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Abstract Building on recent work involving the computation of generalizations of
Glaisher-type products over the primes by differentiation of the Euler product identity,
in the present paper we generalize this approach in order to obtain closed-form expres-
sions of more general infinite products which correspond to Dirichlet series. In this
way, we obtain an elegant method to compute a variety of interesting infinite prod-
ucts, and some infinite double products. The Bendersky–Adamchik constants enter
into a number of our results, and appear quite fundamental to these infinite products.
A number of concrete examples are given in order to illustrate the general principle,
including cases where these powers involve the divisor function or the Möbius func-
tion. We also consider general families of infinite products over the prime numbers
(rather than the natural numbers) in order to obtain other new infinite product iden-
tities. Infinite products over terms directly involving Bendersky–Adamchik constants
are considered, and these are helpful for later extending our approach to infinite double
products over both the lattice of natural numbers and the lattice of prime numbers.
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372 M. Perkins, R. A. Van Gorder

1 Introduction

The Bendersky–Adamchik constants Dm (see [2–5]) have seen use in a variety of areas
related to infinite series and products, as well as to definite integrals. These constants
originally appeared in [4], where log(Dm) arises as the constant term in the Euler–
Maclaurin summation of log

(
11

m
22

m
33

m
. . . xx

m )
. The constants were formalized by

way of the limit

log Dm = lim
n→∞

(
n∑

k=1

km log k − p(n,m)

)

,

where the function p(n,m) is given by

p(n,m) =nm

2
log n + nm+1

m + 1

(
log n − 1

m + 1

)

+ m!
m∑

j=1

nm− j B j+1

( j + 1)!(m − j)!

⎛

⎝log n + (1 − δmj )

j∑

l=1

1

m − l + 1

⎞

⎠ ,

with Bj the j th Bernoulli number. The first few Bendersky–Adamchik constants are
therefore given by

log D1 = lim
n→∞

(
n∑

k=1

k log k −
(
n2

2
+ n

2
+ 1

12

)
log n + n2

4

)

,

log D2 = lim
n→∞

(
n∑

k=1

k2 log k −
(
n3

3
+ n2

2
+ n

6

)
log n + n3

9
− n

12

)

,

log D3 = lim
n→∞

(
n∑

k=1

k3 log k −
(
n4

4
+ n3

2
+ n2

4
− 1

120

)
log n + n4

16
− n2

12

)

.

(1.1)
Exponentiation of (1.1) displays how these constants emulate Stirling’s formula; as
D0 = √

2π and
∏n

k=1 k = n!, one obtains the identities

D0 = lim
n→∞

( ∏n
k=1 k

e−nnn+ 1
2

)
,

D1 = lim
n→∞

( ∏n
k=1 k

k

e− n2
4 n

n2
2 + n

2+ 1
12

)

,

D2 = lim
n→∞

( ∏n
k=1 k

k2

e− n3
9 + n

12 n
n3
3 + n2

2 + n
6

)

,

D3 = lim
n→∞

( ∏n
k=1 k

k3

e− n4
16 + n2

12 n
n4
4 + n3

2 + n2
4 − 1

120

)

.
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Closed-form calculation of infinite products of… 373

The Bendersky–Adamchik constants Dm arise in the study of the multiple gamma
function �n(z) [3], which generalizes the gamma function, the polygamma function
ψn(z) [2], and appears in expressions related to the derivative of the Riemann and
Hurwitz zeta functions [2]. Note that D1 is equal to A, the Glaisher–Kinkelin con-
stant, which has historically seen more attention [10,11,26], appearing in a number
of product, series, and integral relations, including the formula

∞∫

0

x log x

e2πx − 1
dx = 1

24
− 1

2
log D1,

as well as the famous product identities which motivated work in [24]; see also [13].
The next couple of Bendersky–Adamchik constants have also been of interest, and
have been used to find closed-form representations for series [6] such as

∞∑

n=1

ζ(2n)

(n + 1)4n
= 7

6
− log 2 + 14 log D2,

for integral formulas [4] such as

∫ 1

0

(
(1 − x)2 − log2 x

x log3 x
− 1

)
dx

(1 + x) log x

= 1

2
logπ − 11

36
− 7

90
log 2 − 3 log D1 + 10 log D3,

as well as numerous multiple integral formulas, such as

∫ 1
2

0

∫ x

0
log(sin(π t))dtdx = −1

8
log 2 − 7

4
log D2.

Particular infinite products over the natural numbers and the primes have been
calculated (see [24]) via the equation

∞∏

n=1

n1/n
x =

( ∞∏

n=1

p
1/(pxn−1)
n

)ζ(x)

, (1.2)

where pn represents the nth prime number. This equation was derived through differ-
entiation of the Euler product form of the Riemann zeta function [24]. Additionally,
for natural numbers m, the closed-form product identity

∞∏

n=1

p
1/

(
p2mn −1

)

n = (D2m−1)
2m
B2m

2πeγ

was found in [24], utilizing the Bendersky–Adamchik constants D2m−1 (see [2–5]).
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374 M. Perkins, R. A. Van Gorder

In the present paper we make use of the Bendersky–Adamchik constants in order
to obtain closed-form evaluations of more general infinite products of the form

∞∏

n=1

nan/n
x
,

where the an arise as coefficients in certain Dirichlet series. In Sect. 2 we generalize
(1.2) in order to account for products in such a form. A number of concrete examples
are given, such as for when an involves the divisor function or the Möbius func-
tion. In Sect. 3 we consider general families of infinite products over prime numbers
(rather than natural numbers) in order to obtain other new infinite product identities. In
Sect. 4 we turn our attention to infinite products of functions of Bendersky–Adamchik
constants, obtaining, for example,

∞∏

m=1

D
(−1)m+1π2m

(2m)!
2m = 2√

e
,

which is Corollary 4.3. In Sect. 5, we consider similar approaches for infinite double
products.

2 Infinite products related to certain Dirichlet series

In [24], term-wise differentiation of the famous Euler product

ζ(x) =
∞∏

n=1

(
1 − p−x

n

)−1

results in the derivative

ζ ′(x) = −ζ(x)
∞∑

n=1

log pn
pxn − 1

, (2.1)

which is valid for x > 1; thiswas used to obtain a variety of infinite product identities of
Glaisher type. This relation directly leads to (1.2). In the following, we will repeatedly
apply (2.1) to derive new infinite product relations. To do so, we will utilize Dirichlet
series intimately related with the zeta function. It is well known that many relations
for generalized zeta functions exist, and we shall consider the more general form

g(x) =
∞∑

n=1

an(k)

nx
= h(x)ζ k(x), (2.2)

which was discussed in [12]. We will consider cases where all the an(k) are real, the
sum defining g(x) converges uniformly, and g(x) is differentiable on x > 1. We shall
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Closed-form calculation of infinite products of… 375

suppress the k, writing an(k) = an for convenience, unless k is otherwise needed for
clarity. Differentiating (2.2), and using (2.1), we have

g′(x) =
∞∑

n=1

−an log n

nx
= ζ k(x)

(

h′(x) − kh(x)
∞∑

n=1

log pn
pxn − 1

)

. (2.3)

Rearranging terms and applying the exponential function to both sides of (2.3) yields
the following.

Theorem 2.1 We have that

∞∏

n=1

nan/n
x =

⎛

⎝e−h′(x)
( ∞∏

n=1

p
1

pxn−1
n

)kh(x)
⎞

⎠

ζ k (x)

.

Before moving on we shall ensure that the representation is indeed uniformly con-
vergent, since we require uniform convergence to justify term-wise differentiation.
However, as the series we will consider are of the form

∞∑

n=1

an
nx

= f (ζ(x)),

we can exploit the fact that the series converge on x > 1 to use theWeierstrassM-Test.
For any ε > 0, and x ∈ [1 + ε,∞), we have

∣∣
∣
an
nx

∣∣
∣ ≤

∣∣
∣
an
n1+ε

∣∣
∣ .

Once we set Mn =
∣∣∣ an
n1+ε

∣∣∣,

∞∑

n=1

Mn = f (ζ(1 + ε)) < ∞,

via the Weierstrass M-Test it follows that for all ε > 0 the series converges uniformly
on [1 + ε,∞), and hence on (1,∞).

We now refer to [12,22] for further Dirichlet series and utilize them to form a
collection of results below, motivated by the general relation given in Theorem 2.1.
The region of validity in our analytic results is x > 1, unless otherwise stated.

2.1 Case 1: an = (−1)n+1

Consider the Dirichlet η function

η(x) = 1 − 1

2x
+ 1

3x
− 1

4x
+ 1

5x
− · · · =

∞∑

n=1

(−1)n+1

nx
.
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376 M. Perkins, R. A. Van Gorder

It is an easy deduction (see [18,25]) that

η(x) = (1 − 21−x )ζ(x),

and hence we take h(x) = 1 − 21−x , which has derivative h′(x) = 21−x log 2. As
e−h′(x) = e−21−x log 2 = 2−21−x

, employing k = 1 in Theorem 2.1 yields

∞∏

n=1

n(−1)n+1/nx =
(

2−21−x
∞∏

n=1

p
1−21−x

pxn−1
n

)ζ(x)

.

Wishing to substitute a value of x that gives a closed-form for the prime product, we
take the simplest case x = 2, which gives the following corollary to Theorem 2.1.

Corollary 2.1 We have the identity

∞∏

n=1

n(−1)n+1/n2 =
(

D12
1

4πeγ

)π2/12

.

2.2 Case 2: an = d(n), the divisor function

Note that

ζ 2(x) =
∞∑

n=1

d(n)

nx
,

where d(n) denotes the divisor function, i.e., the number of divisors of an integer n,
including 1 and itself [14]. The divisor function obeys the well-known asymptotic
relation (see [12])

1

n

n∑

k=1

d(k) ∼ log n + 2γ − 1, (2.4)

where γ is the Euler–Mascheroni constant. Applying Theorem 2.1 with k = 2 and
h(x) = 1, we have

∞∏

n=1

nd(n)/nx =
( ∞∏

n=1

p
1/(pxn−1)
n

)2ζ 2(x)

.

Taking x = 2, we obtain the following identity.

Corollary 2.2 We have

∞∏

n=1

nd(n)/n2 =
(

D12
1

2πeγ

)π4/18

.
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Closed-form calculation of infinite products of… 377

Furthermore, there is a well-known Dirichlet series relating d(n2) to the zeta func-
tion, that we will use:

ζ 3(x)

ζ(2x)
=

∞∑

n=1

d(n2)

nx
.

Taking k = 3 and h(x) = ζ(2x)−1 in Theorem 2.1, and noting

h′(x) = 2h(x)

( ∞∑

n=1

log pn
p2xn − 1

)

,

we have

∞∏

n=1

nd(n2)/nx =
⎛

⎜
⎝

(∏∞
n=1 p

1/(pxn−1)
n

)3

(∏∞
n=1 p

1/(p2xn −1)
n

)2

⎞

⎟
⎠

ζ3(x)
ζ(2x)

.

For example, taking x = 2, we have the following.

Corollary 2.3 We have

∞∏

n=1

nd(n2)/n2 =
(
D36
1 D240

3

2πeγ

)5π2/12

.

There is also another Dirichlet series relating the divisor function and squares,
giving the relation

ζ 4(x)

ζ(2x)
=

∞∑

n=1

d2(n)

nx
.

Taking k = 4 and h(x) = (ζ(2x))−1 in Theorem 2.1, we obtain the product relation

∞∏

n=1

nd
2(n)/nx =

⎛

⎜
⎝

(∏∞
n=1 p

1/(pxn−1)
n

)2

(∏∞
n=1 p

1/(p2xn −1)
n

)

⎞

⎟
⎠

2ζ4(x)
ζ(2x)

.

Setting x = 2, we recover the following.

Corollary 2.4 We have

∞∏

n=1

n(d(n)/n)2 =
(
D24
1 D120

3

2πeγ

)5π4/36

.
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378 M. Perkins, R. A. Van Gorder

2.3 Case 3: an = dm(n)

Let the function dm(n) represent the number of ways the integer n can be represented
as a product ofm factors (including unity, up tom−1 times). Hence dm(n) generalizes
the divisor function, withm = 2 giving d2(n) = d(n). It is well-known (see [12]) that

∞∑

n=1

dm(n)

nx
= ζm(x),

and applying Theorem 2.1 with k = m and h(x) = 1, we have

∞∏

n=1

ndm (n)/nx =
( ∞∏

n=1

p
1/(pxn−1)
n

)mζm (x)

.

Taking x = 2, this gives the following identity.

Corollary 2.5 We have

∞∏

n=1

ndm (n)/n2 =
(
D − 112

2πeγ

)mπ2m
6m

.

2.4 Case 4: an = σm(n), the sum of mth powers of divisors of n

The standard divisor function can be represented as d(n) = ∑
d|n 1. The sum of the

kth powers of divisors of n, defined formally as

σm(n) =
∑

d|n
dm,

gives another generalization of the divisor function, with the m = 0 case giving
σ0(n) = d(n). Note that this generalization does not require m to be an integer. Like
σ0(n) = d(n), σ1(n) satisfies several asymptotic expressions, notably (see [12])

1

n2

n∑

k=1

σ1(k) ∼ π2

12
,

which is similar to (2.4). As with dm(n), there is a Dirichlet series relating σm(n) to ζ ,

∞∑

n=1

σm(n)

nx
= ζ(x)ζ(x − m),
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Closed-form calculation of infinite products of… 379

which holds provided that x > max {m + 1, 1}. Applying Theorem 2.1 with h(x) =
ζ(x − m), and noting that h′(x) can be computed with (2.1), we have

∞∏

n=1

nσm (n)/nx =
( ∞∏

n=1

p
1/(pxn−1)
n

∞∏

n=1

p
1/(px−m

n −1)
n

)ζ(x)ζ(x−m)

.

Taking x = 2t , x − m = 2s, for s, t ∈ N we have

∞∏

n=1

nσ2(t−s)(n)/n2t =
(

(D2t−1)
t

B2t (D2s−1)
s

B2s

2πeγ

)2ζ(2t)ζ(2s)

,

which simplifies to the following form.

Corollary 2.6 We have

∞∏

n=1

nσ2(n)/n4 =
(

D1

2πeγ D10
3

)π6/45

.

2.5 Case 5: an = λ(n), Liouville’s function

Liouville’s function is defined as λ(n) = (−1)�(n), where�(n) represents the number
of prime divisors of n including multiplicity [16]. Liouville’s function is completely
multiplicative, as it is easily seen that �(1) = 0 and �(nm) = �(n) + �(m). This
fact is useful in the derivation of the classical relation (see [16])

∞∑

n=1

λ(n)

nx
= ζ(2x)

ζ(x)
.

Using k = −1 and h(x) = ζ(2x) in Theorem 2.1, we find

∞∏

n=1

nλ(n)/nx =

⎛

⎜
⎜⎜
⎝

(
∏∞

n=1 p
1/

(
p2xn −1

)

n

)2

∏∞
n=1 p

1/(pxn−1)
n

⎞

⎟
⎟⎟
⎠

ζ(2x)
ζ(x)

,

which for x = 2 gives the following expression.

Corollary 2.7 We have

∞∏

n=1

nλ(n)/n2 =
(

1

2πeγ D12
1 D240

3

)π2/15

.
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380 M. Perkins, R. A. Van Gorder

In [12], there are several Dirichlet series relations containing both the divisor and
Liouville functions, including

∞∑

n=1

λ(n)d(n2)

nx
= ζ 2(2x)

ζ 3(x)
,

∞∑

n=1

λ(n)d2(n)

nx
= ζ 3(2x)

ζ 4(x)
.

From these equations, we derive the infinite product relations

∞∏

n=1

nλ(n)d(n2)/nx =

⎛

⎜⎜⎜
⎝

(
∏∞

n=1 p
1/

(
p2xn −1

)

n

)4

(∏∞
n=1 p

1/(pxn−1)
n

)3

⎞

⎟⎟⎟
⎠

ζ2(2x)
ζ3(x)

and

∞∏

n=1

nλ(n)d2(n)/nx =

⎛

⎜
⎜⎜
⎝

(
∏∞

n=1 p
1/

(
p2xn −1

)

n

)3

(∏∞
n=1 p

1/(pxn−1)
n

)2

⎞

⎟
⎟⎟
⎠

2ζ3(2x)
ζ4(x)

,

respectively. Taking x = 2, we obtain, respectively, the following formulas.

Corollary 2.8 We have

∞∏

n=1

nλ(n)d(n2)/n2 =
(

1

2πeγ D36
1 D480

3

)2π2/75

and
∞∏

n=1

nλ(n)d2(n)/n2 =
(

1

2πeγ D24
1 D360

3

)4π4/1125

.

2.6 Case 6: an = μ(n), the Möbius function

The Möbius function, μ(n), takes the value zero for integers n with any prime factor
repeated, and otherwise takes the value (−1)m , wherem is the number of prime factors
of n. For our interests, there are two relevant Dirichlet series relations for the Möbius
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Closed-form calculation of infinite products of… 381

function (see [21]):

∞∑

n=1

μ(n)

nx
= 1

ζ(x)
,

∞∑

n=1

μ2(n)

nx
= ζ(x)

ζ(2x)
.

Taking k = −1 with h(x) = 1, and separately k = 1 with h(x) = ζ(2x)−1, we apply
Theorem 2.1 to find

∞∏

n=1

nμ(n)/nx =
( ∞∏

n=1

p
1/(pxn−1)
n

)− 1
ζ(x)

,

∞∏

n=1

nμ2(n)/nx =
⎛

⎜
⎝

∏∞
n=1 p

1/(pxn−1)
n

(∏∞
n=1 p

1/(p2xn −1)
n

)2

⎞

⎟
⎠

ζ(x)
ζ(2x)

,

respectively. Considering the special case x = 2, we obtain the following product
relations.

Corollary 2.9 We have
∞∏

n=1

nμ(n)/n2 =
(
2πeγ

D12
1

)6/π2

and ∞∏

n=1

n(μ(n)/n)2 =
(
2πeγ D12

1 D240
3

)15/π2

.

Note that while (2.6) holds for x > 1, 1
ζ(x) is not defined at x = 1 without analytic

continuation. However, it is also known that [1]

∞∑

n=1

μ(n) log n

n
= −1,

which results in a corresponding product relation for x = 1, namely the following
identity.

Proposition 2.1 We have
∞∏

n=1

nμ(n)/n = 1

e
.
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382 M. Perkins, R. A. Van Gorder

2.7 Case 7: an = θ(n)

The function θ(n) is defined as the number of ordered pairs (a, b), with gcd(a, b) = 1,
such that n = ab [12]. It is known that θ(n) satisfies the equation

ζ 2(x)

ζ(2x)
=

∞∑

n=1

θ(n)

nx
.

Taking k = 2 and h(x) = ζ(2x)−1 in Theorem 2.1, we have

∞∏

n=1

nθ(n)/nx =
⎛

⎝
∏∞

n=1 p
1/(pxn−1)
n

∏∞
n=1 p

1/(p2xn −1)
n

⎞

⎠

2ζ2(x)
ζ(2x)

,

and on setting x = 2, we find the following special case.

Corollary 2.10 We have

∞∏

n=1

nθ(n)/n2 =
(
D1D

10
3

)60
.

Just as with the divisor function, θ(n) appears in another Dirichlet series multiplied
by the Liouville function [12], namely

∞∑

n=1

λ(n)θ(n)

nx
= ζ(2x)

ζ 2(x)
.

Taking k = −2 and h(x) = ζ(2x), we find

∞∏

n=1

nλ(n)θ(n)/nx =
⎛

⎝
∏∞

n=1 p
1/

(
p2xn −1

)

n
∏∞

n=1 p
1/(pxn−1)
n

⎞

⎠

2ζ(2x)
ζ2(x)

,

and upon setting x = 2, we have the following special case.

Corollary 2.11 We have

∞∏

n=1

nλ(n)θ(n)/n2 =
(

1

D1D10
3

)48/5

.
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3 Infinite products over the prime numbers

The general relation Theorem 2.1 can also be used to give families of infinite products
defined over the prime numbers. As an example, noting that

1

p2mn + 1
= 1

p2mn − 1
− 2

p4mn − 1
,

we can substitute x = 2m and x = 4m into Theorem 2.1, in order to calculate the
following family of products.

Corollary 3.1 We have

∞∏

n=1

p
1/

(
p2mn +1

)

n =
⎛

⎝2πeγ (D2m−1)
2m
B2m

(D4m−1)
8m
B4m

⎞

⎠ .

Similarly, by way of

2

p2mn − p−2m
n

= 1

p2mn − 1
+ 1

p2mn + 1
.

we obtain the following identity.

Corollary 3.2 We have

∞∏

n=1

p
1/

(
p2mn −p−2m

n
)

n =
⎛

⎝ (D2m−1)
1

B2m

(D4m−1)
2

B4m

⎞

⎠

2m

.

It is simple to find further identities of the same type, although the reliance on fractions
of the form (p2mn − 1)−1 restricts the polynomials in the exponent of pn .

Consider next the algebraic relation

i∑

m=1

Am

p2mn − 1
=

∑i
m=1 Am

∏i−m
j=1

(
p2

i− j

n + 1
)

p2in − 1
. (3.1)

In the right-hand side of (3.1), we have factored the largest denominator, namely
p2

i

n −1, and then grouped terms. To illustrate how one might use this relation, we take
i = 3, A1 = 1, 1 + A2 + A3 = 0, and set A2 = y, to obtain

3∑

m=1

Am

p2mn − 1
= p2n(p

4
n + (1 + y)p2n + 1)

p8n − 1
.

Employing this relation, Theorem 2.1 gives the following.
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Corollary 3.3 We have

∞∏

n=1

p

p2n (p4n+(1+y)p2n+1)

p8n−1
n = D12

1 D240
7

(
D240
7

D120
3

)−y

.

Similarly, if we instead consider sums of the form

1

p2n − 1
+

∑

m

Am

p2imn − 1
,

with integer i , we can obtain product relations of the following type.

Corollary 3.4 We have

∞∏

n=1

p

(p2n−y)(p2n+y+1)

p6n−1
n = D12

1

D252
5

(
2πeγ

D252
5

)y+y2

.

While above we have considered finite sums of fractions of the type 1
p2mn −1

, given

a relation of the form ∞∑

m=1

am
p2mn − 1

=: f (n),

one can convert further products over primes into products over the Bendersky–
Adamchik constants Dm . We shall explore this in the next section.

4 Infinite products involving powers of Bendersky–Adamchik constants

It is known (see the final proposition in [2]) that the Bendersky–Adamchik constants
Dm are related to the harmonic numbers Hn and the Bernoulli numbers Bn through

log Dm = Bm+1Hm

m + 1
− ζ ′(−m). (4.1)

We can deduce the behaviour of the D2m from this formula. For allm ≥ 1, B2m+1 = 0.
For even index values, note

ζ ′(−2m) = (−1)mζ(2m + 1)(2m)!
2(2π)2m

, (4.2)

which follows from differentiation of Riemann’s functional equation for the zeta func-
tion (see [20]), then evaluated at negative even integers. Interestingly, combining (4.2)
with (4.1), it can be noted that the D2m can be directly related to the odd values of the
zeta function [7]

D2m = exp

(
(−1)m+1ζ(2m + 1)(2m)!

2(2π)2m

)
. (4.3)
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In keeping with our aim of establishing infinite products related to the Bendersky–
Adamchik constants, we note that as (4.3) gives D2m as an exponential, then evaluating
products of D2m for m = 1, 2, 3 reduces to putting certain series into a closed-form.
The simplest example is the product

∞∏

m=1

D2m = exp

( ∞∑

m=1

(−1)m+1ζ(2m + 1)(2m)!
2(2π)2m

)

≈ 1.0256,

where we have approximated the infinite series value numerically since it does not
have a closed-form expression. To find other related products, we shall raise D2m to a
power sufficient to ensure that the product does converge. For example, one may show
the following.

Corollary 4.1 We have

∞∏

m=1

D
1

ζ(2m+1)(2m)!
2m = exp

(
1

2

∞∑

m=1

(−1)m+1

(2π)2m

)

= exp

(
1

2

1

4π2 + 1

)

and ∞∏

m=1

D
(−1)m+1

ζ(2m+1)(2m)!
2m = exp

(
1

2

∞∑

m=1

1

(2π)2m

)

= exp

(
1

2

1

4π2 − 1

)
.

The factor of ζ(2m+1) in the exponent of the D2m can be removed through appropriate
exponentiation, giving a modified product as follows.

Corollary 4.2 We have

∞∏

m=1

D
(−1)m+1π2m

(2m)!
2m = exp

(
1

2

∞∑

m=1

ζ(2m + 1)

4m

)

.

Changing the order of summation (whichwe justify in the next section), one obtains

∞∑

m=1

ζ(2m + 1)

4m
=

∞∑

m=1

∞∑

n=1

1

n2m+14m

=
∞∑

n=1

1

n

( ∞∑

m=1

1

(4n2)m

)

=
∞∑

n=1

1

n

(
1

4n2 − 1

)

= log(4) − 1 .

From here we have an elegant formula.
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Corollary 4.3 We have
∞∏

m=1

D
(−1)m+1π2m

(2m)!
2m = 2√

e
.

A change in the order of summation can be applied to evaluate other series involv-
ing zeta functions. The partial fraction expansion of the cotangent function was first
reported by Euler [8] and is given by

∞∑

m=1

1

m2 − z2
= 1 − π z cot(π z)

2z2
, (4.4)

which is valid for complex z /∈ Z. Using the identity (4.4), we find the following.

Corollary 4.4 We have

∞∏

m=1

D
(−1)m+1ζ(2m)
ζ(2m+1)(2m)!
2m = exp

(
1

4

(
1 − 1

2
cot

(
1

2

)))

and ∞∏

m=1

D
ζ(2m)

ζ(2m+1)(2m)!
2m = exp

(
1

4

(
1 + 1

2
coth

(
1

2

)))
.

5 Infinite double products

We now extend our approach to the study of certain infinite double product, such as
are studied in [19,23]. The following results will be useful.

Proposition 5.1 Suppose x > 1, and that am is a sequence such that

∞∑

n=1

∞∑

m=1

|am | log n
nmx

< ∞.

Then ∞∑

m=1

∞∑

n=1

am log n

nmx
=

∞∑

n=1

∞∑

m=1

am log n

nmx
.

Proof This follows from Tonelli’s Theorem for sequences [15], due to the absolute
convergence of the double sum. ��

The above proposition has the following corollary, which we shall use.

Corollary 5.1 Suppose that am is a sequence such that

∞∏

n=1

n
∑∞

m=1
|am |
nmx < ∞.
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Then ∞∏

m=1

∞∏

n=1

nam n−mx =
∞∏

n=1

n
∑∞

m=1 am n−mx
.

Proof After exponentiation of the result in Proposition 5.1, the corollary follows by
noting

∞∏

m=1

n
am
n2m = n

∑∞
m=1

am
n2m .

��
We now have the tools to show that the double product over terms of the form

n1/n
2m

is in fact convergent. Taking am = 1, then for n > 1,

∞∑

m=1

am
n2m

=
∞∑

m=1

1

n2m
= 1

n2 − 1
. (5.1)

As |am | = am here, and noting that for n > 1 we have 1
n2−1

≤ 1
n3/2

, we see that

1 ≤
∞∏

n=2

n1/
(
n2−1

)
≤

∏

n=2

n1/n
3/2

< ∞.

This allows us to apply Corollary 5.1. We now see that the double product over terms
of the form n1/n

2m
does indeed converge, as the corollary shows:

∞∏

m=1

⎛

⎝ (D2m−1)
2m
B2m

2πeγ

⎞

⎠

ζ(2m)

=
∞∏

m=1

∞∏

n=1

n1/n
2m

=
∞∏

m=1

∞∏

n=2

n1/n
2m

=
∞∏

n=2

n1/
(
n2−1

)
< ∞.

By defining the am to be non-zero only at the primes, we can use Corollary 5.1 to
evaluate infinite double products over the primes. For example, by taking x = 2m, we
can use Theorem 2.1 and (5.1) to obtain the following closed-form double product.

Corollary 5.2 We have

∞∏

k=1

∞∏

n=1

p
1/p2kmn
n = (D2m−1)

2m
B2m

2πeγ
.
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Next, note that the equation

∞∑

n=1

1

pxn
=

∞∑

k=1

μ(k)

k
log(ζ(kx))

was shown to hold, for x > 1, in [9]. Making use of our approach, we obtain another
infinite double product identity.

Corollary 5.3 We have

∞∏

k=1

∞∏

n=1

p

μ(k)

p2kmn −1
n =

∞∏

n=1

p
1/p2mn
n =

∞∏

k=1

⎛

⎝ (D2km−1)
2km
B2km

2πeγ

⎞

⎠

μ(k)

.

Recall from [17] that

∑

pn≤x

log pn
pn

= log x + O(1).

The constant term in the asymptotic expansion is given by [17]

C = lim
x→∞

(

log x −
∑

pn≤x

log pn
pn

)

γ + log

( ∞∏

k=2

∞∏

n=1

p
1/pkn
n

)

. (5.2)

Making use of the absolute convergence of the double product in (5.2), and taking
m = 1 in (5.2), we have

eC

eγ
=

( ∞∏

k=1

∞∏

n=1

p
1/p2kn
n

)( ∞∏

k=1

∞∏

n=1

p
1/p2k+1

n
n

)

= D12
1

2πeγ

∞∏

k=1

∞∏

n=1

p
1/p2k+1

n
n .

Rearranging, we find an elegant identity, which is a double product generalization of
products of Glaisher type.

Corollary 5.4 We have
∞∏

k=1

∞∏

n=1

p
1/p2k+1

n
n = 2πeC

D12
1

.
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