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Abstract Let H be a Krull monoid with finite class group G such that every class
contains a prime divisor. Then every non-unit a ∈ H can be written as a finite product
of atoms, say a = u1 · . . . · uk . The set L(a) of all possible factorization lengths
k is called the set of lengths of a. There is a constant M ∈ N such that all sets of
lengths are almost arithmetical multiprogressions with bound M and with difference
d ∈ �∗(H), where �∗(H) denotes the set of minimal distances of H . We study the
structure of �∗(H) and establish a characterization when �∗(H) is an interval. The
system L(H) = {L(a) | a ∈ H} of all sets of lengths depends only on the class group
G, and a standing conjecture states that conversely the system L(H) is characteristic
for the class group. We confirm this conjecture (among others) if the class group is
isomorphic to Cr

n with r, n ∈ N and �∗(H) is not an interval.
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720 Q. Zhong

1 Introduction and main results

Let H be aKrullmonoidwith finite class groupG such that every class contains a prime
divisor (holomorphy rings in global fields are such Krull monoids and more examples
will be given later). Then every non-unit of H has a factorization as a finite product
of atoms (or irreducible elements), and all these factorizations are unique (i.e., H is
factorial) if and only ifG is trivial. Otherwise, there are elements having factorizations
which differ not only up to associates but also up to the order of the factors. These
phenomena are described by arithmetical invariants such as sets of lengths and sets of
distances. For an overview of recent developments in Factorization Theory, we refer
to [3].

We recall some basic concepts and then we formulate themain results of the present
paper. For a finite nonempty set L = {m1, . . . ,mk} of positive integers with m1 <

· · · < mk , we denote by �(L) = {mi − mi−1 | i ∈ [2, k]} the set of distances of L .
If a non-unit a ∈ H has a factorization a = u1 · . . . · uk into atoms u1, . . . , uk , then k
is called the length of the factorization, and the set L(a) of all possible factorization
lengths k is called the set of lengths of a. Since H is Krull, every non-unit has a
factorization into atoms and all sets of lengths are finite. Furthermore, all sets of
lengths L(a) are singletons if and only if |G| ≤ 2. Suppose that |G| ≥ 3. Then there
is an element a ∈ H with |L(a)| > 1, and since the n-fold sumset L(a)+· · ·+L(a) is
contained in L(an), it follows that |L(an)| > n for every n ∈ N. Therefore, the system
L(H) = {L(a) | a ∈ H} of all sets of lengths of H consists of infinitely many finite
subsets of the integers, and there are arbitrarily large sets of lengths.

The set of distances �(H) is the union of all sets �(L) over all L ∈ L(H).
Since the class group is finite, �(H) is finite, and since every class contains a prime
divisor, �(H) is a finite interval with min�(H) = 1 ([13]; the maximum of �(H)

is unknown in general, see [7,14]). The set of minimal distances �∗(H) is a crucial
subset of �(H), defined as

�∗(H) = {min�(S) | S ⊂ H is a divisor-closed submonoid with �(S) �= ∅}.

It has been studied by Chapman et al. (see, e.g., [8, Chap. 6.8], [4,9,21]), and the
original interest in �∗(H) stemmed from its occurrence in the Structure Theorem for
Sets of Lengths. For convenience of the reader, we formulate the Structure Theorem
and recall that the given description is best possible ([8, Chap. 4.7], [24]).

Theorem A Let H be a Krull monoid with finite class group. Then there is a constant
M ∈ N such that the set of lengths L(a) of any non-unit a ∈ H is an AAMP (almost
arithmetical multiprogression) with difference d ∈ �∗(H) and bound M.

The last couple of years have seen a renewed interest in �∗(H) partly motivated
by the Characterization Problem (which will be discussed below). Among others,
the maximum of �∗(H) has been determined (we have max�∗(H) = max{r(G) −
1, exp(G) − 2} by [15]), and a better understanding of �∗(H) opened the door to
progress in a variety of directions (e.g., [12]).

Whereas the set�(H) of all distances is an interval, the structure of�∗(H) is much
more involved. A simple example shows that the interval [1, r(G) − 1] is contained
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Sets of minimal distances and characterizations… 721

in �∗(H) (Lemma 3.2) and thus �∗(H) is an interval if r(G) ≥ exp(G) − 1. In the
present paper, we further study the structure of �∗(H), which allows us to establish
a characterization when �∗(H) is an interval. Here is our first main result.

Theorem 1.1 Let H be a Krull monoid with finite class group G such that every class
contains a prime divisor.

Suppose that |G| ≥ 3, exp(G) = n, r(G) = r , and let k ∈ N be maximal such that
G has a subgroup isomorphic to Ck

n . Then

[1, r − 1] ∪
{
max

{
1, 
n

2
� − 1

}}
∪ [max{1, n − k − 1}, n − 2]

⊂ �∗(H) ⊂
[
1,max

{
r − 1, 
n

2
� − 1

}]
∪ [max{1, n − k − 1}, n − 2] .

In particular, the following holds:

(1) If r ≥ ⌊ n
2

⌋ − 1, then

�∗(H) =
[
1,max

{
r − 1, 
n

2
� − 1

}]
∪ [max{1, n − k − 1}, n − 2] .

(2) The following statements are equivalent:
(a) �∗(H) is an interval.
(b) max{1, n − k − 2} ∈ �∗(H).
(c) n − k − 2 ≤ max{r − 1, 
 n

2 � − 1}.
(d) r + k ≥ n − 1 or

(
r + k = n − 2 and G ∼= Cr

2r+2

)
.

Thus, in particular, if r(G) ≥ 
 exp(G)
2 � − 1, then �∗(H) is completely determined.

However, if r(G) is small with respect to 
 exp(G)
2 �, then the structure of�∗(H) remains

open. The complexity of this case, even for cyclic groups, can be seen from a recent
paper by Plagne and Schmid who studied �∗(H) in case of cyclic class groups [20].

In order to present our second main result, we recall the Characterization Problem
for class groups. The monoid B(G) of zero-sum sequences over G is a Krull monoid
with class group isomorphic toG, every class contains a prime divisor, and the systems
of sets of lengths of H and that of B(G) coincide. Thus L(H) = L(

B(G)
)
, and it is

usual to setL(G) := L(B(G)
)
. In particular, the systemof sets of lengths of H depends

only on the class group G. The associated inverse question asks whether or not sets
of lengths are characteristic for the class group. More precisely, the Characterization
Problem for class groups can be formulated as follows (for surveys and a detailed
description of the background of this problem, see [8, Sect. 7.3], [10, p. 42], [6,23]).

Given two finite abelian groups G and G ′ with |G| ≥ 3 such that L(G) = L(G ′).
Does it follow that G ∼= G ′?

The system L(G) is studied with methods from Additive Combinatorics. In par-
ticular, zero-sum theoretical invariants (such as the Davenport constant or the cross
number) and the associated inverse problems play a crucial role (surveys and detailed
presentations of such results can be found in [8,10,17]). Most of these invariants are
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722 Q. Zhong

well understood only in a very limited number of cases (e.g., for groups of rank two,
the precise value of the Davenport constant D(G) is known and the associated inverse
problem is solved; however, if n is not a prime power and r ≥ 3, then the precise
value of the Davenport constant D(Cr

n) is unknown). Thus, it is not surprising that
most affirmative answers to the Characterization Problem so far have been restricted
to those groups where we have a good understanding of the Davenport constant. These
groups include elementary 2-groups, cyclic groups, and groups of rank two (for recent
progress, we refer to [11]).

The first groups, for which the Characterization Problem was solved whereas the
Davenport constant is unknown, are groups of the form Cr

n , where r, n ∈ N and
r ≤ n+2

6 [16]. Based on Theorem 1.1, we extend these results and give an affirmative
answer to the Characterization Problem for all groups Cr

n for which �∗(Cr
n) is not an

interval.

Theorem 1.2 Let G and G ′ be finite abelian groups and let k, k′ ∈ N bemaximal such
that G has a subgroup isomorphic to Ck

exp(G) and G ′ has a subgroup isomorphic to

Ck′
exp(G ′). Suppose that r(G)+k ≤ exp(G)−2, G � C r(G)

2r(G)+2, and thatL(G) = L(G ′).
Then exp(G) = exp(G ′) and k = k′. In particular,
(1) if r(G) ≥

⌊
exp(G)

2

⌋
+ 1, then r(G) = r(G ′);

(2) if G ∼= C r(G)
exp(G), then G ∼= G ′.

In Sect. 2, we gather the required background both on Krull monoids as well as on
Additive Combinatorics as needed in the sequel. In Sect. 3, we study structural prop-
erties of (large) minimal non-half-factorial subsets of finite abelian groups. Finally,
the proofs of Theorems 1.1 and 1.2 will be provided in Sect. 4.

2 Background on Krull monoids and their sets of minimal distances

Our notation and terminology are consistent with [8,10,17]. Let N denote the set of
positive integers and N0 = N ∪ {0}. For a, b ∈ Q, we denote by [a, b] = {x ∈ Z |
a ≤ x ≤ b} the discrete, finite interval between a and b. If A, B ⊂ Z are subsets of
the integers, then A + B = {a + b | a ∈ A, b ∈ B} denotes their sumset, and �(A)

the set of (successive) distances of A (that is, d ∈ �(A) if and only if d = b− a with
a, b ∈ A distinct and [a, b] ∩ A = {a, b}).

By a monoid, we mean a commutative semigroup with identity that satisfies the
cancelation laws. If H is a monoid, then H× denotes the unit group andA(H) the set
of atoms (or irreducible elements) of H . A submonoid S ⊂ H is called divisor-closed
if a ∈ S, b ∈ H , and b divides a, then we have b ∈ S. A monoid H is said to be

• atomic if every non-unit can be written as a finite product of atoms;
• factorial if it is atomic and every atom is prime;
• half-factorial if it is atomic and |L(a)| = 1 for each non-unit a ∈ H (equivalently,

�(H) = ∅).
A monoid F is factorial with F× = {1} if and only if it is free abelian. If this holds,
then the set of primes P ⊂ F is a basis of F , we write F = F(P), and every a ∈ F
has a representation of the form:
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a =
∏
p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P.

A monoid homomorphism θ : H → B is called a transfer homomorphism if it
has the following properties:

(T1) B = θ(H)B× and θ−1(B×) = H×.
(T2) If u ∈ H , b, c ∈ B and θ(u) = bc, then there exist v, w ∈ H such that
u = vw, θ(v) � b, and θ(w) � c.

If H and B are atomic monoids and θ : H → B is a transfer homomorphism, then
(see [8, Chap. 3.2])

L(H) = L(B), �(H) = �(B), and �∗(H) = �∗(B).

2.1 Krull monoids

A monoid H is said to be a Krull monoid if it satisfies one of the following two
equivalent conditions:

(a) There exists a monoid homomorphism ϕ : H → F into a free abelian monoid F
such that a | b in H if and only if ϕ(a) | ϕ(b) in F .

(b) H is completely integrally closed and v-noetherian.

A detailed presentation of the theory of Krull monoids can be found in [8,18]. To
recall some examples, note that an integral domain is a Krull domain if and only if its
multiplicativemonoid of nonzero elements is aKrullmonoid. Thus, Property (b) shows
that every integrally closed noetherian domain is a Krull domain. Rings of integers
in algebraic number fields, holomorphy rings in algebraic function fields, and regular
congruence monoids in these domains are Krull monoids with finite class group such
that every class contains a prime divisor ([8, Sect. 2.11 and Examples 7.4.2]). Monoid
domains and power series domains that are Krull are discussed in [2,19], and note
that every class of a Krull monoid domain contains a prime divisor. For monoids of
modules that are Krull and their distribution of prime divisors, we refer the reader to
[1,5].

Sets of lengths inKrullmonoids can be studied in themonoid of zero-sum sequences
over its class group. To recall the basic concepts, let G be an additive finite abelian
group andG0 ⊂ G a subset. An element S = g1 · . . . ·gl ∈ F(G0) is called a sequence
over G0, σ(S) = g1 + · · ·+ gl denotes its sum, k(S) = ∑l

i=1
1

ord(gi )
∈ Q≥0 its cross

number of S, |S| = l its length, and h(S) = max{vg(S) | g ∈ supp(S)} the maximal
multiplicity of S. Since the embedding

B(G0) = {S ∈ F(G0) | σ(S) = 0} ↪→ F(G0)

satisfies Property (a) above, B(G0) is a Krull monoid, called the monoid of zero-
sum sequences over G0. Its significance for the study of general Krull monoids is
summarized in the following lemma (see [8, Theorem 3.4.10 and Proposition 4.3.13]).
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724 Q. Zhong

Lemma 2.1 Let H be a Krull monoid with finite class group G such that every class
contains a prime divisor. Then there is a transfer homomorphism θ : H → B(G). In
particular, we have L(H) = L(B(G)

)
and

�∗(H) = �∗(B(G)
) = {

min�
(B(G0)

) | G0 ⊂ G with �(B(G0)) �= ∅}
.

Thus, �∗(H) can be studied in an associated monoid of zero-sum sequences and
can be tackled by methods from Additive Combinatorics. The existence of a transfer
homomorphism to a monoid of zero-sum sequences is not restricted to Krull monoids,
but it holds true for the so-called transfer Krull monoids and thus Theorem 1.1 holds
true for transfer Krull monoids over finite abelian groups. We refer to [6] for a discus-
sion of this concept and just mention one additional example. LetO be a holomorphy
ring in a global field K , A a central simple algebra over K , and H a classical maximal
O-order of A such that every stably free left R-ideal is free. Then there is a transfer
homomorphism from H to the monoid of zero-sum sequences over a ray class group
of O ([25, Theorem 1.1]).

2.2 Zero-sum theory

LetG be an additive finite abelian group andG0 ⊂ G a subset.Wedenote by 〈G0〉 ⊂ G
the subgroup generated by G0. Then G ∼= Cn1 ⊕ · · · ⊕ Cnr , where r = r(G) ∈ N0
is the rank of G, nr = exp(G) is the exponent of G, and 1 < n1 | · · · | nr ∈ N. It is
traditional to set

A(G0) := A(B(G0)
)
, �(G0) := �

(B(G0)
)
, and �∗(G0) := �∗(B(G0)

)
.

Clearly, the atoms of B(G0) are precisely the minimal zero-sum sequences over G0.
The set A(G0) is finite, and D(G0) = max{|S| | S ∈ A(G0)} is the Davenport
constant of G0. The set G0 is called

• half-factorial if the monoid B(G0) is half-factorial (equivalently, �(G0) = ∅);
• non-half-factorial if the monoid B(G0) is not half-factorial (equivalently,

�(G0) �= ∅);
• minimal non-half-factorial if�(G0) �= ∅ but every proper subset is half-factorial;
• an LCN-set if k(A) ≥ 1 for all A ∈ A(G0).

The following simple result ([8, Proposition 6.7.3]) will be used throughout the
paper without further mention.

Lemma 2.2 Let G be a finite abelian group and G0 ⊂ G a subset. Then the following
statements are equivalent :

(a) G0 is half-factorial.
(b) k(U ) = 1 for every U ∈ A(G0).
(c) L(B) = {k(B)} for every B ∈ B(G0).
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We define

m(G) = max{min�(G0) | G0 ⊂ G is an LCN-set with �(G0) �= ∅},

and we denote by �1(G) the set of all d ∈ N with the following property:

For every k ∈ N, there exists some L ∈ L(G)which is anAAP (almost arithmetical
progression) with difference d and length l ≥ k.

Thus, by definition, if G ′ is a further finite abelian group such that L(G) = L(G ′),
then �1(G) = �1(G ′). The next proposition gathers the properties of �∗(G) and of
�1(G) which are needed in the sequel.

Proposition 2.3 Let G be a finite abelian group with |G| ≥ 3 and exp(G) = n.

(1) �∗(G) ⊂ �1(G) ⊂ {d1 ∈ �(G) | d1 divides some d ∈ �∗(G)}. In particular,
max�∗(G) = max�1(G).

(2) max�∗(G) = max{exp(G) − 2,m(G)} = max{exp(G) − 2, r(G) − 1}. If G is
a p-group, then m(G) = r(G) − 1.

(3) If k ∈ N is maximal such that G has a subgroup isomorphic to Ck
n , then

�∗(G) ⊂ �1(G) ⊂
[
1,max

{
m(G), 
n

2
� − 1

}]
∪ [max{1, n − k − 1}, n − 2]

and

[1, r(G) − 1] ∪
{
max

{
1,

⌊n
2

⌋
− 1

}}

∪[max{1, n − k − 1}, n − 2] ⊂ �∗(G) ⊂ �1(G).

Proof (1) follows from [8, Corollary 4.3.16] and (2) from [15, Theorem 1.1 and
Proposition 3.2]. (3) In [22, Theorem 3.2], it is proved that �∗(G) is contained in the
set given above. The set [1, r(G) − 1] ∪ [max{1, n − k − 1}, n − 2] is contained in
�∗(G) by [8, Propositions 4.1.2 and 6.8.2] and {max{1, ⌊ n

2

⌋ − 1}} is contained in
�∗(G) by |G| ≥ 3 and [8, Theorem 6.8.12]. ��

3 Minimal non-half-factorial subsets of finite abelian groups

Throughout this section, let G be an additive finite abelian group with |G| ≥ 3,
exp(G) = n, and r(G) = r .

The first three lemmas gather basic properties of �∗(G) and of non-half-factorial
sets.

Lemma 3.1 Let G0 ⊂ G be a subset.
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726 Q. Zhong

(1) For each g ∈ G0,

gcd
({vg(B) | B ∈ B(G0)}

) = gcd
({vg(A) | A ∈ A(G0)}

)

= min
({vg(A) | vg(A) > 0, A ∈ A(G0)}

)

= min
({vg(B) | vg(B) > 0, B ∈ B(G0)}

)

= min
({k ∈ N | kg ∈ 〈G0 \ {g}〉})

= gcd
({k ∈ N | kg ∈ 〈G0 \ {g}〉}).

In particular, min
({k ∈ N | kg ∈ 〈G0 \ {g}〉}) divides ord(g).

(2) Suppose that for each two distinct elements h, h′ ∈ G0 we have h /∈ 〈G0\{h, h′}〉.
Then, for any atom A with supp(A) � G0 and any h ∈ supp(A), we have
gcd(vh(A), ord(h)) > 1.

(3) If G0 is minimal non-half-factorial, then there exists a minimal non-half-factorial
subset G∗

0 ⊂ G with |G0| = |G∗
0| and a transfer homomorphism θ : B(G0) →

B(G∗
0) such that the following properties are satisfied :

(a) For each g ∈ G∗
0, we have g ∈ 〈G∗

0 \ {g}〉.
(b) For each B ∈ B(G0), we have k(B) = k

(
θ(B)

)
.

(c) If G∗
0 has the property that for each h ∈ G∗

0, h /∈ 〈E〉 for any E � G∗
0 \ {h},

then G0 also has the property.

Proof See [15, Lemma 2.6]. ��
Lemma 3.2

(1) If g ∈ G with ord(g) ≥ 3, then ord(g)−2 ∈ �∗(G). In particular, n−2 ∈ �∗(G).
(2) If r ≥ 2, then [1, r − 1] ⊂ �∗(G).
(3) Let G0 ⊂ G be a subset.

(a) If there exists a U ∈ A(G0) with k(U ) < 1, then min�(G0) ≤ exp(G) − 2.
(b) If G0 is an LCN-set, then min�(G0) ≤ |G0| − 2.

Proof See [8, Proposition 6.8.2 and Lemmas 6.8.5 and 6.8.6]. ��
Lemma 3.3 Let G0 ⊂ G be a non-half-factorial subset satisfying the following two
conditions:

(a) There is some g ∈ G0 such that �(G0 \ {g}) = ∅.
(b) There is some U ∈ A(G0) with k(U ) = 1 and gcd(vg(U ), ord(g)) = 1.

Then k(A(G0)) ⊂ N and

min�(G0) | gcd{k(A) − 1 | A ∈ A(G0)}.

Note that the conditions hold if �(G1) = ∅ for each G1 � G0 and there exists some
G2 such that 〈G2〉 = 〈G0〉 and |G2| ≤ |G0| − 2.

Proof The first statement follows from [8, Lemma 6.8.5]. If �(G1) = ∅ for all
G1 � G0, then Condition (a) holds. Let G2 � G1 � G0 with 〈G2〉 = 〈G0〉. If
g ∈ G1\G2, then 〈G2〉 = 〈G0〉 implies that there is someU ∈ A(G1)withvg(U ) = 1,
and since G1 � G0, it follows that k(U ) = 1. ��
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Lemma 3.4 Let G0 ⊂ G be a subset, g ∈ G0 \{0}, and g ∈ 〈G0 \{g}〉. Then for each
prime p dividing ord(g), there exists an atom A ∈ A(G0)with 2 ≤ | supp(A)| ≤ r+1,
vg(A) ≤ ord(g)/2, vg(A) | ord(g), and p � vg(A). In particular,

(1) if |G0| ≥ r + 2, then there exist s0 < ord(g) and E � G0 \ {g} such that
s0g ∈ 〈E〉;

(2) if ord(g) is a prime power, then there exists a subset E ⊂ G0 \ {g} with |E | ≤ r
such that g ∈ 〈E〉.

Proof We set exp(G) = n = pk11 · . . . · pktt , where t, k1, . . . , kt ∈ N and p1, . . . , pt
are distinct primes. Let ν ∈ [1, t] with pν | ord(g). Since g ∈ 〈G0 \ {g}〉, it follows
that 0 �= n

pkνν

g ∈ Gν =
〈

n
pkνν

h | h ∈ G0 \ {g}
〉
. Obviously, Gν is a pν-group. Let

Eν ⊂ G0 \ {g} be minimal such that n
pkνν

g ∈
〈

n
pkνν

Eν

〉
. The minimality of Eν implies

that |Eν | =
∣∣∣∣ n
pkνν

Eν

∣∣∣∣ and it implies that n
pkνν

Eν is a minimal generating set of G ′
ν :=

〈
n
pkνν

Eν

〉
. Thus, [8, Lemma A.6.2] implies that

∣∣∣∣ n
pkνν

Eν

∣∣∣∣ ≤ r∗(G ′
ν) = r(G ′

ν) ≤ r(Gν)

(note that r∗(G ′
ν) is the total rank of G ′

ν). Putting all together, we obtain that

1 ≤ |Eν | =
∣∣∣∣∣
n

pkν
ν

Eν

∣∣∣∣∣ ≤ r(Gν) ≤ r.

Let dν ∈ N be minimal such that dνg ∈ 〈Eν〉. Since 0 �= n
pkνν

g ∈ 〈Eν〉, it follows that
dν < ord(g). By Lemma 3.1.1, dν | gcd ( n

pkνν

, ord(g)
)
and there exists an atom Uν

such that vg(Uν) = dν and | supp(Uν) \ {g}| ≤ |Eν | ≤ r . Therefore, | supp(Uν)| ≤
r + 1, dν | ord(g), and pν � dν . Since pν | ord(g), it follows that dν ≤ ord(g)/2 and
| supp(Uν)| ≥ 2.

If |G0| ≥ r + 2, then |Eν | ≤ r < |G0 \ {g}| implies that Eν � G0 \ {g}, and the
assertion holds with E = Eν and s0 = dν .

If ord(g) is a prime power, then ord(g) is a power of pν which implies that
gcd

( n
pkνν

, ord(g)
) = 1 whence dν = 1 and g ∈ 〈Eν〉. ��

Lemma 3.5 Let G0 ⊂ G be a minimal non-half-factorial LCN-set with |G0| ≥ r +2
such that h ∈ 〈G0 \{h}〉 for every h ∈ G0. Suppose that for each two distinct elements
h, h′ ∈ G0, we have h /∈ 〈G0\{h, h′}〉, and each atom A ∈ A(G0)with supp(A) = G0
has cross number k(A) > 1. Then min�(G0) ≤ 
 n

2 � − 1.

Proof We choose an element g ∈ G0. If ord(g) is a prime power, then there exists
E ⊂ G0 \ {g} such that g ∈ 〈E〉 and |E | ≤ r < |G0| − 1 by Lemma 3.4.2, a
contradiction to the assumption on G0. Thus, ord(g) is not a prime power.

Let s ∈ N be minimal such that there exists a subset E � G0 \ {g} with sg ∈ 〈E〉,
and by Lemma 3.4.1, we observe that s < ord(g). Let E � G0 \ {g} be minimal such
that sg ∈ 〈E〉. By Lemma 3.1.1, there is an atom V with vg(V ) = s | ord(g) and
supp(V ) = {g}∪ E � G0. By Lemma 3.1.2, for each h ∈ supp(V ), vh(V ) ≥ 2 which
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implies that s ≥ 2. Thus, there is a prime p ∈ N dividing s and hence p | s | ord(g). By
Lemma 3.4, there exists an atom U1 such that | supp(U1)| ≤ r + 1, vg(U1) | ord(g),
and p � vg(U1), and therefore supp(U1) � G0.

Let d = gcd(s, vg(U1)). Then d < s < vg(U1) and there exist x1 ∈ [
1, ord(g)

s − 1
]

and x2 ∈ [
1, ord(g)

vg(U1)
− 1

]
such that d + ord(g) = x1s + x2vg(U1). Let V x1Ux2

1 =
gord(g) · W , where W ∈ B(G0) with vg(W ) = d, and let W1 be an atom dividing
W with vg(W1) > 0. Since vg(W1) ≤ d < s, the minimality of s implies that
supp(W1) = G0 and hence k(W1) > 1. Since G0 is minimal non-half-factorial, we
have that k(V ) = k(U1) = 1. Therefore, there exists l ∈ N with 2 ≤ l < x1 + x2 such
that {l, x1+x2} ⊂ L(V x1Ux2

1 ). LetW = X1 ·. . .·Xx1+x2 and g
ord(g) = gy1 ·. . .·gyx1+x2

such that Xi gyi = V for each i ∈ [1, x1] and Xi gyi = U1 for each i ∈ [x1+1, x1+x2],
where X1, . . . , Xx1+x2 ∈ F(G0) and y1, . . . , yx1+x2 ∈ N. If there exist distinct i, j ∈
[1, x1 + x2] such that yi = y j = 1, then 2vg(W )+ 2 = 2d + 2 ≤ vg(Xi gyi X j gy j ) ≤
yi + y j + vg(W ) which implies that y + i + y j ≥ vg(W ) + 2 ≥ 3, a contradiction.
Therefore |{i ∈ [1, x1+x2] | yi = 1}| ≤ 1. It follows that 1+2(x1+x2−1) ≤ ord(g).
Then

min�(G0) ≤ x1 + x2 − l ≤ ord(g) + 1

2
− 2 ≤

⌊n
2

⌋
− 1.

��
Lemma 3.6 Let G0 ⊂ G be a minimal non-half-factorial LCN-set with |G0| ≥ r +2
such that h ∈ 〈G0\{h}〉 for every h ∈ G0. Suppose that one of the following properties
is satisfied :

(a) For each two distinct elements h, h′ ∈ G0, we have h /∈ 〈G0 \ {h, h′}〉, and there
is an atom A ∈ A(G0) with k(A) = 1 and supp(A) = G0.

(b) There is a subset G2 ⊂ G0 such that 〈G2〉 = 〈G0〉 and |G2| ≤ |G0| − 2.

Then min�(G0) ≤ max{r − 1,
⌊ n
2

⌋ − 1}.
Proof Assume to the contrary that min�(G0) ≥ max{r, ⌊ n

2

⌋}. Then Lemma 3.2.3.
(b) implies that |G0| ≥ 2+min�(G0) ≥ n

2 +1. If Property (a) is satisfied, then there
exists some g ∈ G0 such that vg(A) = 1. By Lemma 3.3, each of the two Properties
(a) and (b) implies that k(U ) ∈ N for each U ∈ A(G0) and

min�(G0) | gcd ({k(U ) − 1 | U ∈ A(G0)}) .

We set

�=1 = {A ∈ A(G0) | k(A) = 1} and �>1 = {A ∈ A(G0) | k(A) > 1}.

Thus, for each U1,U2 ∈ �>1, we have

k(U1) ≥ max
{
r + 1,

⌊n
2

⌋
+ 1

}
and

(
either k(U1) = k(U2) or |k(U1) − k(U2)| ≥ max

{
r,

⌊n
2

⌋})
.

(3.1)
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Furthermore, for eachU ∈ �=1 we have h(U ) ≥ 2 (otherwise,U would divide every
atom U1 ∈ �>1). We claim that

• A1. For each U ∈ �>1, there are A1, . . . , Am ∈ �=1, where m ≤ n+1
2 , such that

U A1 · . . . · Am can be factorized into a product of atoms from �=1.

Proof of A1 Suppose that Property (a) holds. As observed above, there exists some
g ∈ G0 such that vg(A) = 1. Lemma 3.4 implies that there is an atom X such that
2 ≤ | supp(X)| ≤ r(G) + 1 and 1 ≤ vg(X) ≤ ord(g)/2. Since g /∈ 〈G0 \ {g, h}〉 for
any h ∈ G0 \{g}, it follows that vg(X) ≥ 2, and |G0| ≥ r +2 implies supp(X) � G0.

Suppose that Property (b) is satisfied. We choose an element g ∈ G0 \ G2. Then
g ∈ 〈G2〉 and, by Lemma 3.1.1, there is an atom A′ with vg(A′) = 1 and supp(A′) ⊂
G2 ∪ {g} � G0. This implies that A′ ∈ �=1. Let h ∈ G0 such that vh(A′) = h(A′).
Since h(A′) ≥ 2, we obtain that A

′� ord(h)

h(A′) � = hord(h) · W , where W is a product
of � ord(h)

h(A′) � − 1 atoms and vg(W ) = � ord(h)
h(A′) �. Thus, there exists an atom X ′ with

2 ≤ vg(X ′) ≤ � ord(h)
h(A′) � ≤ n

2 + 1.
Therefore, both properties imply that there are A, X ∈ A(G0) and g ∈ G0 such

that k(A) = k(X) = 1, vg(A) = 1, and 2 ≤ vg(X) ≤ n
2 + 1. Let U ∈ �>1.

If ord(g) − vg(U ) < vg(X) ≤ n
2 + 1, then

U Aord(g)−vg(U ) = gord(g)S,

where S ∈ B(G0) and ord(g) − vg(U ) ≤ n
2 . Since supp(S) � G0, S is a product of

atoms from �=1.
If ord(g) − vg(U ) ≥ vg(X), then

UX

 ord(g)−vg (U )

vg (X)
�
A
ord(g)−vg(U )−vg(X)·
 ord(g)−vg (U )

vg (X)
� = gord(g)S,

where S is a product of atoms from �=1 (because supp(S) � G0) and


ord(g) − vg(U )

vg(X)
� + ord(g) − vg(U ) − vg(X) · 
 ord(g)−vg(U )

vg(X)
�

≤
(
ord(g)−vg(U )

)
−
(
vg(X)−1

)
vg(X)

+ vg(X) − 1

≤ ord(g)−vg(U )+1
2 ≤ n+1

2 .

��
We set

�′
>1 = {A ∈ A(G0) | k(A) = min{k(B) | B ∈ �>1}} ⊂ �>1,

and we consider all tuples (U, A1, . . . , Am), where U ∈ �′
>1, m ∈ N, and

A1, . . . , Am ∈ �=1, such that U A1 · . . . · Am can be factorized into a product of
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atoms from �=1. We fix one such tuple (U, A1, . . . , Am) with the property that m is
minimal possible. Let

U A1 · . . . · Am = V1 · . . . · Vt with t ∈ N and V1, . . . , Vt ∈ �=1. (3.2)

We observe that k(U ) = t − m and continue with the following assertion.

• A2 For each ν ∈ [1, t], we have Vν � U A1 · . . . · Am−1.

Proof of A2. Assume to the contrary that there is such a ν ∈ [1, t], say ν = 1, with
V1 |U A1 · . . . · Am−1. Then there are l ∈ N and T1, . . . , Tl ∈ A(G0) such that

U A1 · . . . · Am−1 = V1T1 · . . . · Tl.

By the minimality of m, there exists some ν ∈ [1, l] such that Tν ∈ �>1, say ν = 1.
Since

l∑
ν=2

k(Tν) = k(U ) + (m − 1) − 1 − k(T1) ≤ m − 2 ≤ n − 3

2
,

and k(T ′) ≥ n
2 for all T ′ ∈ �>1, it follows that T2, . . . , Tl ∈ �=1, whence l =

1 + ∑l
ν=2 k(Tν) ≤ m − 1. We obtain that

V1T1 · . . . · Tl Am = U A1 · . . . · Am = V1 · . . . · Vt ,

and thus

T1 · . . . · Tl Am = V2 · . . . · Vt .

The minimality of m implies that k(T1) > k(U ). It follows that

k(T1) − k(U ) = m − 1 − l ≤ m − 2 ≤ n − 3

2
<

⌊n
2

⌋
≤ k(T1) − k(U ),

a contradiction. ��
With the minimal integer m, as fixed before A2, we consider all the tuples

(A′
1, . . . , A

′
m), where A′

1, . . . , A
′
m ∈ �=1, such that U A′

1 · . . . · A′
m can be factor-

ized into a product of atoms from �=1. We fix one such tuple (A′
1, . . . , A

′
m) such that

| supp(A′
m)| is minimal. For simplicity of notation, we suppose that (A′

1, . . . , A
′
m) =

(A1, . . . , Am).
By Eq. (3.2), there are X1,Y1, . . . , Xt ,Yt ∈ F(G) such that

U A1 · . . . · Am−1 = X1 · . . . · Xt ,

Am = Y1 · . . . · Yt , and Vi = XiYi for each i ∈ [1, t].
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Then A2 implies that |Yi | ≥ 1 for each i ∈ [1, t], and we set α = |{i ∈ [1, t] | |Yi | =
1}|. If α ≤ 2m, then

n ≥ |Am | = |Y1| + · · · + |Yt | ≥ α + 2(t − α) = 2t − α ≥ 2t − 2m,

and hence min�(G0) ≤ t − 1−m ≤ n
2 − 1, a contradiction. Thus α ≥ 2m + 1. After

renumbering if necessary, we assume that 1 = |Y1| = · · · = |Yα| < |Yα+1| ≤ · · · ≤
|Yt |. Let Yi = yi for each i ∈ [1, α] and

S0 = {y1, y2, . . . , yα}. (3.3)

For every i ∈ [1, α], Vi | yiU A1 ·. . .·Am−1 whence vyi (Vi ) ≤ 1+vyi (U A1 ·. . .·Am−1)

and since Vi � U A1 · . . . · Am−1, it follows that

vyi (Vi ) = vyi (U A1 · . . . · Am−1) + 1. (3.4)

Assume to the contrary that there are distinct i, j ∈ [1, α] such that yi = y j . Then

vyi (U A1 · . . . · Am−1) + 1 = vyi (Vi ) = vyi (Xi ) + 1 = vyi (Vj ) = vyi (X j ) + 1.

Since Xi X j |U A1 · . . . · Am−1, we infer that

vyi (U A1 · . . . · Am−1) ≥ vyi (Xi X j ) = vyi (ViVj ) − 2 = 2vyi (U A1 · . . . · Am−1),

which implies that vyi (U A1 . . . Am−1) = 0, a contradiction to supp(U ) = G0. Thus,
|S0| = α and

| supp(Am)| ≥ |S0| = α ≥ 2m + 1. (3.5)

We proceed by the following assertion.

• A3. | supp(Am)| ≤ r + 1.

Proof of A3 Assume to the contrary that | supp(Am)| ≥ r + 2. We fix one element
g′ ∈ S0. Let s0 ∈ N be minimal such that there exists a subset E � supp(Am) \ {g′}
such that s0g′ ∈ 〈E〉. By | supp(Am)| ≥ r + 2, Lemma 3.4 (applied to the subset
supp(Am) ⊂ G0) implies that s0 < ord(g′). Let E be a minimal subset with this
property. Thus, by Lemma 3.1.1, there exists an atom A′ with vg′(A′) = s0 and
supp(A′) = {g′} ∪ E � supp(Am) ⊂ G0 which implies that k(A′) = 1.

If s0 = 1, then we assume that g′ = y1. Since vy1(V1) = vy1(U A1 · . . . · Am−1)+1
by Eq. 3.4 and V1 |U A1 · . . . · Am−1 · y1, we obtain that | supp(U A1 · . . . · Am−1 ·
A′(V1)−1)| < |G0| and hence U A1 · . . . · Am−1 · A′ can be factorized into a product
of atoms from �=1, a contradiction to the minimality of | supp(Am)|.

Suppose s0 ≥ 2. We distinguish two cases:
CASE 1: | supp(A′) ∩ S0| ≥ m + 1.
We may suppose that {y1, . . . , ym+1} ⊂ supp(A′)∩ S0. Then V1 · . . . ·Vm+1 |U A1 ·

. . . · Am−1A′ and k(U A1 · . . . · Am−1A′(V1 · . . . ·Vm+1)
−1) < k(U ). By the minimality
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of k(U ), we have that U A1 · . . . · Am−1A′ can be factorized into a product of atoms
from �=1, a contradiction to the minimality of | supp(Am)|.

CASE 2: | supp(A′) ∩ S0| ≤ m.
Let p be a prime dividing s0. Lemma 3.4 (applied to the subset supp(Am) ⊂ G0)

implies that there exists an atom A′
p ∈ A(supp(Am)) such that | supp(A′

p)| ≤ r +1 <

| supp(Am)| and p � vg′(A′
p).

Let d = gcd(s0, vg′(A′
p). Then d < s0 and

dg′ ∈ 〈s0g′, vg′(A′
p)g

′〉 ⊂ 〈(supp(A′) ∪ supp(A′
p)) \ {g′}〉.

Thus, byminimality of s0,wehave supp(Am)\{g′} = (
supp(A′′)∪supp(A′

p)
)\{g′}.

It follows that

| supp(A′
p) ∩ S0| ≥ |S0 \ supp(A′)| ≥ |S0| − | supp(A′) ∩ S0|

≥ 2m + 1 − m = m + 1.

Similar to CASE 1, U A1 · . . . · Am−1A′
p can be factorized into a product of atoms

from �=1, a contradiction to the minimality of | supp(Am)|. ��
We consider all tuples T = (X1,Y1, . . . , Xt ,Yt ), where X1,Y1, . . . , Xt ,Yt ∈

F(G), such that

U A1 · . . . · Am−1 = X1 · . . . · Xt ,

Am = Y1 · . . . · Yt , and Vi = XiYi for each i ∈ [1, t].

After renumbering if necessary, we can assume that |Yi | = 1 for each i ∈ [1, s1],
|Yi | = 2 and supp(Yi ) = 1 for each i ∈ [s1 + 1, s2], |Yi | = 2 and supp(Yi ) = 2 for
each i ∈ [s2+1, s3], and |Yi | ≥ 3 for each i ∈ [s3+1, t], where s1, s2, s3 ∈ [0, t]. Let
F1(T ) = supp(Y1 · . . . · Ys1), F2(T ) = supp(Ys1+1 · . . . · Ys2), F3(T ) = supp(Ys2+1 ·
. . . · Ys3), and F4(T ) = supp(Ys3+1 · . . . · Yt ).

Now, we fix one such tuple T = (X1,Y1, . . . , Xt ,Yt ) such that
(
αT = |{i ∈ [1, t] |

|Yi | = 1}|, |F1(T ) ∩ F3(T )|) ∈ (N2
0,+) is minimal with respect to lexicographic

order.

• A4. There exists a subset {g1, . . . , g
} ⊂ supp(Am) with 
 ≤ r − m such that
U A1 · . . . · Am−1g

ord g1
1 · . . . · gord(g
)


 can be factorized into a product of atoms
from �=1.

Proof of A4 If F1(T ) ∩ F4(T ) �= ∅, there exist i ∈ [1, s1] and j ∈ [s3 + 1, t] such
that Yi ∩Y j = {yi }, where Yi = {yi }. By Eq. 3.4, vyi (Xi ) ≥ 1. Let X ′

i = Xi y
−1
i ,Y ′

i =
Yi yi , X ′

j = X j yi ,Y ′
j = Y j y

−1
i and substitute Xi ,Yi , X j ,Y j with X ′

i ,Y
′
i , X

′
j ,Y

′
j in the

tuple T = (X1,Y1, . . . , Xt ,Yt ). Thus, we get a new tuple T ′ such that αT ′ = αT − 1,
a contradiction to the minimality of αT . Thus F1(T ) ∩ F4(T ) = ∅.

If F1(T ) ∩ F3(T ) �= ∅, there exist i ∈ [1, s1] and j ∈ [s2 + 1, s3] such that
Yi ∩ Y j = {yi }, where Yi = {yi }. Let Y j = {yi , y j }, where y j �= yi . By Eq. 3.4,
vyi (Xi ) ≥ 1. Let X ′

i = Xi y
−1
i ,Y ′

i = Yi yi , X ′
j = X j yi ,Y ′

j = Y j y
−1
i and substitute
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Xi ,Yi , X j ,Y j with X ′
i ,Y

′
i , X

′
j ,Y

′
j in the tuple T = (X1,Y1, . . . , Xt ,Yt ). Thus, we

get a new tuple T ′ such that αT ′ = αT , |F1(T ′) ∩ F3(T ′)| = |F1(T ) ∩ F3(T )| − 1, a
contradiction to the minimality of

(
αT = |{i ∈ [1, t] | |Yi | = 1}|, |F1(T ) ∩ F3(T )|).

Thus F1(T ) ∩ F3(T ) = ∅.
Suppose that |F1(T ) ∩ F2(T )| ≥ m. Then let {g1, . . . , gm} ⊂ F1(T ) ∩ F2(T ) and

Yi = gi , Ys1+i = g2i , for each i ∈ [1,m]. Hence
∏

i∈[1,m]
(ViVs1+i ) | U A1 · . . . Am−1g

ord(g1)
1 · . . . · gord(gm )

m ,

and

k

⎛
⎜⎝U A1 · . . . Am−1g

ord(g1)
1 · . . . · gord(gm )

m

⎛
⎝ ∏

i∈[1,m]
(ViVs1+i )

⎞
⎠

−1
⎞
⎟⎠ = k(U ) − 1.

It follows by the minimality of k(U ) thatU A1 · . . . Am−1g
ord(g1)
1 · . . . · gord(gm )

m can be
factorized into a product of atoms from�=1. Note that r +1 ≥ | supp(Am)| ≥ 2m+1
by A3 and Eq. 3.5. We have that 
 = m ≤ r − m.

Suppose that |F1(T ) ∩ F2(T )| ≤ m − 1. Then |F1(T ) \ F2(T )| ≥ m + 2. Since
F1(T ) ∩ F4(T ) = ∅ and F1(T ) ∩ F3(T ) = ∅, we let {g1, . . . , gm+2} ⊂ F1(T ) \
(F2(T ) ∪ F3(T ) ∪ F4(T )) and supp(Am) \ {g1, . . . , gm+2} = {h1, . . . , h
}, where

 ≤ r − 1 − m. We assume that Yi = gi for each i ∈ [1,m + 2]. Therefore

∏
i∈[m+3,t]

Vi | U A1 · . . . Am−1h
ord(h1)
1 · . . . · hord(h
)


 ,

and

k

⎛
⎜⎝U A1 · . . . Am−1h

ord(h1)
1 · . . . · hord(h
)




⎛
⎝ ∏

i∈[m+3,t]
Vi

⎞
⎠

−1
⎞
⎟⎠

= k(U ) + m − 1 + 
 − (t − m − 2) ≤ r ≤ k(U ) − 1.

It follows by the minimality of k(U ) thatU A1 · . . . Am−1g
ord(g1)
1 · . . . · gord(gm )

m can be
factorized into a product of atoms from �=1. ��

By A4, we consider all I ∈ [1,m − 1] and J ∈ [1, 
] such that U
∏

i∈I Ai
∏

j∈J

g
ord(g j )

j can be factorized into a product of atoms from �=1. We fix such I and J with
|I |+ |J | being minimal. Then |I |+ |J | ≤ m−1+
 ≤ r −1. Since J �= ∅, we choose
j0 ∈ J and henceU

∏
i∈I Ai

∏
j∈J\{ j0} g

ord(g j )

j cannot be factorized into a product of
atoms from �=1 by the minimality of |I | + |J |.

Now, we consider all tuples (U ′, A′
1, . . . , A

′
m′−1, g), where U

′ ∈ �′
>1, m

′ ∈ N,

A′
1, . . . , A

′
m′−1 ∈ �=1, and g ∈ G0 such thatU ′A′

1 ·. . . A′
m′−1g

ord(g) can be factorized
into a product of atoms from �=1 and U ′A′

1 · . . . A′
m′−1 cannot be factorized into a
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product of atoms from �=1. We fix one such tuple (U ′, A′
1, . . . , A

′
m′−1, g) with m′

being minimal. Thus m′ ≤ |I | + |J | ≤ r − 1. Let

U ′A′
1 · . . . A′

m′−1g
ord(g) = W1 · . . . · Wt ′ ,where W1, . . . ,Wt ′ ∈ �=1,

and we claim that

• A5. For each ν ∈ [1, t ′], we have Wν � U ′A′
1 · . . . · A′

m′−1.

Proof of A5 Assume to the contrary that there is such a ν ∈ [1, t ′], say ν = 1, with
W1 |U ′A′

1 · . . . · A′
m′−1. Then there are l ∈ N and T1, . . . , Tl ∈ A(G0) such that

U ′A′
1 · . . . · A′

m′−1 = W1T1 · . . . · Tl.

Since U ′A′
1 · . . . A′

m′−1 cannot be factorized into a product of atoms from �=1, there
exists some ν ∈ [1, l] such that Tν ∈ �>1, say ν = 1, and T1 · . . . · Tl cannot be
factorized into a product of atoms from �=1. Since

l∑
ν=2

k(Tν) = k(U ′) + (m′ − 1) − 1 − k(T1) ≤ m′ − 2 ≤ r − 3,

and k(T ′) ≥ r + 1 for all T ′ ∈ �>1, it follows that T2, . . . , Tl ∈ �=1, whence
l = 1 + ∑l

ν=2 k(Tν) ≤ m′ − 1. We obtain that

W1T1 · . . . · Tlgord(g) = U ′A′
1 · . . . · Am′−1g

ord(g) = W1 · . . . · Wt ′ ,

and thus

T1 · . . . · Tlgord(g) = W2 · . . . · Wt ′ .

Since T1 · . . . · Tl cannot be factorized into a product of atoms from �=1, we obtain
that k(T1) > k(U ) by the minimality of m′. It follows that

k(T1) − k(U ′) = m′ − 1 − l ≤ m′ − 2 ≤ r − 3 < r ≤ k(T1) − k(U ),

a contradiction. ��
LetU ′A′

1·. . .·A′
m′−1 = X ′

1·. . .·X ′
t ′ and g

ord(g) = gy1 ·. . .·gyt ′ such thatWi = X ′
i g

yi

for each i ∈ [1, t ′]. ByA5, we obtain that yi ≥ 1 for all i ∈ [1, t ′]. If |{i ∈ [1, t ′] | yi =
1}| ≥ 2, say y1 = y2 = 1, then vg(W1) = vg(W2) = 1 + vg(U ′A′

1 · . . . · A′
m′−1)

by A5 and hence vg(X1X2) = vg(W1) + vg(W2) − 2 = 2vg(U ′A′
1 · . . . · A′

m′−1) ≥
vg(U ′A′

1 · . . . · A′
m′−1) + vg(X1X2), a contradiction. Thus, |{i ∈ [1, t ′] | yi = 1}| ≤ 1

and hence 1 + 2(t ′ − 1) ≤ ord(g) ≤ n. It follows that

k(U ′) = t ′ − m′ ≤ n + 1

2
− 1 ≤

⌊n
2

⌋
,

a contradiction. ��
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Proposition 3.7 We have m(G) ≤ max{r − 1,
⌊ n
2

⌋ − 1}.
Proof Let G0 ⊂ G be a non-half-factorial LCN-set. We have to prove that

min�(G0) ≤ max
{
r − 1,

⌊n
2

⌋
− 1

}
.

If G1 ⊂ G0 is non-half-factorial, then min�(G0) = gcd�(G0) | gcd�(G1) =
min�(G1). Thus, we may suppose that G0 is minimal non-half-factorial. By Lemma
3.1.3.(a), we may suppose that g ∈ 〈G0 \ {g}〉 for all g ∈ G0.

If |G0| ≤ r + 1, then min�(G0) ≤ |G0| − 2 ≤ r − 1 by Lemma 3.2.3. Thus, we
may suppose that |G0| ≥ r + 2 and we distinguish two cases.

CASE 1: There exists a subset G2 ⊂ G0 such that 〈G2〉 = 〈G0〉 and |G2| ≤
|G0| − 2.

Then Lemma 3.6 implies that min�(G0) ≤ max{r − 1,
⌊ n
2

⌋ − 1}.
CASE 2: Every subset G1 ⊂ G0 with |G1| = |G0| − 1 is a minimal generating

set of 〈G0〉.
Then, for each h ∈ G0, G0 \ {h} is half-factorial and h /∈ 〈G0 \ {h, h′}〉 for any

h′ ∈ G0 \ {h}. It follows that Lemma 3.5 and Lemma 3.6 imply that min�(G0) ≤
max{r − 1,

⌊ n
2

⌋ − 1}. ��

4 Proofs of the main theorems

In this section, we give the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1 Let H be a Krull monoid with finite class groupG where |G| ≥
3 and every class contains a prime divisor. We set exp(G) = n, r(G) = r , and let
k ∈ N be maximal such that G has a subgroup isomorphic to Ck

n . By Lemma 2.1, it
suffices to prove the assertions for the Krull monoid B(G).

Propositions 2.3.3 and 3.7 immediately imply the required inclusions for �∗(G),
namely that

[1, r − 1] ∪
{
max

{
1, 
n

2
� − 1

}}
∪ [max{1, n − k − 1}, n − 2]

⊂ �∗(G) ⊂
[
1,max

{
r − 1, 
n

2
� − 1

}]
∪ [max{1, n − k − 1}, n − 2].

(4.1)

It remains to verify the in particular statements.

(1) If r ≥ ⌊ n
2

⌋ − 1, then [1,max{r − 1, 
 n
2 � − 1}] ⊂ [1, r − 1] ∪ {max{1, 
 n

2 � − 1}}.
Therefore, �∗(G) = [1,max{r − 1, 
 n

2 � − 1}] ∪ [max{1, n − k − 1}, n − 2] by
Eq. 4.1.

(2) (a) ⇒ (b) Suppose that�∗(G) is an interval. Since max{1, n−k−2} ≤ max{r −
1, n − 2} = max�∗(G), we obtain that max{1, n − k − 2} ∈ �∗(G).

(b) ⇒ (c) Suppose that max{1, n − k − 2} ∈ �∗(G). If n − k − 2 ≤ 0, then
n − k − 2 ≤ max{r − 1, 
 n

2 � − 1}. If n − k − 2 ≥ 1, then n − k − 2 ∈
�∗(G) ⊂ [1,max{r − 1, 
 n

2 � − 1}] ∪ [n − k − 1, n − 2] by Eq. 4.1. Therefore
n − k − 2 ≤ max{r − 1, 
 n

2 � − 1}.
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(c) ⇒ (d) Suppose that n−k−2 ≤ max{r−1, 
 n
2 �−1}. Therefore n−k−2 ≤ r−1

or r ≤ n − k − 2 ≤ 
 n
2 � − 1. If n − k − 2 ≤ r − 1, then r + k ≥ n − 1. If

r ≤ n− k − 2 ≤ 
 n
2 �− 1, then n− r − 2 ≤ n− k − 2 ≤ 
 n

2 �− 1 ≤ n
2 − 1 and

r ≤ 
 n
2 �−1 ≤ n

2−1. It follows that n−2 = n−r−2+r ≤ n
2−1+ n

2−1 = n−2
which implies that n − r − 2 = n − k − 2 = n

2 − 1 and r = n
2 − 1. Therefore

r = k, n = 2r + 2, and hence G ∼= Cr
2r+2.

(d) ⇒ (a) If r+k = n−2 andG ∼= Cr
2r+2, then�∗(G) = [1, 2r ] is an interval by

1. If r +k ≥ n−1, then r ≥ ⌊ n
2

⌋
and hence�∗(G) = [1, r −1]∪[max{1, n−

k − 1}, n − 2] is an interval by (1). ��

Proof of Theorem 1.2 Let G and G ′ be finite abelian groups with exp(G) = n and
r(G) = r . Let k, k′ ∈ N be maximal such that G has a subgroup isomorphic to Ck

n

and G ′ has a subgroup isomorphic to Ck′
exp(G ′). Suppose that

r + k ≤ n − 2, G � Cr
2r+2, and that L(G) = L(G ′).

By our assumption and Theorem 1.1.2, we have that �∗(G) is not an interval,
n− k − 2 /∈ �∗(G), and n− k − 2 ≥ max{r, ⌊ n

2

⌋}. By Proposition 2.3, we obtain that
max�1(G) = max�∗(G) = max{r−1, n−2} = n−2, n−k−2 /∈ �1(G), and n−
k − 1 ∈ �1(G). Note that D(G) = D(G ′) and �1(G) = �1(G ′) (see [8, Proposition
7.3.1]). Then max�1(G ′) = max{r(G ′) − 1, exp(G ′) − 2} = max�1(G) = n − 2,
n − k − 2 /∈ �1(G ′), n − k − 1 ∈ �1(G ′). If r(G ′) ≥ exp(G ′) − 1, then �1(G ′) =
[1, r(G ′) − 1] by Proposition 2.3, a contradiction. It follows that exp(G ′) = n by
max�1(G ′) = exp(G ′) − 2. Suppose that k′ ≥ k + 1. Then n − k − 2 ∈ [n −
k′ − 1, n − 2] ⊂ �1(G ′) = �1(G), a contradiction. Suppose that k′ ≤ k − 1. Then
n − k − 1 /∈ [n − k′ − 1, n − 2] and hence n − k − 1 ∈ [1,max{r(G ′) − 1,

⌊ n
2

⌋ − 1}].
If n − k − 1 ≤ r(G ′) − 1, then n − k − 2 ∈ [1, r(G ′) − 1] ⊂ �1(G ′) = �1(G), a
contradiction. Otherwise n − k − 1 ≤ ⌊ n

2

⌋ − 1, a contradiction to n − k − 2 ≥ ⌊ n
2

⌋
.

It follows that k = k′.
In particular, if r ≥ ⌊ n

2

⌋+1, then [1, r−1]∪[n−k−1, n−2] = �1(G) = �1(G ′)
and hence [1, r(G ′)] ⊂ [1, r − 1] ⊂ [1,max{r(G ′) − 1,

⌊ n
2

⌋ − 1}]. Therefore, by
r ≥ ⌊ n

2

⌋ + 1, we obtain that r(G ′) = r .
If r(G) = k, then G ∼= Cr

n is a subgroup of G ′. Thus D(G) = D(G ′) implies that
G ∼= G ′. ��
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