

7 0.98750246 0.98782124 0.99920012 0.99948878

8 0.99365123 0.99398750 0.99950006 0.99983453

9 0.99675061 0.99701934 0.99960004 0.99994602

2 Preliminaries

We define the degree-k greatest common divisor of m, n ∈ Z as

gcdk(m, n) := max{d ∈ N : d | m, dk | n}.

Proposition 2.1 For any integer k ≥ 1, assume any two distinct elements (ui , vi ),
(u j , v j ) ∈ S are k-visible to each other, then we have #S ≤ 2k+1.

Proof To see this, we consider the map

λ : S → S̃ := {(u mod 2, v mod 2k) : (u, v) ∈ S}.
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Fig. 2 Densities of k-visible points to set of three elements

The size of the image S̃ is at most 2k+1. If S has more than 2k+1 points, there must
be two distinct elements which map to the same element in S̃, say

λ((u1, v1)) = λ((u2, v2)).

Thus we have

2 | (u2 − u1) and 2k | (v2 − v1),

and hence gcdk(u2 − u1, v2 − v1) ≥ 2, which contradicts our assumption on S. �	
By the definition of k-visible points and elementary argument, we get the following

lemma. One may refer to [7] (Proposition 3) for similar argument. Here we omit the
proof.

Lemma 2.2 For any k ≥ 1, if m − u 
= 0 and n − v 
= 0, we have

(i) Point (m, n) is k-visible to point (u, v) if and only if gcdk(m − u, n − v) = 1.
(ii) There exists exactly one integer point lying on the segment of the curve y − v =

r(x − u)k joining (u, v) and (m, n) for some r ∈ Q if and only if gcdk(m − u, n−
v) = 2.

We also need the following well-known result for l-fold divisor function τl(n) =∑
d1···dl=n 1.

Lemma 2.3 ([11], formula (1.80)) Let l ≥ 2 be an integer. For any x ≥ 2, we have

∑

n≤x

τl(n) �l x log
l−1 x .
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3 Proof of Theorem 1.1

Given a set S, if we shift S such that it contains the origin, the error occurs to our
counting function isOS(x). Thus,wemay assume (0, 0) ∈ S. Denote the elements of S
as (u j , v j ), 0 ≤ j ≤ N−1with (u0, v0) = (0, 0). ByProposition 2.1, the contribution
of points (m, n) with m = u j or n = v j ′ for some j, j ′ is O(|S|x) = Ok(x). Hence,
we only need to estimate the contribution of points (m, n) with m 
= u j and n 
= v j ′
for all 0 ≤ j, j ′ ≤ N − 1. Throughout all our proofs, we implicitly assume the input
of gcdk(∗, ∗) has no zero coordinates unless otherwise specified.

By Lemma 2.2 we have

N 1
k (S, x) =

∑

m,n≤x
gcdk (m−u j ,n−v j )=1

m 
=u j ,n 
=v j
0≤ j≤N−1

1 + Ok(x) =: Ñ 1
k (S, x) + Ok(x).

Applying the formula

∑

d|n
μ(d) =

{
1 if n = 1;
0 otherwise,

(3.1)

where μ is the Möbius function, we write

Ñ 1
k (S, x) =

∑

m,n≤x

∑

d j | gcdk (m−u j ,n−v j )

0≤ j≤N−1

μ(d0) · · · μ(dN−1). (3.2)

Let D > 0 be a parameter to be chosen later. Divide the sum over d0, · · · , dN−1
into two parts: d0 · · · dN−1 ≤ D and d0 · · · dN−1 > D, and denote their contributions
to Ñ 1

k (S, x) by
∑

≤ and
∑

>, respectively. Then we have

Ñ 1
k (S, x) =

∑

≤ +
∑

>
. (3.3)

For
∑

≤, we change the order of the summation and obtain

∑

≤ =
∑

d0···dN−1≤D

μ(d0) · · · μ(dN−1)

( ∑

m,n≤x
d j |m−u j ,dkj |n−v j

0≤ j≤N−1

1

)

. (3.4)

Note that (u0, v0) = (0, 0), then for any given d0, · · · , dN−1, the inner sum over m, n
in the above formula actually equals
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( ∑

s≤x/d0
sd0≡u j ( mod d j )

1≤ j≤N−1

1

)( ∑

t≤x/dk0
tdk0≡v j ( mod dkj )

1≤ j≤N−1

1

)

.

Since the points in S are mutually k-visible, then by Lemma 2.2 we have

gcdk(ul − u j , vl − v j ) = 1 for (ul , vl), (u j , v j ) ∈ S, 0 ≤ j 
= l ≤ N − 1.

This implies

gcd(d j , dl) = 1 for 0 ≤ j 
= l ≤ N − 1.

It then follows that

∑

≤ =
∑

d0···dN−1≤D
gcd(d j ,dl )=1, ∀ 0≤ j 
=l≤N−1

μ(d0) · · · μ(dN−1)

×
(

x

d0 · · · dN−1
+ O(1)

) (
x

dk0 · · · dkN−1

+ O(1)

)

.

Then by Lemma 2.3 we obtain

∑

≤ = x2
∑

d0···dN−1≤D
gcd(d j ,dl )=1, ∀ 0≤ j 
=l≤N−1

μ(d0) · · · μ(dN−1)

dk+1
0 · · · dk+1

N−1

+ O

(

x
∑

d0···dN−1≤D

1

d0 · · · dN−1

)

+ O

(

x
∑

d0···dN−1≤D

1

dk0 · · · dkN−1

)

+ O

( ∑

d0···dN−1≤D

1

)

= x2
∑

d0···dN−1≤D
gcd(d j ,dl )=1, ∀ 0≤ j 
=l≤N−1

μ(d0) · · · μ(dN−1)

dk+1
0 · · · dk+1

N−1

+ Ok

(
D logN−1 D + x logN D

)
. (3.5)

Writing n = d0 · · · dN−1, we then have

∑

≤ = x2
∑

n≤D

μ(n)τN (n)

nk+1 + Ok(D logN−1 D + x logN D).
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Using Lemma 2.3, we obtain

∑

≤ = x2
∞∑

n=1

μ(n)τN (n)

nk+1 + Ok
(
x2D−k logN−1 D + D logN−1 D + x logN D

)
.

(3.6)

(i) If 1 ≤ N ≤ k, then we choose D = x . In this case, since each d j ≤ x1/k ,
d0 · · · dN−1 ≤ xN/k ≤ x . Thus the second sum

∑
> in (3.3) is empty since we

already exclude zero inputs of gcdk(∗, ∗) in the beginning of the proof. Inserting
(3.6) into (3.3) yields (1.1) in Theorem 1.1 with

E1(x) �k x logN x for 1 ≤ N ≤ k.

(ii) If k < N < 2k+1, we need to make another choice for D, and deal with
∑

> more
carefully. Taking absolute value of μ(d), we obtain

∑

>
=

∑

m,n≤x

∑

d0···dN−1>D
d j | gcdk (m−u j ,n−v j )

0≤ j≤N−1

μ(d0) · · · μ(dN−1) �
∑

m,n≤x

∑

d0···dN−1>D
d j | gcdk (m−u j ,n−v j )

0≤ j≤N−1

1,

which implies

∑

>
�

∑

m,n≤x∏

0≤ j≤N−1
gcdk (m−u j ,n−v j )>D

τ
(
gcdk(m − u0, n − v0)

) · · ·

τ
(
gcdk(m − uN−1, n − vN−1)

)

Using the bounds τ(n) �ε nε for any ε > 0, N < 2k+1 andgcdk(m−u j , n−v j ) ≤
x1/k , we have

∑

>
�k,ε xε

∑

m,n≤x∏

0≤ j≤N−1
gcdk (m−u j ,n−v j )>D

1.

Since
∏

0≤ j≤N−1
gcdk(m−u j , n−v j ) > D implies gcdk(m−u j∗ , n−v j∗) > D1/N

for some j∗ ∈ {0, · · · , N − 1}, we obtain
∑

>
�k,ε xε

∑

0≤ j≤N−1

∑

m,n≤x
gcdk (m−u j ,n−v j )>D1/N

1.
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By the definition of gcdk , we have

∑

>
�k,ε xε

∑

0≤ j≤N−1

∑

D1/N<d≤x1/k

∑

m,n≤x
d|m−u j

dk |n−v j

1.

It follows that

∑

>
�k,ε x2+ε

∑

0≤ j≤N−1

∑

D1/N<d≤x1/k

1

d1+k
�k,ε x2+εD−k/N . (3.7)

Collecting all the above gives

N 1
k (S, x) = x2

∏

p

(

1 − N

pk+1

)

+ Ok,ε
(
D logN−1 D + x2+εD−k/N + x logN x

)
.

Taking D = x
2N
N+k yields (1.1) with

E1(x) �k,ε x2−
2k
N+k +ε for k < N < 2k+1.

4 Proof of Theorem 1.2

In this section,we also assumegcdk(∗, ∗)does not take any inputwith zero coordinates.
If elements of S are pairwise k-visible to each other, then for any (m, n) ∈ V 2

k(S),
there exists at most one (u, v) ∈ S such that gcdk(m−u, n−v) = 2. Indeed, suppose
gcdk(m−u1, n− v1) = gcdk(m−u2, n− v2) = 2 for some (u1, v1) 
= (u2, v2) ∈ S,
then we have

2|(m − u1), 2|(m − u2), 2k |(n − v1), 2k |(n − v2).

Thus, 2|(u2 − u1) and 2k |(v2 − v1), which contradicts the assumption gcdk(u2 −
u1, v2 − v1) = 1.

By the above argument, we write

N 2
k (S, x) = N 1

k (S, x) +
∑

0≤l≤N−1

∑

m,n≤x
gcdk (m−ul ,n−vl )=2
gcdk (m−u j ,n−v j )=1

j 
=l

1 + Ok(x). (4.1)
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Without loss of generality, wemay assume (u0, v0) = (0, 0).We only need to estimate
the inner sum of the second term in (4.1) for l = 0, other cases are similar. Denote

I (x) :=
∑

m,n≤x
gcdk (m,n)=2

gcdk (m−u j ,n−v j )=1
1≤ j≤N−1

1.

We have

I (x) =
∑

m,n≤x
2|m,2k |n

gcdk (m/2,n/2k )=1
gcdk (m−u j ,n−v j )=1

1≤ j≤N−1

1 =
∑

m,n≤x
2|m,2k |n

∑

d0|gcdk (m/2,n/2k )
d j |gcdk (m−u j ,n−v j )

1≤ j≤N−1

μ(d0) · · · μ(dN−1). (4.2)

By changing the order of summation and making the substitutions m = 2d0s and
n = (2d0)k t , we obtain

I (x) =
∑

d0,··· ,dN−1≤x1/k

μ(d0) · · · μ(dN−1)
∑

s≤x/(2d0),t≤x/(2d0)k
2d0s≡u j ( mod d j )

(2d0)k t≡v j ( mod dkj )
1≤ j≤N−1

1. (4.3)

In order to get estimates of I (x), we need to analyze the conditions in the inner
sum. Fix d0, · · · , dN−1, in order for those congruence equations having solutions, we
need

gcd(2d0, d j ) | u j , gcd((2d0)
k, dkj ) | v j

for 1 ≤ j ≤ N−1. Since points (u j , v j ) are k-visible to point (u0, v0), thenLemma2.2
gives gcdk(u j , v j ) = 1. It follows that gcd(2d0, d j ) = 1 for 1 ≤ j ≤ N−1.Moreover,
in order for those congruence equations having solutions, we also need the following
equations

d j1l1 − d j2l2 = u j2 − u j1 , dkj1 t1 − dkj2 t2 = v j2 − v j1

have solutions for any d j1 and d j2 with 1 ≤ j1 
= j2 ≤ N − 1. This implies

gcd(d j1 , d j2) | u j2 − u j1 , gcd(dkj1 , d
k
j2) | v j2 − v j1

for 1 ≤ j1 
= j2 ≤ N − 1. By the assumption of pairwise k-visibility of elements
of S, we have gcdk(u j2 − u j1, v j2 − v j1) = 1, and thus gcd(d j1 , d j2) = 1 for any
1 ≤ j1 
= j2 ≤ N − 1.
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As what we did in Sect. 3, we divide the sum over d0, · · · , dN−1 into two parts
according to d0 · · · dN−1 ≤ D or not. Denote them by I≤ and I>, respectively, then

I (x) = I≤ + I>. (4.4)

For I≤, we have

I≤ =
∑

d0···dN−1≤D
gcd(d j1 ,d j2 )=1,∀ j1 
= j2
gcd(2,d j )=1,1≤ j≤N−1

μ(d0) · · · μ(dN−1)

(
x

2d0 · · · dN−1
+ O(1)

)

×
(

x

2kdk0 · · · dkN−1

+ O(1)

)

,

and by Lemma 2.3, we get

I≤ = x2

2k+1

∑

d0···dN−1≤D
gcd(d j1 ,d j2 )=1,∀ j1 
= j2
gcd(2,d j )=1,1≤ j≤N−1

μ(d0) · · · μ(dN−1)

dk+1
0 · · · dk+1

N−1

+ Ok

(
x logN x + D logN−1 D

)
.

Making the substitution n = d0 · · · dN−1, we obtain

I≤ = x2

2k+1

∑

n≤D

μ(n)

nk+1 h(n) + Ok

(
x logN x + D logN−1 D

)
.

where

h(n) =
∑

n=d0···dN−1
d1,··· ,dN−1 odd

1.

Extending the sum over n and using the bound h(n) ≤ τN (n), and by Lemma 2.3, we
derive

I≤ = x2

2k+1

∞∑

n=1

μ(n)

nk+1 h(n) + Ok

(
x2D−k logN−1 D + x logN x + D logN−1 D

)
.

(4.5)

Note that h(n) is multiplicative with h(2) = 1 and h(p) = N for p > 2 prime. Thus

∞∑

n=1

μ(n)

nk+1 h(n) =
(

1 − 1

2k+1

) ∏

p>2

(

1 − N

pk+1

)

.
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(i) If 1 ≤ N ≤ k, then we choose D = x . In this case, since each d j ≤ x1/k ,
d0 · · · dN−1 ≤ xN/k ≤ x . Thus the second term I> in (4.4) is empty. Inserting
(4.5) into (4.4) yields (1.2) in Theorem 1.2 with

E1(x) �k x logN x for 1 ≤ N ≤ k.

(ii) If k < N ≤ 2k+1, we need to make another choice for D and deal with I>. By
similar argument as before, we obtain

I> �
∑

m,n≤x
2|m,2k |n

∑

d0···dN−1>D
d0|gcdk (m/2,n/2k )

d j |gcdk (m−u j ,n−v j )

1≤ j≤N−1

1,

which gives

I> �
∑

m,n≤x
2|m,2k |n∏

0≤ j≤N−1
gcdk (m−u j ,n−v j )>D

τ(gcdk(m/2, n/2k))

×
∏

1≤ j≤N−1

τ(gcdk(m − u j , n − v j )).

Using the bound τ(n) �ε nε for any ε > 0, by a similar argument as in the proof
of Theorem 1.1, we obtain

I> �ε xε
∑

m,n≤x∏

0≤ j≤N−1
gcdk (m−u j ,n−v j )>D

1 �ε x2+εD−k/N .

Hence, combining all the estimates and taking D = x
2N
N+k yields

I (x) = x2

2k+1

(

1 − 1

2k+1

) ∏

p>2

(

1 − N

pk+1

)

+ Ok,ε(x
2− 2k

N+k +ε + x logN x).

Plugging this into (4.1), we obtain (1.2) in Theorem 1.2 with

E2(x) �k,ε x2−
2k
N+k +ε for k < N ≤ 2k+1.
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