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Abstract
We obtain a condition describing when the quasimodular forms given by the Bloch–
Okounkov theorem as q-brackets of certain functions on partitions are actually
modular. This condition involves the kernel of an operator �. We describe an explicit
basis for this kernel, which is very similar to the space of classical harmonic polyno-
mials.
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1 Introduction

Given a family of quasimodular forms, the question which of its members are modular
often has an interesting answer. For example, consider the family of theta series

θP (τ ) =
∑

x∈Zr

P(x)qx
2
1+...+x2r (q = e2π iτ )

given by all homogeneous polynomials P ∈ Z[x1, . . . , xr ]. The quasimodular form θP

ismodular if and only if P is harmonic (i.e. P ∈ ker
∑r

i=1
∂2

∂x2i
) [10]. (As quasimodular

forms were not yet defined, Schoeneberg only showed that θP is modular if P is
harmonic. However, for every polynomial P it follows that θP is quasimodular by
decomposing P as in Formula (1).) Also, for every two modular forms f , g, one can
consider the linear combination of products of derivatives of f and g given by
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670 J.-W. M. van Ittersum

n∑

r=0

ar f
(r)g(n−r) (ar ∈ C).

This linear combination is a quasimodular form which is modular precisely if it is
a multiple of the Rankin–Cohen bracket [ f , g]n [4,9]. In this paper, we provide a
condition to decide which member of the family of quasimodular forms provided by
the Bloch–Okounkov theorem is modular. Let P denote the set of all partitions of
integers and |λ| denote the integer thatλ is a partition of. Given a function f : P → Q,
define the q-bracket of f by

〈 f 〉q :=
∑

λ∈P f (λ)q |λ|
∑

λ∈P q |λ| .

The celebrated Bloch–Okounkov theorem states that for a certain family of functions
f : P → Q (called shifted symmetric polynomials and defined in Sect. 2) the
q-brackets 〈 f 〉q are the q-expansions of quasimodular forms [2].

Besides being a wonderful result, the Bloch–Okounkov theorem has many appli-
cations in enumerative geometry. For example, a special case of the Bloch–Okounkov
theorem was discovered by Dijkgraaf and provided with a mathematically rigorous
proof by Kaneko and Zagier, implying that the generating series of simple Hurwitz
numbers over a torus are quasimodular [5,7]. Also, in the computation of asymptotics
of geometrical invariants, such as volumes of moduli spaces of holomorphic differen-
tials and Siegel–Veech constants, the Bloch–Okounkov theorem is applied [3,6].

Zagier gave a surprisingly short and elementary proof of the Bloch–Okounkov
theorem [13]. A corollary of his work, which we discuss in Sect. 3, is the following
proposition:

Proposition 1 There exists actions of the Lie algebra sl2 on both the algebra of shifted
symmetric polynomials Λ∗ and the algebra of quasimodular forms M̃ such that the
q-bracket 〈·〉q : Λ∗ → M̃ is sl2-equivariant.

The answer to the question in the title is provided by one of the operators � which
defines this sl2-action on Λ∗. Namely letting H = ker�|Λ∗ , we prove the following
theorem:

Theorem 1 Let f ∈ Λ∗. Then 〈 f 〉q is modular if and only if f = h + k with h ∈ H
and k ∈ ker〈·〉q .

The last section of this article is devoted to describing the graded algebra H. We
call H the space of shifted symmetric harmonic polynomials, as the description of
this space turns out to be very similar to the space of classical harmonic polynomials.
Let Pd be the space of polynomials of degree d in m ≥ 3 variables x1, . . . , xm , let
||x ||2 = ∑

i x
2
i , and recall that the space Hd of degree d harmonic polynomials is

given by ker
∑r

i=1
∂2

∂x2i
. The main theorem of harmonic polynomials states that every

polynomial P ∈ Pd can uniquely be written in the form

P = h0 + ||x ||2h1 + . . . + ||x ||2d ′
hd ′ (1)
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When is the Bloch–Okounkov q-bracket modular? 671

with hi ∈ Hd−2i and d ′ = 	d/2
. Define K , the Kelvin transform, and Dα for α an
m-tuple of non-negative integers by

f (x) �→ ||x ||2−m f

(
x

||x ||2
)

and Dα =
∏

i

∂α
i

∂xαi
i

.

An explicit basis forHd is given by

{K DαK (1) | α ∈ Z
m≥0,

∑
i αi = d, α1 ≤ 1},

see for example [1]. We prove the following analogous results for the space of shifted
symmetric polynomials:

Theorem 2 For every f ∈ Λ∗
n there exists unique hi ∈ Hn−2i (i = 0, 1, . . . , n′ and

n′ = 	 n
2 
) such that

f = h0 + Q2h1 + . . . + Qn′
2 hn′ ,

where Q2 is an element of Λ∗
2 given by Q2(λ) = |λ| − 1

24 . �
Theorem 3 The set

{pr K �λ K (1) | λ ∈ P(n), all parts are ≥ 3}

is a vector space basis of Hn, where pr, K, and �λ are defined by (4), Definition 4,
respectively, Definition 6.

The action of sl2 given by Proposition 1 makes Λ∗ into an infinite-dimensional sl2-
representation for which the elements ofH are the lowest weight vectors. Theorem 2
is equivalent to the statement thatΛ∗ is a direct sum of the (not necessarily irreducible)
lowest weight modules

Vn =
∞⊕

m=0

Qm
2 Hn (n ∈ Z).

2 Shifted symmetric polynomials

Shifted symmetric polynomials were introduced by Okounkov and Olshanski as the
following analogue of symmetric polynomials [8]. Let Λ∗(m) be the space of rational
polynomials inm variables x1, . . . , xm which are shifted symmetric, i.e. invariant under
the action of all σ ∈ Sm given by xi �→ xσ(i) + i − σ(i) (or more symmetrically
xi − i �→ xσ(i) − σ(i)). Note that Λ∗(m) is filtered by the degree of the polynomials.
We have forgetful maps Λ∗(m) → Λ∗(m − 1) given by xm �→ 0, so that we can
define the space of shifted symmetric polynomialsΛ∗ as lim←−

m

Λ∗(m) in the category of
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672 J.-W. M. van Ittersum

filtered algebras. Considering a partition λ as a non-increasing sequence (λ1, λ2, . . .)

of non-negative integers λi , we can interpret Λ∗ as being a subspace of all functions
P → Q.

One can find a concrete basis for this abstractly defined space by considering the
generating series

wλ(T ) :=
∞∑

i=1

T λi−i+ 1
2 ∈ T 1/2

Z[T ][[T−1]] (2)

for every λ ∈ P (the constant 1
2 turns out to be convenient for defining a grading on

Λ∗). As wλ(T ) converges for T > 1 and equals

1

T 1/2 − T−1/2 +
�(λ)∑

i=1

(
T λi−i+ 1

2 − T−i+ 1
2

)

one can define shifted symmetric polynomials Qi (λ) for i ≥ 0 by

∞∑

i=0

Qi (λ)zi−1 := wλ(e
z) (0 < |z| < 2π). (3)

The first few shifted symmetric polynomials Qi are given by

Q0(λ) = 1, Q1(λ) = 0, Q2(λ) = |λ| − 1
24 .

The Qi freely generate the algebra of shifted symmetric polynomials, i.e. Λ∗ =
Q[Q2, Q3, . . .]. It is believed thatΛ∗ is maximal in the sense that for all Q : P → Q

with Q /∈ Λ∗ it holds that 〈Λ∗[Q]〉q � M̃ .

Remark 1 The space Λ∗ can equally well be defined in terms of the Frobenius
coordinates. Given a partition with Frobenius coordinates (a1, . . . , ar , b1, . . . , br ),
where ai and bi are the arm and leg lengths of the cells on the main diagonal,
let

Cλ = {−b1 − 1
2 , . . . ,−br − 1

2 , ar + 1
2 , . . . , a1 + 1

2

}
.

Then

Qk(λ) = βk + 1

(k − 1)!
∑

c∈Cλ

sgn(c)ck−1,

where βk is the constant given by

∑

k≥0

βk z
k−1 = 1

2 sinh(z/2)
= w∅(ez).
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When is the Bloch–Okounkov q-bracket modular? 673

We extendΛ∗ to an algebra where Q1 �≡ 0. Observe that a non-increasing sequence
(λ1, λ2, . . .) of integers corresponds to a partition precisely if it converges to 0. If,
however, it converges to an integer n, Eqs. (2) and (3) still define Qk(λ). In fact, in
this case

Qk(λ) = (en∂)Qk(λ − n)

by [13, Proposition 1] where ∂Q0 = 0, ∂Qk = Qk−1 for k ≥ 1, and λ − n =
(λ1 − n, λ2 − n, . . .) corresponds to a partition (i.e. converges to 0). In particular,
Q1(λ) = n equals the number the sequence λ converges to. We now define the
Bloch–Okounkov ring R to be Λ∗[Q1], considered as a subspace of all functions
from non-increasing eventually constant sequences of integers to Q. It is convenient
to work withR instead ofΛ∗ to define the differential operators� and more generally
�λ later. Both on Λ∗ andR, we define a weight grading by assigning to Qi weight i .
Denote the projection map by

pr : R → Λ∗. (4)

We extend 〈·〉q toR.
The operator E = ∑∞

m=0 Qm
∂

∂Qm
on R multiplies an element of R by its weight.

Moreover, we consider the differential operators

∂ =
∞∑

m=0

Qm
∂

∂Qm+1
and D =

∑

k,�≥0

(
k + �

k

)
Qk+�

∂2

∂Qk+1∂Q�+1
.

Let � = 1
2 (D − ∂2), i.e.

2� =
∑

k,�≥0

((
k + �

k

)
Qk+� − QkQ�

)
∂2

∂Qk+1∂Q�+1
−

∑

k≥0

Qk
∂

∂Qk+2
.

In the following (antisymmetric) table, the entry in the row of operator A and column
of operator B denotes the commutator [A, B], for proofs see [13, Lemma 3].

� ∂ E Q1 Q2

� 0 0 2� 0 E − Q1∂ − 1
2

∂ 0 0 ∂ 1 Q1

E −2� −∂ 0 Q1 2Q2

Q1 0 −1 −Q1 0 0

Q2 −E + Q1∂ + 1
2 −Q1 −2Q2 0 0

Definition 1 A triple (X ,Y , H) of operators is called an sl2-triple if

[H , X ] = 2X , [H ,Y ] = −2Y , [Y , X ] = H .
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674 J.-W. M. van Ittersum

Let Q̂2 := Q2 − 1
2Q

2
1 and Ê := E − Q1∂ − 1

2 . The following result follows by a
direct computation using the above table:

Proposition 2 The operators (Q̂2,�, Ê) form an sl2-triple. �
For later reference, we compute [�, Qn

2]. This could be done inductively by noting
that [�, Qn

2] = Qn−1
2 [�, Q2] + [�, Qn−1

2 ]Q2 and using the commutation rela-
tions in the above table. The proof below is a direct computation from the definition
of �.

Lemma 1 For all n ∈ N, the following relation holds

[�, Qn
2] = −n(n − 1)

2
Q2

1Q
n−2
2 − nQ1Q

n−1
2 ∂ + nQn−1

2 (E + n − 3
2 ).

Proof Let f ∈ Q[Q1, Q2], g ∈ R, and n ∈ N. Then

�( f g) = �( f )g + ∂ f

∂Q2
(Eg − Q1∂g) + f �(g), (5)

�(Qn
2) = n(n − 3

2 )Q
n−1
2 − n(n − 1)

2
Qn−2

2 Q2
1. (6)

By (5) and (6), we find

�(Qn
2g) = (

n(n − 3
2 )Q

n−1
2 − n(n−1)

2 Q2
1Q

n−2
2

)
g

+ nQn−1
2 (Eg − Q1∂g) + Qn

2�(g). �

3 An sl2-equivariant mapping

The space of quasimodular forms for SL2(Z) is given by M̃ = Q[P, Q, R], where
P, Q, and R are the Eisenstein series of weight 2, 4, and 6, respectively (in Ramanu-
jan’s notation). We let M̃ (≤p)

k be the space of quasimodular forms of weight k and
depth ≤ p (the depth of a quasimodular form written as a polynomial in P, Q, and R
is the degree of this polynomial in P). See [12, Section 5.3] or [13, Section 2] for an
introduction into quasimodular forms.

The space of quasimodular forms is closed under differentiation, more precisely
the operators D = q d

dq , d = 12 ∂
∂P , and the weight operator W given by W f = k f

for f ∈ M̃k preserve M̃ and form an sl2-triple. In order to compute the action of D in
terms of the generators P, Q, and R, one uses the Ramanujan identities

D(P) = P2 − Q

12
, D(Q) = PQ − R

3
, D(R) = PR − Q2

2
.

In the context of the Bloch–Okounkov theorem, it is more natural to work with D̂ :=
D − P

24 , as for all f ∈ Λ∗ one has 〈Q2 f 〉q = D̂〈 f 〉q . Moreover, D̂ has the property
that it increases the depth of a quasimodular form by 1, in contrast to D for which
D(1) = 0 does not have depth 1:
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When is the Bloch–Okounkov q-bracket modular? 675

Lemma 2 Let f ∈ M̃ be of depth r . Then D̂ f is of depth r + 1.

Proof Consider a monomial PaQbRc with a, b, c ∈ Z≥0. By the Ramanujan identi-
ties, we find

D(PaQbRc) =
(

a

12
+ b

3
+ c

2

)
Pa+1QbRc + O(Pa),

where O(Pa) denotes a quasimodular form of depth at most a. The lemma follows
by noting that a

12 + b
3 + c

2 − 1
24 is non-zero for a, b, c ∈ Z. �

Moreover, letting Ŵ = W − 1
2 , the triple (D̂, d, Ŵ ) forms an sl2-triple as well.

With respect to these operators, the q-bracket becomes sl2-equivariant. The following
proposition is a detailed version of Proposition 1:

Proposition 3 (The sl2-equivariant Bloch–Okounkov theorem) The mapping 〈·〉q :
R → M̃ is sl2-equivariant with respect to the sl2-triple (Q̂2,�, Ê) on R and the
sl2-triple (D̂, d, Ŵ ) on M̃, i.e. for all f ∈ R, one has

D̂〈 f 〉q = 〈Q̂2 f 〉q , d〈 f 〉q = 〈� f 〉q , Ŵ 〈 f 〉q = 〈Ê f 〉q .

Proof This follows directly from [13, Equation (37)] and the fact that for all f ∈ R
one has 〈Q1 f 〉q = 0. �

4 Describing the space of shifted symmetric harmonic polynomials

In this section, we study the kernel of�. As [�, Q1] = 0, we restrict ourselveswithout
loss of generality to Λ∗. Note, however, that � does not act on Λ∗ as, for example,
�(Q3) = − 1

2Q1. However, pr� does act on Λ∗.

Definition 2 Let

H = { f ∈ Λ∗ | � f ∈ Q1R} = ker pr�,

be the space of shifted symmetric harmonic polynomials.

Proposition 4 If f ∈ Q2Λ
∗ is non-zero, then f /∈ H.

Proof Write f = Qn
2 f

′ with f ′ ∈ Λ∗ and f ′ /∈ Q2Λ
∗. Then

pr�( f ) = Qn−1
2 (n(n + k − 3

2 ) f
′ + Q2pr� f ′)

by Lemma 1. As f ′ is not divisible by Q2, it follows that pr�( f ) = 0 precisely if
f ′ = 0. �
Proposition 5 For all n ∈ Z, one has

Λ∗
n = Hn ⊕ Q2Λ

∗
n−2.
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676 J.-W. M. van Ittersum

Proof For uniqueness, suppose f = Q2g + h and f = Q2g′ + h′ with g, g′ ∈ Λ∗
n−2

and h, h′ ∈ Hn . Then, Q2(g − g′) = h′ − h ∈ H. By Proposition 4 we find g = g′
and hence h = h′.

Now, define the linear map T : Λ∗
n → Λ∗

n by f �→ pr�(Q2 f ). By Proposition 4
we find that T is injective, which by finite dimensionality of Λ∗

n implies that T is
surjective. Hence, given f ∈ Λ∗

n let g ∈ Λ∗
n−2 be such that T (g) = pr�( f ) ∈ Λ∗

n−2.
Let h = f − Q2g. As f = Q2g + h, it suffices to show that h ∈ H. That holds true
because pr�(h) = pr�( f ) − pr�(Q2g) = 0. �
Proposition 5 implies Theorem 2 and the following corollary. Denote by p(n) the
number of partitions of n.

Corollary 1 The dimension ofHn equals the number of partitions of n in parts of size
at least 3, i.e.

dimHn = p(n) − p(n − 1) − p(n − 2) + p(n − 3).

Proof Observe that dimΛ∗
n equals the number of partitions of n in parts of size at least

2. Hence, dimΛ∗
n = p(n) − p(n − 1) and the Corollary follows from Proposition 5.

�
Proof of Theorem 1 If 〈 f 〉q is modular, then 〈� f 〉q = d〈 f 〉q = 0. Write f =
∑n′

r=0 Q
r
2hr as in Theorem 2 with n′ = 	 n

2 
. Then by Lemma 1 it follows that

pr� f = ∑n′
r=0 r(n − r − 3

2 )Q
r−1
2 hr . Hence,

n′∑

r=1

r(n − r 3
2 )D̂

r−1〈hr 〉q = 0. (7)

As 〈hr 〉q is modular, either it is equal to 0 or it has depth 0. Suppose the maximum
m of all r ≥ 1 such that 〈hr 〉q is non-zero exists. Then, by Lemma 2 it follows
that the left-hand side of (7) has depth m − 1, in particular is not equal to 0. So,
h1, . . . , hn′ ∈ ker〈·〉q . Note that f ∈ ker〈·〉q implies that Q2 f ∈ ker〈·〉q . Therefore,
k := ∑n′

r=1 Q
r
2hr ∈ ker〈·〉q and f = h + k with h = h0 harmonic.

The converse follows directly as d〈h + k〉q = d〈h〉q = 〈�h〉q = 0. �
Remark 2 A description of the kernel of 〈·〉q is not known.

Another corollary of Proposition 5 is the notion of depth of shifted symmetric
polynomials which corresponds to the depth of quasimodular forms:

Definition 3 The space Λ
∗(≤p)
k of shifted symmetric polynomials of depth ≤ p is the

space of f ∈ Λ∗
k such that one can write

f =
p∑

r=0

Qr
2hr ,

with hr ∈ Hk−2r .

123



When is the Bloch–Okounkov q-bracket modular? 677

Theorem 4 If f ∈ Λ
∗(≤p)
k , then 〈 f 〉q ∈ M̃ (≤p)

k .

Proof Expanding f as in Definition 3 we find

〈 f 〉q =
p∑

k=0

〈Qk
2hk〉q =

p∑

k=0

D̂k〈hk〉q .

By Lemma 2, we find that the depth of 〈 f 〉q is at most p. �
Next, we set up notation to determine the basis of H given by Theorem 3.

Let R̃ = R[Q−1/2
2 ] and Λ̃ = Λ∗[Q−1/2

2 ] be the formal polynomial algebras
graded by assigning to Qk weight k (note that the weights are—possibly negative—
integers). Extend � to Λ̃ and observe that �(Λ̃) ⊂ Λ̃. Also extend H by
setting

H̃ = { f ∈ Λ̃ | � f ∈ Q1R̃} = ker pr�|Λ̃.

Definition 4 Define the partition-Kelvin transform K : Λ̃n → Λ̃3−n by

K ( f ) = Q3/2−n
2 f .

Note that K is an involution.Moreover, f is harmonic if and only if K ( f ) is harmonic,
which follows directly from the computation

�K ( f ) = Q3/2−n
2 � f − ( 32 − n)Q1Q

1
2−n
2 ∂ f − 1

2 (
3
2 − n)( 12 − n)Q2

1Q
− 1
2−n

2 f .

Example 1 As K (1) = Q3/2
2 , it follows that Q3/2

2 ∈ H̃.

Definition 5 Given i ∈ Z
n≥0, let

|i | = i1 + i2 + . . . + in, ∂i = ∂n

∂Qi1+1∂Qi2+1 · · · ∂Qin+1
.

Define the nth order differential operators Dn on R̃ by

Dn =
∑

i∈Zn≥0

( |i |
i1, i2, . . . , in

)
Q|i |∂i ,

where the coefficient is a multinomial coefficient.

This definition generalises the operators ∂ andD to higher weights:D1 = ∂ ,D2 = D ,
and Dn reduces the weight by n.
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678 J.-W. M. van Ittersum

Lemma 3 The operators {Dn}n∈N commute pairwise.

Proof Set I = |i | and J = | j |. Let ak̂ = (a1, . . . , ak−1, ak+1, . . . , an). Then

[(
I

i1, i2, . . . , in

)
QI ∂i ,

(
J

j1, j2, . . . , jm

)
QJ ∂ j

]

=
n∑

k=1

δik ,J−1 J

(
I

i1, i2, . . . , îk, . . . , in, j1, j2, . . . , jm

)
QI ∂i k̂

∂ j+

−
m∑

l=1

δ jl ,I−1 I

(
J

i1, i2, . . . , in, j1, j2, . . . , ĵl , . . . , jm

)
QJ ∂i∂ j l̂

.

(8)

Hence, [Dn,Dm] is a linear combination of terms of the form Q|a|+1∂a, where
a ∈ Z

n+m−1
≥0 . We collect all terms for different vectors a which consists of the same

parts (i.e. we group all vectors a which correspond to the same partition). Then, the
coefficient of such a term equals

n∑

k=1

∑

σ∈Sm+n−1

(aσ(1) + . . . + aσ(m))

( |a| + 1

a1, a2, . . . , an+m−1

)

−
m∑

l=1

∑

σ∈Sm+n−1

(aσ(1) + . . . + aσ(n))

( |a| + 1

a1, a2, . . . , an+m−1

)

= (mn − mn)
∑

σ∈Sm+n−1

aσ(1)

( |a| + 1

a1, a2, . . . , an+m−1

)
= 0.

Hence, [Dn,Dm] = 0. �

It does not hold true that [Dn, Q1] = 0 for all n ∈ N. Therefore, we introduce the
following operators:

Definition 6 Let

�n =
n∑

i=0

(−1)i
(
n

i

)
Dn−i∂

i .

For λ ∈ P let

�λ =
( |λ|

λ1, . . . , λ�(λ)

) ∞∏

i=1

�λi .

(Note that �0 = D0 = 1, so this is in fact a finite product.)
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When is the Bloch–Okounkov q-bracket modular? 679

Remark 3 By Möbius inversion

Dn =
n∑

i=0

(
n

i

)
�n−i∂

i .

The first three operators are given by

�0 = 1, �1 = 0, �2 = D − ∂2 = 2�.

Proposition 6 The operators �λ satisfy the following properties: for all partitions
λ, λ′

(a) the order of �|λ| is |λ|;
(b) [�λ,�λ′ ] = 0;
(c) [�λ, Q1] = 0.

Proof Property (a) follows by construction and (b) is a direct consequence of Lemma3.
For property (c), let f ∈ Λ̃ be given. Then

�n(Q1 f ) =
n∑

i=0

(−1)i
(
n

i

)
Dn−i∂

i (Q1 f )

=
n∑

i=0

(−1)i
(
n

i

) (
(n − i)Dn−i−1∂

i f + Q1Dn−i∂
i f + iDn−i∂

i−1 f
)

= Q1�n( f ) +
n∑

i=0

(−1)i
(
n

i

) (
(n − i)Dn−i−1∂

i f + iDn−i∂
i−1 f

)
.

Observe that by the identity

(n − i)

(
n

i

)
= (i + 1)

(
nı + 1

)
,

the sum in the last line is a telescoping sum, equal to zero. Hence �n(Q1 f ) =
Q1�n( f ) as desired. �

In particular, the above proposition yields [�λ,�] = 0 and [�λ, pr] = 0.
Denote by (x)n the falling factorial power (x)n = ∏n−1

i=0 (x − i) and for λ ∈ Pn

define Qλ = ∏∞
i=1 Qλi . Let

hλ = prK�λK (1).

Observe that hλ is harmonic, as pr� commutes with pr and �λ.
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Proposition 7 For all λ ∈ Pn there exists an f ∈ Λ∗
n−2 such that

hλ = ( 32 )nn!Qλ + Q2 f .

Proof Note that the left-hand side is an element ofΛ∗ ofwhich themonomials divisible
by Qi

2 correspond precisely to terms in �λ involving precisely n − i derivatives of
K (1) to Q2. Hence, as �λ has order n all terms not divisible by Q2 correspond to
terms in �λ which equal ∂n

∂Qn
2
up to a coefficient. There is only one such term in �λ

with coefficient
( |λ|
λ1,...,λr

)
λ1! . . . λr !Qλ. �

For f ∈ R, we let f ∨ be the operator where every occurrence of Qi in f is replaced
by �i . We get the following unusual identity:

Corollary 2 If h ∈ Hn, then

h = prKh∨K (1)

n!( 32 )n
. (9)

Proof ByProposition 7,we know that the statement holds true up to adding Q2 f on the
right-hand side for some f ∈ Λ∗

n−2. However, as both sides of (9) are harmonic and the
shifted symmetric polynomial Q2 f is harmonic precisely if f = 0 by Proposition 4,
it follows that f = 0 and (9) holds true. �
Proof of Theorem 3 Let Bn = {hλ | λ ∈ Pn all parts are ≥ 3}. First of all, observe
that by Corollary 1 the number of elements in Bn is precisely the dimension of Hn .
Moreover, the weight of an element in Bn equals |λ| = n. By Proposition 7 it fol-
lows that the elements of Bn are linearly independent harmonic shifted symmetric
polynomials. �
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Appendix: Tables of shifted symmetric harmonic polynomials up to
weight 10

We list all harmonic polynomials hλ of even weight at most 10. The corresponding
q-brackets 〈hλ〉q are computed by the algorithm prescribed by Zagier [13] using
SageMath [11].
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λ hλ 〈hλ〉q
() 1 1

(4) 27
4

(
Q2
2 + 2Q4

)
9

320 Q

(6) 225
4

(
63Q6 + 9Q2Q4 + Q3

2

)
− 55

384 R

(3,3) 225
4

(
63Q2

3 − 108Q2Q4 + 2Q3
2

)
115
384 R

(8) 19845
16

(
3960Q8 + 360Q2Q6 + 20Q2

2Q4 + Q4
2

)
19173
4096 Q2

(5,3) 19845
2

(
495Q3Q5 + 45Q2Q

2
3 − 1350Q2Q6 − 50Q2

2Q4 + 2Q4
2

)
− 2415

128 Q2

(4,4) 297675
8

(
132Q2

4 + 24Q2Q
2
3 − 440Q2Q6 − 28Q2

2Q4 + Q4
2

)
− 38241

2048 Q2

(10) 382725
8

(
450450Q10 + 30030Q2Q8 + 1155Q2

2Q6 + 35Q3
2Q4 + Q5

2

)
− 2053485

4096 QR

(7,3) 1913625
8

(
90090Q3Q7 + 6006Q2Q3Q5 − 336336Q2Q8 + 231Q2Q

2
3+

−12936Q2
2Q6 − 112Q3

2Q4 + 10Q5
2
) 11975985

4096 QR

(6,4) 13395375
8

(
12870Q4Q6 + 1716Q2Q3Q5 + 858Q2Q

2
4 − 96096Q2Q8+

+132Q2
2Q

2
3 − 6501Q2

2Q6 − 89Q3
2Q4 + 5Q4

2

)
21255885

4096 QR

(5,5) 8037225
4

(
10725Q2

5 + 1430Q2Q3Q5 + 1430Q2Q
2
4 − 10010Q2Q8+

+165Q2
2Q

2
3 − 7700Q2

2Q6 − 120Q3
2Q4 + 6Q5

2

)
7759395
1024 QR

(4,3,3) 13395375
8

(
12870Q2

3Q4 − 34320Q2Q3Q5 + 10296Q2Q
2
4 + 363Q2

2Q
2
3+

+55440Q2
2Q6 − 376Q3

2Q4 + 10Q5
2

)
− 16583805

4096 QR

In case |λ| is odd, the harmonic polynomials hλ up to weight 9 are given in the
following table. The q-bracket of odd degree (harmonic) polynomials is zero, hence
trivially modular.

λ hλ

(3) − 9
4 Q3

(5) − 135
4 (5Q5 + Q2Q3)

(7) − 14175
16

(
126Q7 + 14Q2Q5 + Q2

2Q3

)

(4, 3) − 99225
16

(
18Q3Q4 − 40Q2Q5 + Q2

2Q3

)

(9) − 297675
8

(
7722Q9 + 594Q2Q7 + 27Q2

2Q5 + Q3
2Q3

)

(6, 3) − 893025
4

(
1287Q3Q6 + 99Q2Q3Q4 − 4158Q2Q7 − 162Q2

2Q5 + 5Q3
2Q3

)

(5, 4) − 8037225
8

(
286Q4Q5 + 66Q2Q3Q4 − 1540Q2Q7 − 117Q2

2Q5 + 3Q3
2Q3

)

(3, 3, 3) − 893025
4

(
1287Q3

3 − 3564Q2Q3Q4 + 3240Q2
2Q5 + 10Q3

2Q3

)
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