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Abstract
Let k ∈ N≥2 and for given m ∈ Z\{0} consider the sequence (Sk,m(n))n∈N defined by
the power series expansion

1

(1 − x)m

∞∏

i=0

1

(1 − xki )m(k−1)
=

∞∑

n=0

Sk,m(n)xn .

The number Sk,m(n) for m ∈ N+ has a natural combinatorial interpretation: it counts
the number of representations of n as sums of powers of k, where the part equal to 1
takes one among mk colors and each part > 1 takes m(k − 1) colors. We concentrate
on the case when k = p is a prime. Our main result is the computation of the exact
value of the p-adic valuation of Sp,m(n). In particular, in each case the set of values of
νp(Sp,m(n)) is finite and the maximum value is bounded by max{νp(m) + 1, νp(m +
1) + 1}. Our results can be seen as a generalization of earlier work of Churchhouse
and recent work of Gawron, Miska and Ulas, and the present authors.
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B Błażej Żmija
blazej.zmija@im.uj.edu.pl

Maciej Ulas
maciej.ulas@uj.edu.pl

1 Faculty of Mathematics and Computer Science, Institute of Mathematics, Jagiellonian University,
Łojasiewicza 6, 30-348 Kraków, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11139-020-00256-z&domain=pdf
http://orcid.org/0000-0001-7320-9700


624 M. Ulas, B. Żmija

1 Introduction

Theory of partitions is a classical part of number theory. Main arithmetical questions
concerning counting functions of various types of partitions are related to divisibility
properties and p-adic behavior for various values of p ∈ P, where P stands for the
set of primes. Particular partition functions are connected with k-ary representations
of integers. Let us recall that by a k-ary partition of an integer n we understand the
representation of n into powers of k, i.e., the representation of the form

n =
u∑

i=0

ksi , (1)

where si ∈ N for i = 0, . . . , u and s0 ≤ s1 ≤ · · · ≤ su . By a colored k-ary repre-
sentation we understand the k-ary representation, where parts take colors from finite
sets.

The basic k-ary partition function is related to the case of k = 2. Then, the counting
function b(n) of representations of n in the form (1) is called the binary partition
function. The sequence (b(n))n∈N was introduced by Euler, who also noticed the
identity

B(x) =
∞∏

n=0

1

1 − x2n
=

∞∑

n=0

b(n)xn .

The series B satisfies the functional equation (1− x)B(x) = B(x2). In consequence,
by comparing the coefficients of xn on the both sides of the functional relation, we
see that the sequence (b(n))n∈N satisfies: b(0) = b(1) = 1 and

b(2n) = b(2n − 1) + b(n), b(2n + 1) = b(2n).

However, it seems that the first non-trivial result concerning the sequence (b(n))n∈N

was obtained by Churchhouse in [4]. In order to state his result, let p ∈ P be given and
recall that the p-adic valuation of an integer n, denoted by νp(n), is just the highest
power of p dividing n, i.e.,

νp(n) := max{k ∈ N : pk | n}

with the convention that νp(0) = +∞. It is clear that the p-adic valuation satisfies
the properties: νp(n1n2) = νp(n1)+νp(n2) and νp(n1+n2) ≥ min{νp(n1), νp(n2)}.
Churchhouse proved that the sequence of the 2-adic valuations of (b(n))n∈N is bounded
by 2. More precisely, if n ≥ 2, we have ν2(b(n)) = 2 if and only if n or n − 1 can be
written in the form 4r (2u + 1) for some r ∈ N+ and u ∈ N. In the remaining cases
we have ν2(b(n)) = 1. One can observe that we can shortly write

ν2(b(n)) =
{

1
2 |tn − 2tn−1 + tn−2| if n ≥ 2,

0 if n ∈ {0, 1}, (2)
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On p-adic valuations ofm colored p-ary partition functions 625

where (tn)n∈N is the Prouhet–Thue–Morse sequence (the PTM sequence for short).
The PTM sequence can be defined in many equivalent ways but the most natural in the
context of binary partitions is the one through generating functions. More precisely,
we have

T (x) = 1

B(x)
=

∞∏

n=0

(
1 − x2

n
)

=
∞∑

n=0

tnx
n .

As an immediate consequence of the functional relation T (x) = (1− x)T (x2) we get
the recurrence relations

t0 = 1, t2n = tn, t2n+1 = −tn .

The PTMsequence appears inmany different areas ofmathematics (and even physics).
An interesting introduction to the properties of this sequence can be found in [1]. We
will encounter this sequence in the sequel one more time.

In the recent paper [7] Gawron et al. generalized the result of Churchhouse in the
following way. Let m ∈ N+ and consider the sequence (bm(n))n∈N, where

B(x)m =
∞∏

n=0

1
(
1 − x2n

)m =
∞∑

n=0

bm(n)xn .

The sequence (bm(n))n∈N has a natural combinatorial interpretation. More precisely,
the number bm(n) counts the number of binary representations (1), where each part has
one amongm colors. In the cited paper it was proved that the sequence (ν2(bm(n)))n∈N,
withm = 2k−1, k ∈ N+, is bounded by 2 (and independent of k—a rather unexpected
result). This result was further generalized for p-ary colored partitions with p ∈ P≥3
in [11]. Indeed, let Ap,m(n) denote the number of p-ary representations (1) of the
number n, where each summand has one among m colors. We proved that for each
p ∈ P≥3 and s ∈ N+, the p-adic valuation of the number Ap,(p−1)(ps−1)(n) is equal to
1 for n ≥ ps . We also obtained some results concerning the behavior of the sequence
(νp(Ap,(p−1)(ups−1)(n)))n∈N for fixed u ∈ {2, . . . , p − 1} and p ≥ 3. Let us note
that the exponent (p − 1)(ps − 1) for p = 2 reduces to 2s − 1 considered in [7] (in
particular b2s−1(n) = A2,2s−1(n) for all n ∈ N). This shows striking difference in
behavior of the p-adic valuations of Ap,(p−1)(ps−1)(n) between the case of p = 2 and
p ∈ P≥3.

In light of the cited results a natural question arises whether there is a p-ary partition
type function such that its colored version has a bounded p-adic valuation for each
fixed number of colors (not only of particular forms like in the cases considered in
[7,11]). The aim of this paper is to present such a function and obtain exact expression
for the corresponding sequence of p-adic valuations.

For k ∈ N≥2 we consider the power series expansion

Gk(x) = 1

1 − x

∞∏

n=0

1

(1 − xkn )k−1 =
∞∑

n=0

Sk(n)xn .
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626 M. Ulas, B. Żmija

Then for m ∈ Z\{0} we consider the power series

Hk,m(x) = Gk(x)
m = 1

(1 − x)m

∞∏

n=0

1

(1 − xkn )m(k−1)
=

∞∑

n=0

Sk,m(n)xn,

and the sequence (Sk,m(n))n∈N. Similarly, as in the previous cases the coefficient
Sk,m(n) for m ∈ N+ has a natural combinatorial interpretation. The number Sk,m(n)

counts the number of k-ary representations (1) such that the part equal to 1 takes one
among km colors and each part > 1 takes one among (k − 1)m colors. In this paper
we concentrate on the case k = p ∈ P. As we will see, it is possible to compute the
expression for νp(Sp,m(n)) for each p ∈ P, n ∈ N and m ∈ Z, explicitly. Let us note
that in the casem < 0 we are working with the sequence with varying signs and it is a
non-trivial question whether the number Sp,m(n) can be zero. Unexpectedly, we will
show that this is not the case. This non-obvious observation will be a consequence of
our main results. We should also mention that as in previous works the cases of p = 2
and p ∈ P≥3 are quite different. Thus, we introduce the following definitions with the
aim to simplify the notation a bit. More precisely, we write

cm(n) := S2,m(n), dm(n) := Sp,m(n) for fixed p ∈ P≥3.

Let us note that we have the equality c1(n) = b(2n) which is a consequence of the
equalities

∞∑

n=0

b(2n)xn = 1

2
(B(

√
x) + B(−√

x)) = 1

1 − x

∞∏

n=0

1

1 − x2n
= H2,1(x).

We are in position to state the content of the paper in some details.
In Sect. 2 we consider the case p = 2 and obtain the closed formula for ν2(cm(n))

for any givenm ∈ Z. The formula is stated in Theorem 2.4 and implies that ν2(cm(n))

is constant for even m and positive n. In the case of odd m the value of ν2(cm(n)) is
equal to 1 or ν2(m+1)+1, depending onwhether tn �= tn−1 or tn = tn−1, respectively.

The next two sections are devoted to the proof of the equality νp(dm(n)) = νp(m)+
1 which holds for n ∈ N+ and each m ∈ Z\{0} (Theorems 3.5 and 3.7). According to
our best knowledge our results are the first concerning the exact computation of the
p-adic valuations of m colored partitions (with non-rational generating function of
course). Moreover, our results can be seen as natural generalizations of Churchhouse
result. As a by-product of the employed methods we also get an unexpected fact

that the sequence
(
dm(n)
pm (mod p)

)

n∈N+
is independent of m. Thus, a more detailed

analysis of this sequence is performed in Sect. 4. The main result of this section is

the proof of p-automaticity of the sequence
(
dm (n)
pm (mod p)

)

n∈N+
(Theorem 4.1) and

transcendence of the corresponding ordinary generating function (Theorem 4.6).
In Sect. 5 we present the study of the p-adic behavior of the difference dm(pn) −

dm(n). In particular we prove sufficient conditions for the inequality νp(dm(pn) −
dm(n)) ≥ νp(m) + 3 to hold (Theorem 5.5).
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On p-adic valuations ofm colored p-ary partition functions 627

Finally, in the last section we ask for a possible generalization of our results, present
effects of some numerical computations and formulate some questions, problems and
conjectures.

2 The case of p = 2

In order to simplify the notation a bit let us put

C(x) := G2(x), Cm(x) := G2(x)
m .

Let us observe that the power seriesC(x) satisfies the functional relation (1−x)C(x) =
(1 + x)C(x2) . In consequence, for m ∈ Z we have the relation

Cm(x) =
(
1 + x

1 − x

)m

Cm(x2),

which will be useful in the proof of Lemma 2.2 below. Moreover, in the sequel we
will need the following functional property: for m1,m2 ∈ Z we have

Cm1(x)Cm2(x) = Cm1+m2(x).

We start our investigations with a simple lemma which is a consequence of the
result of Churchhouse and the product form of the series C−1(x).

Lemma 2.1 For n ∈ N+, we have the following equalities:

ν2(c1(n)) =1

2
|tn + 3tn−1|,

ν2(c−1(n)) =
{
1 if tn �= tn−1,

+∞ if tn = tn−1.

Proof The first equality is an immediate consequence of the equalities c1(n) = b(2n)

and (2), and the recurrence relations satisfied by the PTM sequence (tn)n∈N, i.e.,
t2n = tn, t2n+1 = −tn .

The second equality comes from the expansion

C−1(x) = (1 − x)
∞∏

n=0

(1 − x2
n
) = (1 − x)

∞∑

n=0

tnx
n = 1 +

∞∑

n=1

(tn − tn−1)x
n .

�	
In order to compute the 2-adic valuations of the sequence (c±2(n))n∈N we need the

following simple fact:
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628 M. Ulas, B. Żmija

Lemma 2.2 The sequences (c±2(n))n∈N satisfy the following recurrence relations:
c±2(0) = 1, c±2(1) = ±4 and for n ≥ 1 we have

c±2(2n) = ± 2c±2(2n − 1) − c±2(2n − 2) + c±2(n) + c±2(n − 1),

c±2(2n + 1) = ± 2c±2(2n) − c±2(2n − 1) ± 2c±2(n).

Proof The recurrence relations for the sequence (c±2(n))n∈N are immediate con-

sequence of the functional equation C±2(x) =
(
1+x
1−x

)±2
C±2(x2), which can be

rewritten in an equivalent form (1 ∓ x)2C±2(x) = (1 ± x)2C±2(x2). Comparing
now the coefficients on both sides of this relation we get the result. �	

As a consequence of the recurrence relations for (c±2(n))n∈N we get:

Corollary 2.3 For n ∈ N+ we have c±2(n) ≡ 4 (mod 8). In consequence, for n ∈ N+
we have ν2(c±2(n)) = 2.

Proof The proof relies on a simple induction. Indeed, we have c±2(1) = ±4, c−2(2) =
4, c2(2) = 12 and thus our statement holds for n = 1, 2. Assuming it holds for all
integers ≤ n and applying the recurrence relations given in Lemma 2.2 we get the
result.

The second part is an immediate consequence of the obtained congruence. �	
Theorem 2.4 Let m ∈ Z\{0,−1} and consider the sequence cm = (cm(n))n∈N. Then
cm(0) = 1 and for n ∈ N+ we have

ν2(cm(n)) =

⎧
⎪⎨

⎪⎩

ν2(m) + 1 if m ≡ 0 (mod 2),

1 if m ≡ 1 (mod 2) and tn �= tn−1,

ν2(m + 1) + 1 if m ≡ 1 (mod 2) and tn = tn−1.

(3)

Proof First of all, let us note that our theorem is true for m = 1,±2. This is a
consequence of Lemma 2.1 and Corollary 2.3. Let m ∈ Z and |m| > 2. Because
cm(0) = 1 and cm(1) = 2m, our statement is clearly true for n = 0, 1. We can assume
that n ≥ 2.

We start with the case m = −3. From the functional relation C−3(x) =
C−2(x)C−1(x) we immediately get the identity

c−3(n) =
n∑

i=0

c−1(i)c−2(n − i) = c−2(n) + tn − tn−1 +
n−1∑

i=1

(ti − ti−1)c−2(n − i).

Let us observe that for i ∈ {1, . . . , n − 1}, from Lemma 2.1 and Corollary 2.3, we
obtain the inequality

ν2((ti − ti−1)c−2(n − i)) ≥ 3.
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On p-adic valuations ofm colored p-ary partition functions 629

In consequence, from Corollary 2.3, we get

c−3(n) ≡ c−2(n) + tn − tn−1 ≡ 4 + tn − tn−1 (mod 8).

It is clear that 4 + tn − tn−1 �≡ 0 (mod 8). Thus, we get the equality ν2(c−3(n)) =
ν2(4 + tn − tn−1) and the result follows for m = −3.

We are ready to prove the general result. At first, we prove it for even numbers m.
We proceed by induction on |m|. As we have already proved, our theorem is true for
m = ±2. Let us assume that it is true for each m satisfying |m| < 2M . Let |m| = 2M
and write m = 4k + r for some k ∈ Z and r ∈ {0, 2}.

If m = 4k, then from the identity C4k(x) = C2k(x)2 we get the expression

c4k(n) = 2c2k(n) +
n−1∑

i=1

c2k(i)c2k(n − i).

From the inductionhypothesis (notice, that |4k| > |2k|)wehaveν2(c2k(i)c2k(n−i)) =
2(ν2(2k)+1) > ν2(2c2k(n)) = ν2(2k)+2. In consequence ν2(cm(n)) = ν2(c4k(n)) =
ν2(2c2k(n)) = ν2(2k) + 2 = ν2(4k) + 1. The obtained equality finishes the proof in
the case m ≡ 0 (mod 4).

Similarly, if m = 4k + 2 is positive, we use the identity C4k+2(x) = C4k(x)C2(x),
and get

c4k+2(n) = c2(n) + c4k(n) +
n−1∑

i=1

c4k(i)c2(n − i).

Observe that |4k + 2| > |4k|. From the equalities ν2(c2(n)) = ν2(2) + 1 and
ν2(c4k(n)) = ν2(4k) + 1, n ∈ N+, we get ν2(c4k(i)c2(n − i)) = ν2(k) + 5 for
each i ∈ {1, . . . , n− 1}. Thus ν2(c2(n)+ c4k(n)) = ν2(c2(n)) = 2 = ν2(4k + 2)+ 1.

If m = 4k + 2 is negative, we use the identity C4k+2(x) = C4(k+1)(x)C−2(x) and
proceed in exactly the same way (here we can use the induction hypothesis because
|4k + 2| > |4(k + 1)| since k < 0).

Thus we can conclude that the statement is true for all even numbers m. We go to
odd ones. We have already shown the theorem for m = −1 and m = −3. Similarly
as before, let us write m = 4k + r for some k ∈ Z and r ∈ {1, 3}.

If m = 4k + 1 > 0, then we use the identity C4k+1(x) = C4k(x)C1(x) and get

c4k+1(n) = c4k(n) + c1(n) +
n−1∑

i=1

c4k(i)c1(n − i).

From the even case we have ν2(c4k(i)c1(n − i)) ≥ ν2(4k) + 2 ≥ 4. Moreover, for
n ∈ N+ we have ν2(c1(n)) ∈ {1, 2}. Thus

ν2(c4k(n) + c1(n)) = ν2(c1(n)) =
{
1 if tn �= tn−1,

2 if tn = tn−1.

as we claimed.
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630 M. Ulas, B. Żmija

If m = 4k + 1 < 0, we write m = 4(k + 1) − 3 and use the identity
C4k+1(x) = C4(k+1)(x)C−3(x). Next, using the obtained expression for ν2(c−3(n))

and ν2(c4(k+1)(n)) and the same reasoning as in the positive case we get the result.
Ifm = 4k+3 > 0, we use the identityC4k+3(x) = C4(k+1)(x)C−1(x)which leads

us to the expression

c4k+3(n) = c4(k+1)(n) + c−1(n) +
n−1∑

i=1

c4(k+1)(i)c−1(n − i).

It is clear that ν2(c4(k+1)(i)c−1(n − i)) > ν2(c4(k+1)(n) + c−1(n)) for each n ∈ N+
and i ∈ {1, . . . , n − 1}. In consequence, by induction hypothesis

ν2(c4k+3(n)) = ν2(c4(k+1)(n) + c−1(n))

=
{
1 if tn �= tn−1,

ν2(c4(k+1)(n)) if tn = tn−1,

=
{
1 if tn �= tn−1,

ν2(4k + 3 + 1) + 1 if tn = tn−1.

Finally, if m = 4k + 3 < 0, then we write 4k + 3 = 4(k + 1) − 1 and employ the
identity C4k+3(x) = C4(k+1)(x)C−1(x). Using the same reasoning as in the previous
cases we get the result. �	

The explicit formof the value of ν2(cm(n)) form odd allowus to prove the following.

Corollary 2.5 Let m ∈ Z be odd and n ∈ N+. Then ν2(cm(2n) − cm(n)) = 1.

Proof Let us observe that the necessary condition for the inequality ν2(cm(2n) −
cm(n)) > 1 to hold is the condition

tn �= tn−1 �⇒ t2n �= t2n−1 or tn = tn−1 �⇒ t2n = t2n−1.

However, if tn �= tn−1, then tn = −tn−1 and thus t2n−t2n−1 = tn+tn−1 = 0. Similarly,
the equality tn = tn−1 implies that tn + tn−1 = 2tn and thus t2n − t2n−1 = 2tn �= 0. In
other words, if ν2(cm(n)) = 1 then ν2(cm(2n)) > 1 and vice versa. In consequence
we have the equality ν2(cm(2n) − cm(n)) = 1 and get the result. �	
Corollary 2.6 Let m ∈ N+ and suppose that N ∈ N+ satisfies the condition ν2(N ) >

ν2(m + 1) + 1. Then the congruence cm(n) ≡ 0 (mod N ) has no solutions.

Let us observe that the sequence (ν2(cm(n)))n∈N (for m odd) can be seen alter-
natively as a solution of the recurrence relation: wm(0) = 0, wm(1) = 1, wm(2) =
ν2(m + 1) + 1 and

wm(2n + 1) = 1, wm(4n) = wm(n), wm(4n + 2) = ν2(m + 1) + 1.
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On p-adic valuations ofm colored p-ary partition functions 631

The above recurrence is an immediate consequence of our explicit formula given
in Theorem 2.4. We use it in order to show that the sequence (ν2(cm(n)))n∈N is 2-
automatic. However, before we do this we need to recall the notion of a k-automatic
sequence. More precisely, let k ∈ N≥2 be given.We say that the sequence ε = (εn)n∈N

is k-automatic if and only if the following set

Kk(ε) = {(εki n+ j )n∈N : i ∈ N and 0 ≤ j < ki },

called the k-kernel of ε, is finite. If the k-kernel of the sequence ε is infinite but finitely
generated then we say that our sequence is k-regular.

Let us also recall that one of equivalent conditions for automaticity is the following
result of Christol:

Lemma 2.7 Let p ∈ P and q be a power of p, and a = (an)n∈N be a sequence over Fq .
Then a is p-automatic if and only if the formal power series

∑∞
n=0 anx

n is algebraic
over Fq(x).

The proof can be found in [3] or in recent monograph [1, Theorem 12.2.5].
We are ready to prove that the sequence (ν2(cm(n)))n∈N is 2-automatic for each

m ∈ Z\{0,−1}.
Theorem 2.8 For each m ∈ Z\{0,−1} the sequence (ν2(cm(n)))n∈N+ is 2-automatic.

Proof The result is obvious ifm is even, because in this case the sequence is ultimately
constant by Theorem 2.4. Let us assume thatm is odd and denote c̃m(n) := ν2(cm(n))

for n ∈ N, and C̃m(x) := ∑∞
n=0 c̃m(n)xn . Theorem 2.4 and the remark given above

imply the relations:

⎧
⎨

⎩

c̃m(2n + 1) = 1,
c̃m(4n + 2) = ν2(m + 1) + 1,
c̃m(4n) = c̃m(n).

Hence,

C̃m(x) =
∞∑

n=0

c̃m(4n)x4n +
∞∑

n=0

c̃m(4n + 2)x4n+2 +
∞∑

n=0

c̃m(2n + 1)x2n+1

=
∞∑

n=0

c̃m(n)x4n + (ν2(m + 1) + 1)
∞∑

n=0

x4n+2 +
∞∑

n=0

x2n+1

= C̃m(x4) + (ν2(m + 1) + 1)
x2

1 − x4
+ x

1 − x2
.

Equivalently

C̃m(x4) − C̃m(x) + x3 + (ν2(m + 1) + 1) x2 + 1

1 − x4
= 0,

so C̃m(x) is algebraic over F2(x) and the result follows from Lemma 2.7. �	
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632 M. Ulas, B. Żmija

Fig. 1 Automaton generating (ν2(cm (n)))n∈N+ for odd m when reading digits of n from the left to the
right

Fig. 2 Automaton generating (ν2(cm (n)))n∈N+ for odd m when reading digits of n from the right to the
left

It is worth to note that a sequence is k-automatic if and only if there exists an
automaton for it. Roughly speaking, automaton is a procedure that allow us to compute
for each n ∈ N the n-th member of a sequence by using only the digits in the (unique)
representation of n in the base k. For more precise definition see [2]. We can either
use the convention to read the digits of the base-k representation of n from the highest
power of k that appear in the representation to the lowest one (that is, from the right
to the left), or conversely, that is, from the lowest (i.e., from the 0’th power) to the
highest one (that is, from the left to the right). It is known that a given sequence is
k-automatic in the first convention if and only if it is k-automatic in the second one,
but automatons may be different depending on the convention.

We can present automatons generating the sequence (νp(cm(n)))n∈N+ in both con-
ventions. In the case of even m it is very simple. For odd m, they are presented above
(Figs. 1 and 2).

Remark 2.9 The second automaton is very similar to the one generating so called
period-doubling sequence given by en = ν2(n+1) (mod 2) for n ∈ N. This sequence
was considered for example in [5]. This similarity is not a coincidence, because the
period-doubling sequence can be defined also as the sequence en = 1−(s2(n)−s2(n−
1)) (mod 2), where s2(n) is the number of 1’s in the unique binary expansion of n. On
the other hand, the value of the quantity ν2(cm(n)) depends on the difference tn − tn−1
and hence, because of the equality tn = (−1)s2(n), on the difference sn − sn−1.

From the above discussion one can observe that en = 1 if and only if tn �= tn−1.
Thus, Theorem 2.4 for odd m can be rewritten as
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ν2(cm(n)) = ν2(n + 1) (mod 2) + (1 − ν2(n + 1) (mod 2))(ν2(m + 1) + 1)

= 1 + (1 − ν2(n + 1) (mod 2))ν2(m + 1)

for all n ≥ 1.

Corollary 2.10 If m < −1, then cm(n) �= 0 for n ∈ N.

Proof From our description of the 2-adic valuation of cm(n) given in Theorem 2.4,
we see that ν2(cm(n)) �= +∞ for n ∈ N. This is equivalent with the non-vanishing of
cm(n) for n ∈ N and hence the result. �	

Let us recall that in [7] the sequence (tm(n))n∈N, m ∈ N+, was investigated. Here
tm(n) is the Cauchy convolution of m-copies of the PTM sequence, i.e.,

tm(n) =
∑

i1+···+im=n

ti1 . . . tim .

We characterized the solutions of the equation t3(n) = 0 in terms of the expansion
of n in base 4. In particular, the equation t3(n) = 0 has infinitely many solutions.
Moreover, tm(n) �= 0 for m being power of 2. We also conjectured the non-vanishing
of tm(n) for m �= 3 but we were unable to prove such a statement. Thus, the above
corollary also shows strong difference of the sequences (tm(n))n∈N and (c−m(n))n∈N

for m ∈ N+.
The result obtained in Theorem 2.4 can be also used to prove the following.

Corollary 2.11 Let m ∈ N+ and Um(n) denote the number of binary partitions of n
such the part equal to 1 takes one among 2m+1 colors and parts> 1 take one among
m colors. Then Um(n) ≡ 1 (mod 2) for n ∈ N.

Proof From the definition of Um(n) we immediately deduce that Um(n) =∑n
i=0 cm(i). Because cm(0) = 1 and from Theorem 2.4 we know that cm(n) ≡

0 (mod 2) for n ∈ N+, we get that Cm(n) is odd for n ∈ N. �	

3 The case of p ∈ P≥3

Let p ∈ P≥3 be fixed. In this section we are interested in the computation of the
exact formula for the p-adic valuations of the elements of the sequence (dm(n))n∈N,
where

Hm,p(x) = Gp(x)
m = 1

(1 − x)m

∞∏

n=0

1
(
1 − x pn

)(p−1)m
=

∞∑

n=0

dm(n)xn

and m ∈ Z\{0} is fixed. Because p is fixed in the sequel in order to simplify the
notation a bit we introduce the quantity:

Hm(x) := Hp,m(x).

Let us recall that the number dm(n) counts the number of p-ary representations of
n, where each part > 1 can take (p − 1)m colors and additionally the part equal to
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1 can take pm colors. Moreover, in the sequel we will frequently use the following
notation:

[A] =
{
1 if A is satisfied,

0 otherwise.

where A is given logical formula.
We start with the proof of recurrence relations satisfied by the sequence (dm(n))n∈N

for m ∈ N+.

Lemma 3.1 Let m ∈ N+. Then dm(0) = 1 and for n ≥ 1 we have the following
recurrence relation:

dm(n) = −
min{pm,n}∑

i=1

(−1)i
(
pm

i

)
dm(n − i)

+[p | n]
⎛

⎜⎝
min{m, np }∑

i=0

(−1)i
(
m

i

)
dm

(
n

p
− i

)
⎞

⎟⎠ .

Proof In order to get the result it is enough to note the functional identity

(1 − x)pmHm(x) = (1 − x p)mHm(x p).

Indeed, we have the following equalities:

(1 − x)pmHm(x) =
( pm∑

i=0

(−1)i
(
pm

i

)
xi

)( ∞∑

n=0

dm(n)xn
)

=
∞∑

n=0

⎛

⎝
min{pm,n}∑

i=0

(−1)i
(
pm

i

)
dm(n − i)

⎞

⎠ xn,

(1 − x p)mHm(x p) =
(

m∑

i=0

(−1)i
(
m

i

)
x pi

)( ∞∑

n=0

dm(n)x pn

)

=
∞∑

n=0

⎛

⎝
min{m,n}∑

i=0

(−1)i
(
m

i

)
dm(n − i)

⎞

⎠ x pn .

Comparing now the coefficients of xn on both sides we see that if p � n, then

min{pm,n}∑

i=0

(−1)i
(
pm

i

)
dm(n − i) = 0
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and if p | n, then we have

min{pm,n}∑

i=0

(−1)i
(
pm

i

)
dm(n − i) =

min{m, np }∑

i=0

(−1)i
(
m

i

)
dm

(
n

p
− i

)
.

Solving for dm(n) we get the result. �	
In the sequel we will heavily use the notion of congruences between power series.

More precisely, let f (x) = ∑∞
n=0 anx

n and g(x) = ∑∞
n=0 bnx

n be formal power
series with coefficients in Z and M ∈ N≥2 be given. We say that f , g are congruent
modulo M if and only if for all n the coefficients of xn in both series are congruent
modulo M . In other words

f ≡ g (mod M) ⇐⇒ ∀n ∈ N : an ≡ bn (mod M).

It is an easy exercise to prove that for any given f , F, g,G ∈ Z[[x]] satisfying
f ≡ g (mod M) and F ≡ G (mod M), we have f ± F ≡ g ± G (mod M) and
f F ≡ gG (mod M). Moreover, if f (0), g(0) ∈ {−1, 1}, then the series for 1/ f and
1/g have integer coefficients and then 1

f ≡ 1
g (mod M). Consequently, in this case

we have f k ≡ gk (mod M) for all k ∈ Z.
Now we are ready to state the following.

Lemma 3.2 Let m = pαk. Then

dm(n) ≡ 0 (mod pα+1)

for all n ≥ 1.

Proof From the relation (1 − x)p ≡ 1 − x p (mod p) we get (1 − x)p
α+1 ≡ (1 −

x p)p
α

(mod pα+1), and hence,

(1 − x)pm ≡ (1 − x p)m (mod pα+1).

This, together with the equality (1 − x)pmHm(x) = (1 − x p)mHm(x p) gives,

Hm(x) ≡ Hm(x p) (mod pα+1).

The above relation simply implies dm(n) ≡ 0 (mod pα+1) if p � n, and dm(n) ≡
dm(n/p) (mod pα+1) if p | n. Hence, if n = pβl, then

dm(n) = dm(p(pβ−1l)) ≡ dm(pβ−1l) ≡ · · · ≡ dm(pl) ≡ dm(l) ≡ 0 (mod pα+1).

Therefore, the only coefficient of the series Hm(x) not divisible by pα+1 is dm(0) = 1.
�	
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Lemma 3.3 Let m = pαk. Then

dm(pn) ≡ dm(n) (mod pα+2)

for all n ≥ 1.

Proof We use the induction argument. For n = 1 we have by Lemma 3.1:

dm(p) = −
p∑

i=1

(−1)i
(
pm

i

)
dm(p − i) +

1∑

i=0

(−1)i
(
m

i

)
dm(1 − i)

= −
p∑

i=1

(−1)i
(
pm

i

)
dm(p − i) + dm(1) − mdm(0).

Observe that if p � i then p | (pmi
)
. From Lemma 3.2 we also have pα+1 | dm(p − i)

for i = 1, . . . , p − 1. Hence,
(pm

i

)
dm(p − i) ≡ 0 (mod pα+2) for i = 1, . . . , p − 1,

so

dm(p) ≡
(
pm

p

)
dm(0) + dm(1) − mdm(0) ≡ mdm(0) + dm(1) − mdm(0)

≡ dm(1) (mod pα+2).

Let us assume that the statement is true for all numbers less than some number n.
We want to prove it for n. Lemma 3.1 implies

dm(pn) = −
min{pm,pn}∑

i=1

(−1)i
(
pm

i

)
dm(pn − i) +

min{m,n}∑

i=0

(−1)i
(
m

i

)
dm(n − i)

≡ −
min{m,n}∑

i=1

(−1)pi
(
pm

pi

)
dm(pn − pi) +

min{m,n}∑

i=0

(−1)i
(
m

i

)
dm(n − i)

= −
min{m,n}∑

i=1

(−1)i
(
pm

pi

)
dm(p(n − i)) +

min{m,n}∑

i=0

(−1)i
(
m

i

)
dm(n − i)

≡ −
min{m,n}∑

i=1

(−1)i
(
m

i

)
dm(n − i) +

min{m,n}∑

i=0

(−1)i
(
m

i

)
dm(n − i)

= dm(n) (mod pα+2).

In the above computations we used the induction hypothesis, Lemma 3.2 and the
congruence

(pm
pi

) ≡ (m
i

)
(mod p) which is a consequence of Lucas theorem. The

result follows. �	
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Lemma 3.4 Let m = pα . Then

dm(n) ≡
{

(−1)n+1
(pm
n

)
(mod pα+2) if n ≤ pm,

dm(n − pm) (mod pα+2) if n > pm

for all n ≥ 1 such that p � n.

Proof Let n ∈ N+ and assume that p � n. Then Lemma 3.1 implies the equality

dm(n) =
min{pm,n}∑

i=1

(−1)i+1
(
pm

i

)
dm(n − i).

If p � i then p|(pmi
)
, and by Lemma 3.2 we get the divisibility property pα+1|dm,p(n−

i) which holds for n > i . Therefore, if n < pm, then the only term in the above
sum that may not be divisible by pα+2 is the one corresponding to i = n, i.e.,
(−1)n+1

(pm
n

)
dm,p(0) = (−1)n+1

(pm
n

)
. Similarly, if n > pm, then the only such

term can be the one corresponding to i = pm, i.e., (−1)pm+1
(pm
pm

)
dm(n − pm) =

dm(n − pm). �	
Now we are ready to prove the following general result concerning the expression

of νp(dm(n)) for m ∈ N+.

Theorem 3.5 Let p ∈ P≥3 and m ∈ N. Let n ∈ N≥1 and n = ns ps + · · · + nt pt be
(the unique) representation of n in base p. Here s ≤ t and ns �= 0. Then

dm(n) ≡ pm
(
n−1
s (mod p)

)
(mod pνp(m)+2).

In particular,

νp(dm(n)) =
{
0 if n = 0,

νp(m) + 1 if n ≥ 1.

Proof At the beginning observe that for eachm we have dm(0) = 1, so νp(dm(0)) = 0.
Let us assume that n ≥ 1 and m = pα for some α ≥ 0. By Lemma 3.2 it is

reasonable to consider the sequence aα = (aα(n))n∈N+ of elements of Z/pZ, where

aα(n) := dm(n)

pα+1 (mod p).

Lemmas 3.3 and 3.4 imply the following recurrence relations:

⎧
⎪⎨

⎪⎩

aα(n) = (−1)n+1

pα+1

(pα+1

n

)
(mod p) if n < pα+1 and p � n,

aα(n) = aα(n − pα+1) if n > pα+1 and p � n,

aα(pn) = aα(n).
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Observe that if n < pα+1 and p � n then,

(−1)n+1

pα+1

(
pα+1

n

)
= (−1)n+1 (pα+1 − 1)(pα+1 − 2) · . . . · (pα+1 − n + 1)

n!
≡ (−1)n+1 (−1)(−2) · . . . · (−n + 1)

n!
= (−1)n+1 (−1)n−1(n − 1)!

n! = 1

n
(mod p).

Thus aα(n) = 1
n (mod p) for n < pα+1 such that p � n. If n is arbitrary, then

recurrence relations for aα(n) imply

aα(n) = aα

(
n

pνp(n)

)
= aα

(
n

pνp(n)
(mod pα+1)

)
= 1

n
pνp (n) (mod pα+1)

(mod p).

Write n = ns ps + · · · + nt pt , s ≤ t , ns > 0. Then

n

pνp(n)
(mod pα+1) = ns + · · · + ns+α p

α =: N

(we define ni = 0 for i > t if required). Observe that for M = n−1
s (mod p) we have

MN ≡ 1 (mod p). Hence, aα(n) = n−1
s (mod p).

From the definition we get

dm(n) ≡ pα+1aα(n) = pm
(
n−1
s (mod p)

)
(mod pα+2).

Hence the result is true if m is a power of p or m = 1.
If m = pαk, where k ∈ N+ and p � k, then

Hm(x) = (
Hpα (x)

)k
,

so

dm(n) =
∑

a1+···+ak=n

dpα (a1) · . . . · dpα (ak).

We note that, if at least two numbers among a1, . . . , ak are non–zero, then by
Lemma 3.2 we get dpα (a1) · . . . · dpα (ak) ≡ 0 (mod pα+2). Hence, the expression
dpα (a1) · . . . · dpα (ak) may not be divisible by pα+2 only if a j = n for some j and
ai = 0 for all i �= j . Thus

dm(n) ≡ kdpα (n) ≡ kpα+1

ns
= pm

(
n−1
s (mod p)

)
(mod pα+2),

and our result follows. �	
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One can ask, whether it is possible to give a theorem similar to Theorem 3.5 but
for negative integers m? In order to give an answer, let us introduce the sequence
(Dp(n))∞n=1 defined as

�p(x) :=
∞∏

n=0

(1 − x pn )p−1 =
∞∑

n=0

Dp(n)xn .

Observe that

H−1(x) = (1 − x)�p(x) = 1 +
∞∑

n=1

(
Dp(n) − Dp(n − 1)

)
xn .

Therefore, d−1(n) = Dp(n) − Dp(n − 1) for n ≥ 1, and d−1(0) = 1. From [11,
Lemma 2.3] we get the equality

νp(d−1(n)) =
{
0 if n = 0,
1 if n ≥ 1.

We will also need the following simple fact.

Lemma 3.6 Let i ∈ N≥2 and p ∈ P≥3. Then

i ≥ νp(i) + 2.

Proof Let i ∈ N≥1.We always have i > νp(i), i.e., i ≥ νp(i)+1. Thus if i < νp(i)+2,
then i = νp(i) + 1. From the Bernoulli’s inequality we get

i ≥ pνp(i) ≥ 2νp(i) = (1 + 1)νp(i) ≥ 1 + νp(i) = i .

Hence, pνp(i) = 2νp(i), so νp(i) = 0 and thus i = 1. �	
We are ready to prove the following analog of Theorem 3.5.

Theorem 3.7 Let m ∈ N≥1. Then

d−m(n) ≡ md−1(n) (mod pνp(m)+2).

In particular,

νp(d−m(n)) =
{
0 if n = 0,
νp(m) + 1 if n ≥ 1.

Proof First, we prove the result for m = pα . Observe that

H−pα (x) = (H−1(x))
pα =

∞∑

n=0

⎛

⎝
∑

j1+···+ jpα =n

d−1( j1) · . . . · d−1( jpα )

⎞

⎠ xn
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= 1 +
∞∑

n=1

⎡

⎢⎢⎣
pα∑

i=1

⎛

⎜⎜⎝

(
pα

i

) ∑

j1+···+ ji=n
j1,..., ji≥1

d−1( j1) · . . . · d−1( ji )

⎞

⎟⎟⎠

⎤

⎥⎥⎦ xn,

because d−1(0) = 1. From Lemma 3.6 we have for i ≥ 2:

νp

⎛

⎜⎜⎝

(
pα

i

) ∑

j1+···+ ji=n
j1,..., ji≥1

d−1( j1) · . . . · d−1( ji )

⎞

⎟⎟⎠ ≥ α − νp(i) + i ≥ α + 2.

Therefore,

H−pα (x) ≡1 +
∞∑

n=1

pαd−1(n)xn (mod pα+2).

Hence, the result is true when m is a power of p or m = 1. If m = pαk, where p � k,
then similarly as in the proof of Theorem 3.5 we get

H−m(x) = (
H−pα (x)

)k =
∞∑

n=0

⎛

⎝
∑

j1+···+ jk=n

d−pα ( j1) · . . . · d−pα ( jk)

⎞

⎠ xn

≡
∞∑

n=0

kd−pα (n)xn ≡
∞∑

n=0

kpαd−1(n)xn =
∞∑

n=0

md−1(n)xn (mod pα+2).

The result follows. �	
Corollary 3.8 If m ≤ −1, then dm(n) �= 0 for n ∈ N.

Proof From our description of the p-adic valuation of dm(n) given in Theorem 3.7,
we see that νp(dm(n)) �= +∞ for n ∈ N. This is equivalent with the non-vanishing
of dm(n) for n ∈ N and hence the result. �	

As a very surprising corollary from Theorems 3.5 and 3.7 we get the next fact.

Corollary 3.9 If p ∈ P≥3 and m ∈ Z\{0}, then the sequence
(
dm (n)
pm (mod p)

)

n∈N+
depends only on the sign of m.

4 On p-automaticity of the sequence
(
dm(n)
pm (mod p)

)
n∈NNN+

For p ∈ P≥3 and n ∈ N+, let us denote yp(n) := dm(n)
pm (mod p) if m > 0, and

z p(n) :=
(
− dm (n)

pm

)
(mod p) if m < 0. In this section we will study the sequences
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(yp(n))n∈N+ , (z p(n))n∈N+ more closely. In particular we prove p-automaticity of our
sequences.

Let

Yp(x) =
∞∑

n=0

yp(n + 1)xn,

Z p(x) =
∞∑

n=0

z p(n + 1)xn,

i.e., Yp and Z p are the generating functions of the sequences (yp(n))n∈N+ and
(z p(n))n∈N+ , respectively.

Now we are ready to state the main result of this section.

Theorem 4.1 Both sequences, (yp(n))n∈N+ and (z p(n))n∈N+ , are p-automatic.

Proof By Lemma 2.7 it is enough to show that Yp and Z p are both algebraic over
Fp(x). First we consider the series Yp. Let us denote

Wp(x) :=
p−1∑

n=1

(n−1 (mod p))xn−1.

In the proof of Theorem 3.5 it was shown, that the sequence (yp(n))∞n=1 satisfies the
following recurrence relations:

⎧
⎨

⎩

yp(n) = n−1 (mod p) if 1 ≤ n ≤ p − 1,
yp(n) = yp(n (mod p)) if p � n,

yp(pn) = yp(n).

Therefore,

Yp(x) =
∞∑

n=1

yp(pn)x pn−1 +
∞∑

n=0

(
yp(1) + yp(2)x + . . . yp(p − 1)x p−2

)
x pn

= x p−1
∞∑

n=1

yp(n)x p(n−1) + Wp(x)
∞∑

n=0

x pn

= x p−1
∞∑

n=0

yp(n + 1)x pn + Wp(x)

1 − x p

= x p−1Yp(x
p) + Wp(x)

1 − x p
.

Equivalently,

x p−1Yp(x)
p − Yp(x) + Wp(x)

1 − x p
= 0, (4)

so Yp is indeed algebraic over Fp(x).
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For the proof of the case of the sequence Z p, notice the following relations:

�p(x) =
∞∏

n=0

(
1 − x pn

)p−1 = (1 − x)p−1�p(x
p),

H−1(x) = (1 − x)�p(x) = (1 − x)p�p(x
p) = (1 − x)p

1 − x p
H−1(x

p),

Z p(x) ≡ 1

px
(H−1(x) − 1) (mod p).

The last congruence follows from the fact that z p(n) ≡ d−1(n)
p (mod p). Thus (we

consider the equalities below as equalities over Fp, i.e., modulo p)

Z p(x) = 1

px
(H−1(x) − 1) = 1

px

(
(1 − x)p

1 − x p
H−1(x

p) − 1

)

= 1

px

(
(1 − x)p

1 − x p

(
H−1(x

p) − 1
) + (1 − x)p

1 − x p
− 1

)

= x p−1 (1 − x)p

1 − x p

1

px p

(
H−1(x

p) − 1
) + 1

px

(1 − x)p − (1 − x p)

1 − x p

= x p−1 (1 − x)p

1 − x p
Z p(x

p) + 1

1 − x p

⎛

⎝
p−1∑

n=1

(−1)n
1

p

(
p

n

)
xn−1

⎞

⎠

= x p−1Z p(x
p) − Wp(x)

1 − x p
,

because for each 1 ≤ n ≤ p − 1:

(−1)n
1

p

(
p

n

)
= (−1)n

(p − 1) . . . (p − n + 1)

n! ≡ (−1)n
(−1)n−1(n − 1)!

n!
= −1

n
(mod p).

We can write the equation for Z p in an equivalent form as

x p−1Z p(x)
p − Z p(x) − Wp(x)

1 − x p
= 0, (5)

so Z p is also algebraic over Fp(x). �	
The explicit form of the equations satisfied by Yp and Z p allow us to show the

strong relation between sequences (yp(n))n∈N+ and (z p(n))n∈N+ .

Corollary 4.2 If p ∈ P≥3 and n ∈ N≥1, then

yp(n) + z p(n) ≡ 0 (mod p).
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Proof Summing Eqs. (4) and (5) we get

(
Yp(x) + Z p(x)

) (
x p−1 (

Yp(x) + Z p(x)
)p−1 − 1

)
≡ 0 (mod p).

Because the 0th term in the second factor is not divisible by p we need to have

Yp(x) + Z p(x) ≡ 0 (mod p),

and this is equivalent to the statement. �	
In the case of sequences (yp(n))n∈N+ and (z p(n))n∈N+ we canwrite the automatons

down in both conventions (recall the discussion at the end of Sect. 2). Now we show
them for the first of these sequences. In the case of the second one, it is enough to switch
n−1 into−n−1 for all n = 1, . . . , p−1. The automaton generating (yp(n))n∈N+ when
we read digits from the left to the right is presented below (Fig. 3).

On the other side, if we read the digits in the opposite direction we present the
corresponding automaton generating (yp(n))n∈N below (Fig. 4).

More precisely, in the second automaton each arrow with number 0 forms a loop,
and each arrow with a number n ∈ {1, . . . , p − 1} goes to the state with n−1.

Let us note that in the case p ≥ 3 the sequence (νp(dm(n)))n∈N is p-automatic,
which is an immediate consequence of the fact that it is ultimately constant.

Corollary 4.2 can be used to find a relation between numbers dm(n) and d−m(n),
and generalize some results obtained previously only for positive m. We have the
following.

Theorem 4.3 For each p ∈ P≥3, m ∈ N≥1 and n ∈ N we have

d−m(n) ≡ −dm(n) (mod pνp(m)+2).

In particular,

d−m(pn) ≡ d−m(n) (mod pνp(m)+2).

Fig. 3 Automaton generating (yp(n))n∈N when reading digits of n from the left to the right
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Fig. 4 Automaton generating (yp(n))n∈N when reading digits of n from the right to the left

Proof The first part follows from Theorems 3.5 and 3.7 , and Corollary 4.2. Indeed,

d−m(n) ≡ pmzp(n) ≡ −pmyp(n) ≡ −dm(n) (mod pνp(m)+2).

The second part is now an immediate consequence of Lemma 3.3. �	
We group the fact above, Theorems 3.5 and 3.7 , and Corollary 3.9 and simply get

the following general result.

Corollary 4.4 Let p ∈ P≥3 and m ∈ Z\{0}. Let n ∈ N≥1 and n = ns ps + · · · + nt pt

be its base-p representation, where s ≤ t and ns �= 0. Then

dm(n) ≡ pm
(
n−1
s (mod p)

)
(mod pνp(m)+2).

In particular,

νp(dm(n)) =
{
0 if n = 0,
νp(m) + 1 if n ≥ 1,

and the sequence
(
dm (n)
pm (mod p)

)∞
n=1

does not depend on m.
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We can apply Corollary 4.4 to the problem that was considered in [11]. Let us define
for p ∈ P≥3, m ∈ N≥1 a sequence (Ap,m(n))n∈N as

∞∏

n=0

1

(1 − x pn )m
=

∞∑

n=0

Ap,m(n)xn .

The number Ap,m(n) counts the number of p-ary representations of n such that each
part takes one among m colors. The sequence (Ap,m(n))n∈N was thoroughly studied
in [11]. One of main results of the cited paper states that for each α ∈ N≥1 and n ≥ pα

the following equality holds:

νp
(
Ap,(p−1)(pα−1)(n)

) = 1.

Using our previous findings we are able to improve the above equality to the fol-
lowing.

Theorem 4.5 Let p ∈ P≥3, α ∈ N≥1 and n ≥ pα . Let n = ∑t
j=s n j p j , where s ≤ t

and ns �= 0, be the base-p representation of n. Then

Ap,(p−1)(pα−1)(n) ≡ −p(n−1
s (mod p)) (mod p2).

Proof The relation on the very end of the proof of Theorem 3.1 from [11] implies that

Ap,(p−1)(pα−1)(n) ≡ (
Dp(n) − Dp(n − 1)

) α−1∏

j=0

(−1)n j

(
p − 1

n j

)
(mod p2)

(we assume that n j = 0 for j < s). Corollary 4.4 gives

Ap,(p−1)(pα−1)(n) ≡ d−1(n)

α−1∏

j=0

(−1)n j

(
p − 1

n j

)

≡ −p(n−1
s (mod p))

α−1∏

j=0

(−1)n j

(
p − 1

n j

)
(mod p2).

For the end of the proof it is enough to observe that for each j ∈ {0, . . . , α − 1}:
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(−1)n j

(
p − 1

n j

)
=(−1)n j

(p − 1) . . . (p − n j )

n j ! ≡ (−1)n j
(−1)n j n j !

n j ! = 1 (mod p).

�	
We finish this section with the following

Theorem 4.6 Let us consider the sequences (yp(n))n∈N+ , (z p(n))n∈N+ as the
sequences with terms in the set {1, . . . , p − 1} and the corresponding ordinary gen-
erating functions Yp(x), Z p(x) as the power series in C[[x]]. Then both Yp, Z p are
analytic in the circle |x | < 1 and are transcendental over C(x).

Proof Because yp(n), z p(n) ∈ {1, . . . , p − 1} (treated as elements in Z), then it is
clear that the series Yp(x) and Z p(x) are absolutely convergent in the set {x ∈ C :
|x | < 1} and thus define analytic functions. From Corollary 4.2 and the fact that
0 < yp(n), z p(n) < p, we get that z p(n) = p − yp(n) for all n ∈ N+. Thus simply

Z p(x) = p

1 − x
− Yp(x).

Therefore, in order to get the transcendence of the functions Yp(x) and Z p(x), it is
enough to prove it only for Yp(x).

In the proof of Theorem 4.1 we obtained the functional equation for the function
Yp(x):

Yp(x) = x p−1Yp(x
p) + Wp(x)

1 − x p
,

where Wp(x) = ∑p−1
n=1 (n

−1 mod p)xn−1. This equation was proved in fact over C,
not only over Fp (because all equalities in this case were ’true’ equalities, i.e., not
equalities modulo p).

The transcendence of Yp will be consequence of a general result of Nishioka [9].
This result says that a power series, say f , with rational coefficients, which defines an
analytic function in some neighborhood of zero and satisfying functional equation of
the form f (x) = A(x) + B(x) f (xm) for some m ∈ N≥2 and functions A, B ∈ C(x),
is either rational of transcendental. In the light of this remark we see that in order to
get transcendence of Yp it is enough to prove that our function is not rational.

Let us suppose that Yp(x) is rational, i.e., Yp(x) = P(x)/Q(x) for some P, Q ∈
C[x] with gcd(P(x), Q(x)) = 1. Putting the expression for Yp into the functional
equation and clearing the denominators we get the equation

(1 − x p)P(x)Q(x p) = (1 − x p)x p−1P(x p)Q(x) + Q(x)Q(x p)Wp(x). (6)

From the above equation we get Q(x p) | (1 − x p)x p−1P(x p)Q(x). However, the
co-primality of the polynomials P(x), Q(x) implies co-primality of the polynomials
P(x p), Q(x p) and thus we get

Q(x p) | (1 − x p)x p−1Q(x).
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Consequently p deg Q ≤ 2p − 1 + deg Q and thus deg Q ≤ 2 + 1
p−1 . We thus see

that the degree of the polynomial Q is bounded by 2.
Let us put x = 1 in (6).We get that Q(1)2Wp(1) = 0, butWp(1) > 0, so Q(1) = 0.

In particular, deg Q ≥ 1 and we can write Q(x) = (1 − x)S(x). Plug it into (6) and
get after dividing by 1 − x :

1 − x p

1 − x
P(x)S(x p) = x p−1P(x p)S(x) + S(x)S(x p)Wp(x). (7)

If deg Q = 1, then S is a constant, say S(x) = S0 �= 0. Equation (7) implies

Wp(x) = 1

S0

(
1 − x p

1 − x
P(x) − x p−1P(x p)

)
.

Observe that degWp(x) = p − 2. If deg P ≥ 1, then the degree of the polynomial of
the right-hand side of the last equation is equal to deg(x p−1P(x p)) ≥ 2p−1 > p−2,
a contradiction. Hence, deg P = 0, so we can write P(x) = P0 �= 0. Then we get
from the last equation

Wp(x) = P0
S0

(
1 + x + · · · + x p−2

)
,

that is again a contradiction, since not all coefficients ofWp(x) are equal to each other.
Thus we may assume that deg Q = 2 and deg S = 1.

Let us write S(x) = S1x+ S0. From (7) we get S(x p) | x p−1P(x p)S(x), but S(x p)

and P(x p) are co-prime, so S(x p) | x p−1S(x). Thus there exists a polynomial T (x)
such that S(x p)T (x) = x p−1S(x), and by comparing the degrees we get deg T = 0.
Comparing the coefficients of x p−1 implies S0 = 0, i.e., S(x) = S1x . Equation (7)
implies

Wp(x) = 1

S1x

(
1 − x p

1 − x
P(x) − P(x p)

)
.

If deg P ≥ 2, then deg
(

1
S1x

(
1−x p

1−x P(x) − P(x p)
))

= p deg P − 1 > p− 2. Hence,

deg P ≤ 1. Write P(x) = P1x + P0. Thus

Wp(x) = 1

S1x

(
1 − x p

1 − x
(P1x + P0) − (P1x

p + P0)

)

= P1 + P0
S1

(
1 + x + · · · + x p−2

)
,

that is a contradiction.
Summing up our discussion: we proved that there are no polynomials P, Q ∈ C[x]

satisfying Eq. (6) and thus the function Yp(x) cannot be rational. �	
Remark 4.7 In the above proof, instead of use result ofNishioka, we could use classical
result of Fatou: if a power series

∑∞
n=0 anx

n with integer coefficients converges inside
the unit disk, then it is either rational or transcendental over C(x) [6]. However, it is
clear that the burden of the proof lies in the proof of irrationality of Yp(x).
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An immediate consequence of our result is the following.

Corollary 4.8 The sequences (yp(n))n∈N+ , (z p(n))n∈N+ are not periodic.

Proof It is clear that the ordinary generating function of a periodic sequence is rational.
However, in the theorem above we proved that the ordinary generating functions of
our sequences are transcendental. �	
Remark 4.9 One can investigate further properties of the sequence (yp(n))n∈N+ . We
note only one property. More precisely, one can easily prove the following summation
formula:

pn−1∑

k=1

yp(k) = 1

2
p(pn − 1).

5 Further congruences for dm(pn) − dm(n)

Observe that Theorem 3.5 can be viewed as a generalization of Lemma 3.2. Therefore,
it is natural to use this more general fact in order to generalize some of results that
we have previously obtained. In the sequel, we will need the following lemma, that
is a generalization of Wolstenholme’s theorem [12], which says that for p ∈ P≥5 the
following congruence holds:

(
pm

pi

)
≡

(
m

i

)
(mod p3).

The Wolstenholme’s theorem is equivalent to the following pair of the congruences:

p−1∑

γ=1

1

γ
≡ 0 (mod p2) and

p−1∑

γ=1

1

γ 2 ≡ 0 (mod p),

that will be used in the proof.

Lemma 5.1 Let m ∈ N≥1, i ∈ {0, . . . ,m}, p ∈ P≥3. Then

(
pm

pi

)
≡

(
m

i

)
(mod pνp(m)+νp((

m
i ))+3−χ ),

where χ = [p = 3] − [
p = 3, ν3(m) ≥ 1, ν3

((m
i

)) = 0
]
.

Proof The statement is obvious if i = 0 or i = m. Assume 1 ≤ i ≤ m − 1 and denote
α := νp(m). Then

(
pm

pi

)
=

∏pi−1
j=0 (pm − j)
∏pi

j=1 j
=

i∏

j=1

pm − pj + p

pj

i−1∏

j=0

p−1∏

β=1

pm − pj − β

pj + β
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=
(
m

i

) i−1∏

j=0

p−1∏

β=1

pm − (pj + β)

pj + β
.

In order to finish the proof, it is enough to show that for each j :

p−1∏

β=1

(pm − (pj + β)) ≡
p−1∏

β=1

(pj + β) (mod pα+3).

We have

p−1∏

β=1

(pm − (pj + β)) −
p−1∏

β=1

(pj + β)

≡ p2m2
∑

γ1<γ2

p−1∏

β=1
β �=γ1,γ2

(pj + β) − pm
p−1∑

γ=1

p−1∏

β=1
β �=γ

(pj + β)

+
p−1∏

β=1

(pj + β) −
p−1∏

β=1

(pj + β)

=
p−1∏

β=1

(pj + β)

⎛

⎝p2m2
∑

γ1<γ2

1

(pj + γ1)(pj + γ2)

−pm
p−1∑

γ=1

1

pj + γ

⎞

⎠ (mod pα+3).

If p = 3andν3(m) andν3
((m

i

))
are arbitrary,we are in fact interested in the congruence

modulo pα+2 instead of pα+3. In that case, the quantity in the brackets simplifies to

−pm
p−1∑

γ=1

1

pj + γ
≡ −pm

p−1∑

γ=1

1

γ
≡ −pm

p−1∑

γ=1

γ = −p2m
p − 1

2
≡ 0 (mod pα+2),

so the statement holds. When p = 3 and additionally ν3(m) ≥ 1 and ν3
((m

i

)) = 0,
then 3α+3 | 32m2, so the expression in the square brackets simplifies in the same way
as before. Hence,

3−1∏

β=1

(3m − (3 j + β)) −
3−1∏

β=1

(3 j + β)

= (3m − (3 j + 1))(3m − (3 j + 2)) − (3 j + 1)(3 j + 2)

≡ −3m(3 j + 1)(3 j + 2)

(
1

3 j + 1
+ 1

3 j + 2

)
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= −3m(3 j + 1)(3 j + 2)
6 j + 3

(3 j + 1)(3 j + 2)

= −9m(2 j + 1) ≡ 9m( j − 1) (mod pα+3).

Therefore,

(3m − (3 j + 1))(3m − (3 j + 2)) ≡ (3 j + 1)(3 j + 2) + 9m( j − 1) (mod pα+3).

The conditions 3 | m and 3 �
(m
i

)
imply 3 | i . Thus

(
3m

3i

)
≡

(
m

i

) i−1∏

j=0

(3m − (3 j + 1))(3m − (3 j + 2))

(3 j + 1)(3 j + 2)

≡
(
m

i

) i−1∏

j=0

(
1 + 9m( j − 1)

(3 j + 1)(3 j + 2)

)

≡
(
m

i

) i−1∏

j=0

(1 − 9m( j − 1)) ≡
(
m

i

)⎛

⎝1 − 9m
i−1∑

j=0

( j − 1)

⎞

⎠

≡
(
m

i

)(
1 − 9m

(
i(i − 1)

2
− i

))
≡

(
m

i

)
(mod pα+3).

The proof of this case is complete.
Assume that p ≥ 5. Wolstenholme’s Theorem implies

p−1∑

γ=1

1

pj + γ
= 1

2

p−1∑

γ=1

(
1

pj + γ
+ 1

pj + p − γ

)

= p

2

p−1∑

γ=1

2 j + 1

(pj + γ )(pj + p − γ )

≡ −(2 j + 1)
p

2

p−1∑

γ=1

1

γ 2 ≡ 0 (mod p2),

and

p−1∑

γ=1

1

(pj + γ )2
≡

p−1∑

γ=1

1

γ 2 ≡ 0 (mod p).
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Therefore,

∑

γ1<γ2

1

(pj + γ1)(pj + γ2)
= 1

2

⎡

⎢⎣

⎛

⎝
p−1∑

γ=1

1

pj + γ

⎞

⎠
2

−
p−1∑

γ=1

1

(pj + γ )2

⎤

⎥⎦ ≡ 0 (mod p).

Hence, indeed

p−1∏

β=1

(pm − (pj + β)) ≡
p−1∏

β=1

(pj + β) (mod pα+3)

and the proof is finished. �	
Remark 5.2 For i = 1, it is possible to strengthen the result. Indeed, using the tech-
niques from the proof of Lemma 5.3 we get

(
pm

p

)
− m = m

(
(pm − 1) . . . (pm − p + 1)

(p − 1)! − 1

)

= m

(p − 1)! ((p(m − 1) + p − 1)(p(m − 1) + p − 2) . . .

(p(m − 1) + 1) − (p − 1)!)

≡ m

⎛

⎝p2(m − 1)2
∑

γ1<γ2

1

γ1γ2
+ p(m − 1)

p−1∑

γ=1

1

γ

⎞

⎠

× (mod pνp(m)+νp(m−1)+3−χ ).

Wecan repeat the proof of the previous fact and get resultmodulo pνp(m)+νp(m−1)+3−χ .
Observe that at most one of the number νp(m) and νp(m−1)may be non-zero. Hence,
if νp(m − 1) = 0, we can still apply Lemma 5.3 that is better in this case. Finally, we
get

(
pm

p

)
≡ m (mod p2νp(m)+νp(m−1)+3−χ ).

However, we will not need this fact later.

Now we want to state a stronger version of Lemma 3.3. Let us define

ϑm(n) := dm(pn) − dm(n).

Lemma 5.3 Let p ∈ P≥3, m ∈ N≥1. Then ϑm(1) ≡ 0 (mod p2νp(m)+3−[p=3]) and

min{m,n}∑

i=0

(−1)i
(
m

i

)
ϑm(n − i) ≡ (−1)n+1

[(
pm

pn

)
−

(
m

n

)]
(mod p2νp(m)+3−[p=3]).
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Proof We prove only the case p ≥ 5. If p = 3, the proof is analogous and in fact
simpler because of some additional cancellations. Let us writem = pαk, where p � k.
For n = 1 we have

dm(p) = −
p∑

i=1

(−1)i
(
pm

i

)
dm(p − i) + dm(1) − mdm(0)

= dm(1) +
[(

pm

p

)
− m

]
dm(0) −

p−1∑

i=1

(−1)i
(
pm

i

)
dm(p − i).

By Lemma 5.1 we get that p2α+3 | (pmp
) − m. Moreover,

(
pm

i

)
= pm

(pm − 1) . . . (pm − i + 1)

i ! ≡ pm
(−1)i−1

i
(mod pα+2)

and using Theorem 3.5 we obtain the congruence

p−1∑

i=1

(−1)i
(
pm

i

)
dm(n − i) ≡

p−1∑

i−1

(−1)i pm
(−1)i−1

i

pm

i

= −p2m2
p−1∑

i=1

1

i2
≡ 0 (mod p2α+3).

Thus always dm(p) ≡ dm(1) (mod p2α+3), i.e.,ϑm(1) ≡ 0 (mod p2α+3). Nowassume
that n is arbitrary . The recurrence relation for dm(n) gives

dm(pn) = −
min{pm,pn}∑

i=1

(−1)i
(
pm

i

)
dm(pn − i) +

min{m,n}∑

i=0

(−1)i
(
m

i

)
dm(n − i)

= dm(n) −
min{pm,pn}∑

i=1
p�i

(−1)i
(
pm

i

)
dm(pn − i)

+
min{m,n}∑

i=1

(−1)i
(
m

i

)
dm(n − i) −

min{m,n}∑

i=1

(−1)pi
(
pm

pi

)
dm(pn − pi)

= dm(n) + 
1 + 
2,

where


1 = −
min{pm,pn}∑

i=1
p�i

(−1)i
(
pm

i

)
dm(pn − i),
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2 =
min{m,n}∑

i=1

(−1)i
(
m

i

)
dm(n − i) −

min{m,n}∑

i=1

(−1)i
(
pm

pi

)
dm(p(n − i)).

At first, we deal with 
1. Observe that if i = δ p + γ for some δ ∈ N and γ ∈
{1, . . . , p − 1}, then

(
pm

i

)
= pm

(pm − 1) . . . (pm − i + 1)

i !

= pm

∏δ
j=1(pm − pj)
∏δ

j=1 pj
·
∏i−1

j=1,p� j (pm − j)
∏i−1

j=1,p� j j
· 1
i

≡ pm
δ∏

j=1

m − j

j
·
∏i−1

j=1,p� j (− j)
∏i−1

j=1,p� j j
· 1
i

= pm
δ∏

j=1

m − j

j
· (−1)i−1−δ · 1

i
(mod pα+2).

Hence,


1 ≡ −
min{pm,pn}∑

i=1
p�i

(−1)i pm

⌊
i
p

⌋

∏

j=1

m − j

j
· (−1)

i−1−
⌊

i
p

⌋

· 1
i

· pm

−i

= −p2m2
min{m−1,n−1}∑

l=0

p−1∑

r=1

(−1)l
1

(pl + r)2

l∏

j=1

m − j

j

= −p2m2
min{m−1,n−1}∑

l=0

(−1)l
l∏

j=1

m − j

j

p−1∑

r=1

1

(pl + r)2

≡ −p2m2
min{m−1,n−1}∑

l=0

(−1)l
l∏

j=1

m − j

j

p−1∑

r=1

1

r2

≡ −p2m2

⎛

⎝
p−1∑

r=1

r2

⎞

⎠

⎛

⎝
min{m−1,n−1}∑

l=0

(−1)l
l∏

j=1

m − j

j

⎞

⎠

= −p3m2 (p − 1)(2p − 1)

6

⎛

⎝
min{m−1,n−1}∑

l=0

(−1)l
l∏

j=1

m − j

j

⎞

⎠ ≡ 0 (mod p2α+3).
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Now we focus on 
2. We can write


2 =
min{m,n}∑

i=1

(−1)i
(
m

i

)
[dm(n − i) − dm(p(n − i))]

−
min{m,n}∑

i=1

(−1)i
[(

pm

pi

)
−

(
m

i

)]
dm(p(n − i))

≡ −
min{m,n}∑

i=1

(−1)i
(
m

i

)
ϑm(n − i) + (−1)n+1

[(
pm

pn

)
−

(
m

n

)]
(mod p2α+3),

because pα+3 | (pm
pn

) − (m
n

)
by Lemma 5.1, and pα+1 | dm(p(n − i)) for i �= n. The

result follows. �	
Remark 5.4 From the above result we can write exact expression for the remainder of
the division of dm(pn) − dm(p) by p2νp(m)+3−[p=3]. More precisely, let

�m(x) :=
∞∑

n=0

ϑm(n)xn

be the generating function of the sequence (ϑm(n))∞n=0. Lemma 5.3 can be restated in
the following way:

(1 − x)m�m(x) ≡
m∑

n=0

(−1)n+1
[(

pm

pn

)
−

(
m

n

)]
xn

≡
m∑

n=0

(−1)n+1
(
pm

pn

)
xn + (1 − x)m (mod p2νp(m)+3−[p=3]).

Equivalently, due to the identity

1

(1 − x)m
=

∞∑

n=0

(
n + m − 1

n

)
xn,

we get the congruence

�m(x) ≡
( ∞∑

n=0

(
n + m − 1

n

)
xn

)(
m∑

n=0

(−1)n+1
((

pm

pn

)
−

(
m

n

))
xn

)

≡
∞∑

n=0

⎛

⎝
min{m,n}∑

k=0

(−1)k+1
((

pm

pk

)
−

(
m

k

))(
n − k + m − 1

n − k

)⎞

⎠

xn (mod p2νp(m)+3−[p=3]).

123



On p-adic valuations ofm colored p-ary partition functions 655

Observe that we can also rewrite the above functional equation for �m as

−1 + �m(x) ≡
∑m

n=0(−1)n+1
(pm
pn

)

(1 − x)m

=
∞∑

n=0

⎛

⎝
min{m,n}∑

k=0

(−1)k+1
(
pm

pk

)(
n − k + m − 1

n − k

)⎞

⎠

× xn (mod p2νp(m)+3−[p=3]).

Thus simply

dm(pn) − dm(n)

≡
min{m,n}∑

k=0

(−1)k+1
((

pm

pk

)
−

(
m

k

))(
n − k + m − 1

n − k

)

≡
min{m,n}∑

k=0

(−1)k+1
(
pm

pk

)(
n − k + m − 1

n − k

)
(mod p2νp(m)+3−[p=3])

for all n ≥ 1.

Lemma 5.3 allow us to simply get the following theorem concerning the problem of
finding natural numbers k such that the congruence dm(pn) ≡ dm(n) (mod pνp(m)+k)

holds for all n ≥ 1.

Theorem 5.5 Let m ∈ N≥1 and p ∈ P≥3. If one of the following conditions holds:

1. p ≥ 5,
2. p = 3 and ν3(m) ≥ 1,

then the congruence

dm(pn) ≡ dm(n) (mod pνp(m)+3)

is true for all n ≥ 1.

Proof It is easy to check that if p andm satisfy one of the conditions from the statement
then 2νp(m) + 3 − [p = 3] ≥ νp(m) + 3. Lemma 5.3 implies that in order to prove
the theorem, it is enough to show that pα+3 | (pm

pi

) − (m
i

)
for p and m satisfying one

of the conditions from the statement, and i ∈ {1, . . . ,m}. If p ≥ 5 it follows directly
from Lemma 5.1. Assume p = 3 and ν3(m) ≥ 1. From Lemma 5.1 it is enough to
show that then νp

((m
i

)) + 3 − χ ≥ 3, i.e., νp
((m

i

)) ≥ χ . If 3 | i this is obvious
because χ = 0 then. If 3 � i , then 3 | (m

i

)
, so νp

((m
i

)) ≥ 1 = χ , so the inequality is
also satisfied. �	
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6 Questions, problems and conjectures

In this section we collect some questions, problems and conjectures which appeared
during our work.

It is well known that if k ∈ N+ and t ≡ 1 (mod 2), then

c1(2
2k+1t) − c1(2

2k−1t) ≡ 0 (mod 23k+2),

c1(2
2k t) − c1(2

2k−2t) ≡ 0 (mod 23k)

(remember c1(n) = b(2n), where b(n) counts the binary partitions of n). The above
congruences were conjectured by Churchhouse in [4] and independently proved by
Rödseth [10] and Gupta [8]. Moreover, it is known that there is no higher power of
2 which divides c1(4n) − c1(n). These results generated a lot of research devoted to
certain differences connected with other partition functions. This result motivates the
question concerning the divisibility of the number cm(2k+2n) − cm(2kn) by powers
of 2. We performed some numerical computations in case of m ∈ {2, 3, . . . , 10} and
n ≤ 105 and believe that the following is true.

Conjecture 6.1 For k ∈ N+ and each n ∈ N+, we have

ν2(c2k(4n) − c2k(n)) = ν2(n) + 2ν2(k) + 3.

Moreover, for k ∈ N and n ∈ N+ the following inequalities hold:

ν2(c4k+1(4n) − c4k+1(n)) ≥ ν2(n) + 3,

ν2(c4k+3(4n) − c4k+3(n)) ≥ ν2(n) + 6.

In each case the equality holds for infinitely many n ∈ N.

In case of p ∈ P≥3 we can use Theorem 5.5 to get some information about the
behavior of the differences dm(p2n) − dm(n) modulo powers of p. However, we
predict that results obtained in this way are far from being optimal. For example, a
direct application of Theorem 5.5 gives

dm(p2n) − dm(n)

=
(
dm(p2n) − dm(pn)

)
+ (dm(pn) − dm(n))

≡ 0 (mod pνp(m)+3).

On the other hand, we believe that the following, much stronger property, is true.

Conjecture 6.2 Assume that m = pk+ i for some k ∈ N and i ∈ {0, . . . , p−1}. Then
we have the following equality:

νp(dm(p2n) − dm(n)) = νp(n) + 2νp(m) + 3 − [p = 3].
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In the case i = p − 1 the following inequality is true:

νp(dpk+p−1(p
2n) − dpk+p−1(n)) ≥ νp(n) + 4 − [p = 3].

For infinitely many values of n the above inequality is an equality.

In light of results obtained in the previous section, it is quite natural to ask about
existence of pairs m ∈ N+ and k ∈ N≥3 such that the following congruence

dm(pn) ≡ dm(n) (mod pν2(m)+k) (8)

holds. We performed numerical search for values of m ∈ {2, . . . , 100} such that the
congruence (8) is satisfied for k = 5 or k = 6, p ∈ {3, 5, . . . , 29} and all n ≤ 103.
For k = 5 we found the following pairs:

(p,m) = (3, 26), (3, 27), (3, 53), (3, 54), (3, 80), (3, 81), (5, 24), (5, 25), (5, 49),

(5, 50), (5, 74), (5, 75), (5, 99), (5, 100), (7, 48), (7, 49), (7, 97), (7, 98).

Among the above pairs only the pairs (p,m) = (3, 80), (3, 81) extend to solutions of
(8) with k = 6.

We formulate the following general.

Problem 6.3 For which triples (p,m, k) ∈ P≥3×N+ ×N≥3 the congruence (8) holds
for all n ∈ N+?

Let p ∈ P and for n ∈ N+ write n = ∑k
i=0 εi pi , where εi ∈ {0, 1, . . . , p − 1} and

k ≤ logp n. This representation is just the (unique) p-ary expansion of n in base p.
Let us observe that the equality νp(n) = u implies ε0 = · · · = εu−1 = 0 and εu �= 0
in the above representation. Thus, if m ∈ Z\{−1} is fixed, our results concerning the
exact value of ν2(cm(n)) and νp(dm(n)) for p ∈ P≥3 given in Theorems 2.4, 3.5 and
3.7 respectively, imply that the set of values of the numbers of trailing zeros in the
binary expansion of cm(n) and p-ary expansion of dm(n)), n ∈ N+, is bounded. This
observation suggests the question whether the index of the next non-zero digit in the
binary expansion in cm(n) or p-ary expansion of dm(n) is in bounded distance from
the first one. We state this in equivalent form as the following.

Question 6.4 Let m ∈ N+ and write

um(n) = ν2

(
cm(n)

2ν2(cm(n))
− 1

)
,

vp,m(n) = νp

(
dm(n)

pνp(dm(n))
−

[
dm(n)

pνp(dm(n))
(mod p)

])
,

where p ∈ P≥3. Does there exist m ∈ N+ such that some of the sequences
(um(n))n∈N+ , (vp,m(n))n∈N+ has finite set of values?
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Table 1 Values of m ∈ {1, . . . , 100} such that Lm (105) ≤ 4 together with the largest value of um (n) for
n ≤ 105

m 3 15 23 27 35 39 47 59 63 67 79 87 91 95 99

Mm (105) 2 4 3 2 2 3 4 2 6 2 4 3 2 5 2

Lm (105) 2 3 3 2 2 3 3 2 4 2 3 3 2 3 2

In order to see what is going on, we performed numerical computations for m ∈
{1, . . . , 100} and n ≤ 105. We observed that in the considered range there are many
values ofm such that the set of values of the sequence (um(n))n∈N is small (we looked
for sets with cardinality ≤ 4). We define:

Mm(x) := max{um(n) : n ≤ x}, Lm(x) := |{um(n) : n ≤ x}|.

In Table 1 we present the results of our computations.
Our numerical computations strongly suggest that there should be infinitely many

m ∈ Z such that the sequence (um(n))n∈N is bounded. We even dare to formulate the
following.

Conjecture 6.5 Let k ∈ N+ and m = 22k − 1. Then the sequence (um(n))n∈N is
bounded.

In fact, we expect that for n ∈ N the inequality u22k−1(n) ≤ 2k is true.
In case of p ∈ P≥3 we expect that for all m ∈ N+ the sequence (vp,m(n))n∈N+ is

unbounded.
Finally, let us note that in earlier sections we proved results concerning the p-adic

behavior of the sequence (dm(n))n∈N with p ∈ P and m ∈ Z\{0}. A first question
which comes to mind is whether anything similar can be proved for the sequence
(Sk,m(n))n∈N, where k is not a prime number. Here we back to our general definition
of Sk,m(n) as the n-th coefficient in the power series expansion of Hk,m(x). We thus
ask about the behavior of ϕk(Sk,m(n)), where ϕk : N → N is an analog of the p-adic
valuation function, i.e., for given n ∈ N we define

ϕk(n) := max{s ∈ N : ks | n} and ϕk(0) := +∞.

It is clear that if k /∈ P, then the function ϕk is not additive. Indeed, if k = k1k2 with
k1, k2 > 1 and n1 = k1u1, n2 = k2u2 with gcd(u1u2, k) = 1, then ϕk(n1n2) = 1 �=
ϕk(n1)+ϕk(n2) = 0. However, the question concerning the behavior of the sequence
(ϕk(Sm,k(n))n∈N is still interesting and non-trivial. Moreover, it seems that in the case
of composite k some new phenomena arise. We concentrate on the first non-trivial
case, i.e., k = 4, and formulate several conjectures.

Conjecture 6.6 (1) If m ≡ 6 (mod 8), then the sequence (ϕ4(S4,m(n)))n∈N is
unbounded.

(2) If m �≡ 6 (mod 8), then the sequence (ϕ4(S4,m(n)))n∈N is 4-automatic.
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(3) If an = ϕ4(S4,1(n + 1)), then a0 = a7 = 1, a1 = a3 = 0 and

a4n+2 = a4n, a8n+5 = a8n+3 = a8n+1 = a4n+1,

a16n+7 = a2n, a16n+15 = an .

(4) If bn = ϕ4(S4,2(n + 1)), then b0 = b1 = 1, b3 = 2 and

b4n+2 = b4n+1 = b4n, b8n+7 = b2n+1, b16n+11 = b16n+3 = b8n+3.

(5) For s ∈ N≥2 we have

ν2(S4,2s (n)) = s + 1 + (ν2(2n) (mod 2)).

In particular,

ϕ4(S4,2s (n)) =
⌊
s + 1

2

⌋
+ ((s + 1)ν2(2n) (mod 2)) .

(6) For s ∈ N≥3 and each m ∈ N we have

ϕ4(S4,2sm+2s−1(n)) = ϕ4(S4,2s−1(n)).

Our numerical calculations suggest that for k = pa and m = pb, a, b ∈ N+, the
sequence of the p-adic valuations of Sk,m(n) is p-automatic (and thus bounded). How-
ever, we were unable to formulate such nice formula for the corresponding valuation
like in the case k = 4 and m = 2s .

Anyway one can state the following general.

Problem 6.7 For given k = pa, where p ∈ P and a ∈ N+ characterize those values
of m ∈ N+ such that the sequence (νp(Sk,m(n)))n∈N is p-automatic (is bounded).

Numerical computations suggest the following.

Conjecture 6.8 (1) If k is not a power of a prime number, then for each m ∈ N+ the
sequence (ϕk(Sk,m(n)))n∈N is unbounded.

(2) If k is not a power of a prime number, then for each m ∈ N+ the sequence
(ϕk(Sk,m(n)))n∈N is not k-regular.
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