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Abstract
Purpose  Statistical power for response shift detection with structural equation modeling (SEM) is currently underreported. 
The present paper addresses this issue by providing worked-out examples and syntaxes of power calculations relevant for 
the statistical tests associated with the SEM approach for response shift detection.
Methods  Power calculations and related sample-size requirements are illustrated for two modelling goals: (1) to detect mis-
specification in the measurement model, and (2) to detect response shift. Power analyses for hypotheses regarding (exact) 
overall model fit and the presence of response shift are demonstrated in a step-by-step manner. The freely available and 
user-friendly R-package lavaan and shiny-app ‘power4SEM’ are used for the calculations.
Results  Using the SF-36 as an example, we illustrate the specification of null-hypothesis (H0) and alternative hypothesis 
(H1) models to calculate chi-square based power for the test on overall model fit, the omnibus test on response shift, and the 
specific test on response shift. For example, we show that a sample size of 506 is needed to reject an incorrectly specified 
measurement model, when the actual model has two-medium sized cross loadings. We also illustrate power calculation based 
on the RMSEA index for approximate fit, where H0 and H1 are defined in terms of RMSEA-values.
Conclusion  By providing accessible resources to perform power analyses and emphasizing the different power analyses 
associated with different modeling goals, we hope to facilitate the uptake of power analyses for response shift detection with 
SEM and thereby enhance the stringency of response shift research.

Keywords  Statistical power · Sample size planning · Structural equation modeling · Response shift · Chi-square test · Root 
mean square error of approximation (RMSEA)

Introduction

Interpretation of change in self-reports is difficult when it 
is affected by a change in the meaning of respondents’ self-
evaluation, also known as response shift [1]. Response shift 
research has received increasing attention over the last dec-
ades, which has resulted in both theoretical and methodo-
logical advances (e.g., see the recent Response Shift—in 
Sync Working Group initiative [2–5]. Structural equation 
modeling (SEM) is currently the most widely used statistical 

approach for the investigation of response shift [6]. When 
investigating the presence of response shift using statisti-
cal hypothesis testing it is important to also consider the 
statistical power of the test. That is, one needs to consider 
the chance that the statistical test will be able to detect the 
response shift effect of interest when this effect truly exists. 
Low statistical power indicates that even if the response shift 
effect exists in reality, there is only a small chance that the 
statistical test will be able to detect it. In order to prevent 
allocating valuable resources to research with low statistical 
power, it is thus of utmost importance to consider a-priori 
power calculations (e.g., [7]).

The power of a statistical test depends on the size of the 
sample (N), the significance criterion (α), and the effect-
size (ES) of the effect of interest in the population. A-priori 
power calculations are generally performed to be informed 
about the minimal required sample size to achieve sufficient 
statistical power. Because the significance criterion and the 
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desired statistical power are usually set at 0.05 and 0.80 
respectively, the calculation requires ‘only’ the specifica-
tion of the population effect-size. However, determining this 
effect-size is not straightforward. With SEM analyses this 
is especially complicated because the effect-size that needs 
to be specified depends on many parameters in the model. 
Therefore, instead, one often relies on general rules of thumb 
about sample size (e.g. > 100 or > 200 [8, 9]) or sample size 
in relation to the number of parameters or variables in the 
model (e.g. [10, 11]). However, these rules of thumb are 
problematic because they are not model- or hypothesis-spe-
cific and may thus lead to over- or under-estimation of the 
required sample size; and consequently, to over- or under-
powered studies.

The importance of statistical power and the resulting sam-
ple-size requirements for response shift detection methods 
have been emphasized in the literature (e.g. [4, 12]), but in 
practice power calculations are rarely reported [6]. In part, 
this may be due to the general complexity of effect-size 
calculations for SEM analyses. Another complication with 
power calculations for the detection of response shift is that 
the SEM approach includes two distinct modeling goals. 
One modeling goal is that the model as a whole describes 
the data well; another modeling goal is to test significance 
of (or differences between) specific model parameters, that 
is, the response shift effects. The first goal requires that an 
analysis has enough power to detect a meaningful level of 
model misspecification; the second goal requires that an 
analysis has enough power to detect a minimally meaning-
ful effect-size corresponding to a specific parameter (i.e., 
response shift effect).

Therefore, the aim of the current paper is to provide 
accessible examples of power-calculations that are relevant 
for the two modelling goals that are part of the response shift 
detection approach with SEM; that is, (1) power to detect 
misspecification in the measurement model (i.e., the test of 
overall model fit), and (2) power to detect response shift. The 
latter power calculation can be applied to the overall test for 
response shift, but also for the detection of individual cases 
of response shift. Although there exists a number of excel-
lent general tutorial papers on power calculations with SEM 
(e.g., [13–15]), their uptake in the research area of response 
shift may be limited due to their general scope and relatively 
technical language. The original paper of the SEM approach 
for response shift detection does describe power-calculations 
for SEM [16], but without the syntaxes being available these 
calculations may be hard to follow. In the current paper, 
technical formulas and language are avoided as much as 
possible to maximize readability for a general audience, 
but some basic knowledge of Oort’s SEM method [16] is 
desirable. The recently developed user-friendly and freely 
available shiny-app ‘power4SEM’ [13] will be used to fur-
ther facilitate application of power-calculations in practice. 

Describing power-calculations for response shift detection 
with SEM in more detail also enables us to emphasize that 
one needs to consider different power-calculations for the 
different steps in the modelling procedure. In doing so, we 
hope to aid researchers with an interest in applying SEM for 
the detection of response shift in both understanding and 
using power-calculations, thereby enhancing the stringency 
of response shift research. Some knowledge on the general 
notions of statistical power [17, 18] and response shift [1, 
3] may benefit those readers who are new to these topics. 
Some familiarity with the SEM approach for response shift 
detection [16] is recommended.

Power calculations

Illustrative example

To illustrate power-calculations for response shift detec-
tion with SEM, we use—following [16]—the SF-36 health-
related quality of life questionnaire as an example ([19]; 
see Fig. 1). That is, the eight subscales of the SF-36 are 
modelled to be indicative of two underlying latent factors: 
general physical health and general mental health; measured 
at two occasions. As questionnaires from the SF-family are 
most often used in response shift research [20], using the 
SF-36 as an example is believed to be intuitive for anyone 
interested in the investigation of response shift.

Appendices I–III include the lavaan syntax specification 
[21] of all models that are used for the chi-square based 
power calculations of the SEM approach for response shift 
that are described below, including descriptive details on the 
model specification and model parameter values.

Step 1: Chi‑square based power to detect 
misspecification of the measurement model

The first step of the SEM approach for the detection of 
response shift entails the specification of the measurement 
model. This measurement model specifies the measurement 
structure of the data, where the scores on the observed vari-
ables (e.g., scores on questionnaire items or, in this case, 
scores on the subscales of the SF-36) are related to one or 
more underlying latent variables (e.g., general mental and 
physical health) (see Fig. 1). A correctly specified measure-
ment model is important because the measurement model 
serves as a comparison for all subsequent models. When 
the measurement model is not correctly specified (e.g., the 
number of underlying factors is wrong, or the observed vari-
ables are related to another underlying latent variable), this 
will likely affect subsequent results with regards to detection 
of response shift effects [4]. Therefore, it is important to 
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calculate the statistical power to detect possible misspecifi-
cation of the measurement model.

Power calculations depend on the type of statistical test 
that is used. The model fit of the measurement model is 
usually evaluated with the chi-square test of exact fit. The 
null-hypothesis (H0) that is evaluated with the chi-square test 
is that the model fits the data exactly. In our example, the 
H0 represents that the measurement of the SF-36 as depicted 
in Fig. 1 fits the data exactly (i.e., is the ‘true’ model in the 
population). When the p-value falls below the significance 
criterion (α), we reject H0 in favor of the alternative hypoth-
esis. The alternative hypothesis (H1) is that the model does 
not fit the data exactly. In our example, rejecting H0 would 
indicate that the Fig. 1 measurement model of the SF-36 is 
not the ‘true’ model in the population. Incorrectly rejecting 
H0 is called a Type I error; which is usually set at a 0.05 
value. A type II error (β) is made when H0 should have been 
rejected, but was incorrectly retained. In our example, this 
would mean that the Fig. 1 measurement model of the SF-36 
is not rejected, even though it is not the ‘true’ model in the 
population. The power of a statistical test is the chance to 
correctly reject H0 (1-β; see Table 1).

Power calculations require the specification of H0 and H1. 
With a simple statistical test like a student t-test, H0 is usu-
ally zero (e.g., there is no difference between groups) and H1 
is usually set at an effect-size value that is deemed plausible 
or minimally relevant (e.g., a mean difference according to 
rules of thumb of small, medium or large effects). Power cal-
culations for the chi-square test of exact fit are based on the 

Fig. 1   Measurement model of health-related quality of life as meas-
ured with the SF-36. Notes: Circles at the top represent underly-
ing latent variables general physical health (PHYS) and general 
mental health (MENT). The squares represent the observed vari-
ables (X), i.e., the subscale scores of the SF-36: physical function-
ing (PF); role physical (RP); bodily pain (BP); general health (GH); 
vitality (VT); social functioning (SF); role emotional (RE); mental 
health (MH). The single-headed arrows from the latent variables to 

the observed variables represent factor loadings. The double headed 
arrows between the underlying latent variables represent correlations 
between general physical and general mental health; the underlying 
latent variables are allowed to correlate over time (dotted double 
headed arrows). The single headed arrows at the bottom represent 
residual factors, where each residual factor is associated with one 
observed variable and only the residual factors of the same variable 
are allowed to correlate over time (dotted double headed arrows)

Table 1   Statistical power for the three tests in steps 1–3 of the SEM 
approach to detect response shift

H0 null-hypothesis, H1 alternative hypothesis

Reality statistical test H0 = true H1 = true

Reject H0 α (Type I error)
Step 1: Incorrectly 

reject measurement 
model

Step 2: Incorrectly 
reject no response 
shift model

Step 3: Incorrectly 
reject no response 
shift parameter

1-β (Power)
Step 1: Correctly 

reject measure-
ment model

Step 2: Cor-
rectly reject no 
response shift 
model

Step 3: Cor-
rectly reject no 
response shift 
parameter

Not reject H0 1-α (Correct infer-
ence)

Step 1: Correctly 
retain measurement 
model

Step 2: Correctly 
retain no response 
shift model

Step 3: Correctly 
retain no response 
shift parameter

β (Type II error)
Step 1: Fail to 

reject misspeci-
fied measure-
ment model

Step 2: Fail 
to reject no 
response shift 
model

Step 3: Fail 
to reject no 
response shift 
parameter
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difference in chi-square distributions between H0 and H1, and 
therefore require the specification of both H0 and H1 mod-
els [22]. Following Oort [16], the H0 model for the SF-36 
could be the measurement model as specified in Fig. 1. This 
model works well as an illustration, because it has simple 
structure (i.e., each variable loads on only one underlying 
latent factor) and is therefore relatively easy to specify and 
interpret. The H1 model can be any alternative measurement 
model of the SF-36. Determining a plausible H1 model is 
complicated because model misspecification generally does 
not entail a specific effect of interest within the model. There 
thus exist many different options for the definition of H1, 
e.g., a one-factor model, a three-factor model, or a model 
with one or multiple cross-loadings. Moreover, the calcula-
tion of an effect size for H1 requires that the values for all 
model parameters in the H1 model are specified. It may thus 
take quite some deliberation on what the exact misspeci-
fication should entail. An approach that one could take is 
to first specify the model under H0, i.e., the model that the 
researcher thinks is the plausible model, including plausible 
values for all model parameters. Subsequently, one could 
think of a variation of the H0 model that includes one or 
more additional parameters for which—if these parameters 
are not zero—the H0 model should be rejected. For example, 
with regards to the measurement model of the SF-36 from 
our illustrative example, one could think of an alternative 
measurement model that includes additional loadings (i.e., 
cross-loadings) of the indicators GH, VT and/or SF that 
have been previously described in the SF-36 manual [19]. 
With regards to the value of these additional parameters, the 
recommendation would be to choose the minimum value 
that would be of interest. In general, specifying the values 
of model parameters in standardized metric is convenient 
because they can be interpreted according to general rules 
of thumb for representing small, medium, and large effects. 
For example, standardized factor loadings of 0.1, 0.3 and 
0.5 can be interpreted as correlation coefficients and thus 
represent small, medium and large respectively [7]. Also, 
previous findings can be used to inform plausible model 
parameter values.

Specification of H0 and H1 for the Step 1 chi‑square based 
power calculation

Using the illustrative example, the H0 model of the SF-36 is 
defined as depicted in Fig. 1 (see also Appendix I, page 1). 
It is based on information of the 8 subscales of the SF-36 
at baseline and follow-up. The number of unique elements 
in the variance-covariances matrix of the empirical data is 
16*17/2 = 136. Adding the information about the means of 
the 8 subscales at baseline and follow-up occasion results 
in a total of 136 + 16 = 152 information statistics. The H0 
model contains the specification of 16 factor loadings, 4 

underlying latent factor variances, 6 underlying latent fac-
tor covariances, 16 residual factor variances, 8 residual fac-
tor covariances, 16 intercepts, and 4 underlying latent fac-
tor means. Identification of the model requires that either 
the underlying latent factor variance or one factor loading 
for each latent factor is restricted to a fixed value [16], and 
that either the mean of the underlying latent factors or one 
intercept for each latent factor is restricted to fixed values 
[16]. The total number of free parameters in the H0 model is 
therefore 62 (see also Appendix I, page 5).

The H1 model is defined as the H0 model with the addi-
tion of two medium-sized cross-loadings of the GH and VT 
subscales (see Fig. 2). Note that there are multiple options 
for defining H1. This specific H1 was considered a plausible 
alternative model based on previous research that has found 
substantial cross-loadings in the measurement model of the 
SF-36 (e.g., [23, 24]). We specified the parameter values in 
standardized form, where the values for the factor loadings 
are chosen to be 0.5 (i.e., of large size [7]) and the values of 
the variances of the residual factors are chosen so that the 
total variance of each observed variable is 1. Similarly, the 
variances of the underlying latent factors are standardized. 
This entails that also the values for associations between the 
residual factors and between the underlying factors can be 
interpreted as correlation coefficients. The additional cross-
loadings in H1 were specified to be of medium size (i.e., 0.3 
[7]). As choosing parameter values for all parameters in the 
H1 is arguably the most difficult part of chi-square based 
power calculations, we return to this issue in the discussion 
section.

Step 1 chi‑square based power calculation with power4SEM

When both models are specified, and plausible values for 
all model parameters of H1 are provided, we can use pow-
er4SEM to calculate the chance to correctly reject H0. For 
reasons of conciseness, we will only describe what steps 
to take in order to arrive at the desired result. We will not 
go into (technical) details of the underlying calculations or 
required input values, for which the reader is referred to 
the tutorial paper of power4SEM [13] and/or the help files 
available under the question mark buttons on the webpage. 
In addition, Appendix I also includes a more detailed visual 
description of the required procedure. As a first step, insert 
the lavaan syntax of the H1 and H0 models in the dedicated 
areas from the “lavaan input” page. You will see a graphi-
cal display of both models at the right-hand side of the 
screen (see Fig. 3). Use the default setting of N = 200 for 
the “Intended sample size” box; when the researcher has 
information on the intended or acquired sample size for the 
proposed/performed study, one could inserted that specific 
number instead. Click on the green button “obtain NCP” at 
the top of the page.
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Second, go to the “Chi-square test” page and insert the 
following values in the box “Input” on the upper left side 
of the screen: the noncentrality parameter (NCP) value 
obtained in the first step (i.e., 13.796), the degrees of free-
dom (Df) of the measurement model (i.e., the number of free 
statistics minus the number of free model parameters, in our 
illustrative example this is 152–62 = 90), and the alpha-value 
(α = 0.05). Click on the blue button “Calculate!”. The result 
of the power-calculation is now shown both numerically and 
graphically at the right-hand side of the screen (see Fig. 4). 
That is, the statistical power to correctly reject our H0 model 
as specified in Fig. 1, when in reality the true model includes 

two medium-sized cross-loadings, is 0.261. In other words, 
there is a 26.1% chance of correctly rejecting H0. A rather 
disappointing result considering that one generally wants to 
achieve a power of 80%.

Sample size needed to acquire sufficient power

An additional feature of power4SEM is that it can also be used 
to calculate the minimum sample size to achieve a desired 
power of 80%. If we fill in the required values in the box at the 
bottom left of the “Chi-square test” page, we find that for our 
illustrative example the minimum sample size needed is 560. 

Fig. 2   Null-hypothesis (H0) model and alternative hypothesis (H1) 
model, including values for the H1 model parameter values, used 
in power calculations for the chi-square test applied in step 1 of the 
SEM approach for response shift detection. Notes: Circles represent 
underlying latent variables general physical health (PHYS) and gen-
eral mental health (MENT). The squares represent the observed vari-
ables (X), i.e., the subscale scores of the SF-36: physical function-
ing (PF); role physical (RP); bodily pain (BP); general health (GH); 
vitality (VT); social functioning (SF); role emotional (RE); mental 
health (MH). The arrows from the underlying latent variables to the 
observed variables represent factor loadings, with associated param-
eter values (for H1). The double headed arrow between the underly-
ing latent factors represent the correlation between the latent factors 

of the same occasion, with associated parameter values (for H1). 
The single-headed arrows at the bottom of each observed variable 
represent residual factor variances. The values at the bottom of the 
observed variables (with H1) represent intercept values, and the val-
ues next to the underlying latent factors (with H1) represent latent fac-
tor means. The red parameter values refer to the additional parameters 
present in the H1 model that represent the model misspecification, 
where all model parameters need to be assigned values to be able to 
calculate an effect-size for the misspecification. Note that the longi-
tudinal relations between underlying latent factors and residual fac-
tors of the same observed variable are not depicted here for reasons of 
conciseness (but see Fig. 1)
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Fig. 3   Screenshot of the first step in power calculation for the chi-square test of overall model fit of the measurement model with power4SEM: 
inserting the H0 and H1 model syntax

Fig. 4   Screenshot of the chi-square based power calculation result for the test on overall model fit of the measurement model with power4SEM
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In other words, to increase our confidence that the chi-square 
test of exact fit will reject our model in Fig. 1 when it is mis-
specified (as defined by two medium-sized cross loadings), 
we should fit the model to data from at least 560 participants.

The illustrated chi-square based power calculations can 
thus be a valuable tool in two situations. First, it can be 
used as a helpful tool for studies in which the sample size is 
already determined. That is, one can use chi-square based 
power calculations to provide insight into which model mis-
specification a study with a given sample size is sensitive to 
detect (e.g., with 80% power). This is referred to as sensi-
tivity power analysis [25] and is also helpful at the stage of 
study design as it can show how different sizes of the study 
sample affect the size of misspecification that one is able 
to detect with sufficient statistical power. Sensitivity power 
analyses are not to be confused with post hoc power analyses 
where one calculates the power to detect an effect with a 
given size (the effect-size that was found) with a given sam-
ple size (the sample size obtained); post hoc power analyses 
are generally inappropriate [26]. In addition, and preferably, 
power calculations can be helpful for sample-size planning 
at the stage of study design (i.e., a priori power calculation) 
as it will provide information on the required sample size to 
detect the misspecification of interest with sufficient power. 
A general drawback of chi-square based power calculations, 
however, is that it requires explicitly specified models with 
values for all model parameters.

A more general critique on the use of the chi-square test 
for overall model fit evaluation is that the null hypothesis of 
exact fit is invariably false in practical situations, i.e., that 
the idea that the measurement model fits the data ‘exactly’ is 
highly implausible. Therefore, there exist a number of alter-
native model fit indices that intend to give a more descriptive 
evaluation of how well the model fits the data. The most 
popular descriptive fit index is the Root Mean Square Error 
of Approximation (RMSEA; [27]). With this fit index, the 
null hypothesis of exact fit is replaced by the hypothesis of 
approximate fit, where it assumed that the specified model 
will only be an approximation to reality. An RMSEA of zero 
indicates exact fit, but in evaluating the value of the RMSEA 
we accept some error of approximation. Browne & Cudeck 
[28] suggest that an RMSEA below 0.05 indicates “close 
fit”, an RMSEA between 0.05 and 0.08 is thought to indicate 
a “reasonable error of approximation”, and that models with 
an RMSEA above 0.10 have poor fit. An further advantage 
is that there is also the option to base power calculations for 
overall model fit evaluation on RMSEA fit index [29].

RMSEA‑based power calculation for overall model 
fit evaluation

Because the RMSEA value is derived from the chi-square 
value we can also derive the chi-square distributions under 

H0 and H1 from an RMSEA value. That is, in order to 
calculate statistical power for overall model fit evaluation, 
we only need to specify the RMSEA-values of H0 and H1, 
instead of having to specify all model parameters. So, for 
example, one can investigate the power to reject close fit 
(RMSEA value H0 = 0.05) when in the population there is 
not close fit (RMSEA value H1 = 0.08). This power cal-
culation is similar to the chi-square-based power calcu-
lation in that it provides the power to correctly reject a 
misspecified measurement model; the difference is that the 
H0 of exact fit is replaced with a H0 of close fit. Another 
advantage of the RMSEA-based power calculation, is that 
we can also switch the direction of hypothesis testing so 
that we can calculate the power to reject H1 when H0 is 
true. This is an advantage because with SEM we usually 
believe that H0 is true. That is, we believe that the model 
that we specify under H0 is the true model and so we are 
not directly interested in the power to reject H0 when in 
fact H1 is true; but, instead, it would be more informative 
to know the power to reject H1 when H0 is true. So, for 
example, we can investigate the power to reject a model 
with not-close fit (RMSEA value H0 = 0.08) in favor of a 
model with close fit (RMSEA value H1 = 0.05), when there 
is ‘true’ close fit of the model. More stringently, following 
MacCallum et al. [29] one could calculate the power to 
reject a model with ‘not close fit’, using RMSEA H0 = 0.05 
and RMSEA H1 is 0.01. This will give us the probability to 
correctly reject a model with RMSEA > 0.05 if the popu-
lation RSMEA is 0.01. Different values may be chosen 
for H0 and H1, which will of course impact the calculated 
power. As a general recommendation, one could use the 
cut-off values that one uses to base a decision on whether 
the model does or does not fit well to the data.

Step 1: RMSEA‑based power calculation with power4SEM

RMSEA-based power calculations are also available in the 
power4SEM app, under the “RMSEA” page. Here, we need 
to provide the RMSEA-values for H0 and H1. Suppose we 
calculate the power to reject close fit (RMSEA = 0.05) of the 
measurement model in Fig. 1, when there is ‘true’ not-close 
fit in the population (RMSEA = 0.08). We also provide the 
intended sample size (N = 200), alpha value (0.05), and num-
ber of degrees of freedom of the model of interest (df = 90). 
If we click on the red button “Calculate!” the result is now 
shown both numerically and graphically at the right-hand 
side of the screen (see Fig. 5). When the model in reality 
shows not-close fit, the power to reject the hypothesis of 
close-fit is 0.937. If we reverse the RMSEA-values, we will 
see that the power to reject the hypothesis of not-close fit 
(RMSEA H1 = 0.08) when the model in the populations 
shows close fit (RMSEA H0 = 0.05) is 0.936.



1248	 Quality of Life Research (2024) 33:1241–1256

Step 2: chi‑square based power to detect the overall 
presence of response shift

The second step in the SEM approach for response shift 
detection entails an omnibus test on the presence of response 
shift. The presence of response shift is indicated by a change 
in the pattern of factor loadings (reconceptualization), the 
value of factor loadings (reprioritization) or the values of 
intercepts (recalibration1) (for more explanation regarding 
these operationalization of response shift, see [16]). The 
omnibus test is performed by comparing the so-called ‘no 
response shift model’, i.e., a model in which all parameters 
that are associated with response shift are restricted to be 
equal across time, to the measurement model (in which all 
these parameters are free to vary across time). The chi-square 
values of both models can be compared using a chi-square 
difference test, where a significant p-value indicates that H0 
(no response shift) should be rejected (see also Table 1). In 
other words, it indicates the overall presence of (any type 
of) response shift. Statistical power for this chi-square dif-
ference test will indicate the chance of correctly rejecting 
H0 (no response shift) when in reality response shift effects 
are present (see also Table 1). When statistical power is low, 
there is a high chance that the test will incorrectly indicate 

that there is no response shift. The difficulty for the power 
calculation is—similar to Step 1—to define H1. Here, H1 
refers to a model that includes indications of response shift, 
and one thus has to determine what the ‘overall presence of 
response shift’ looks like. That is, to determine the exact 
type, number, and size of possible response shift effects for 
which H0 should be rejected.

Specification of H0 and H1 for the Step 2 chi‑square based 
power calculation

The H0 model that is used in power calculations for the 
omnibus test on response shift is the ‘no response shift 
model’ in which all factor loadings and intercepts are 
restricted to be equal across baseline and follow-up (see 
Fig. 6 and Appendix II). The number of degrees of freedom 
for this model are 102 (see Appendix II for more details). 
The degrees of freedom for the chi-square difference test that 
is used to test for the overall presence of response shift is 
thus 102–90 = 12. The H1 model is specified the same as the 
H0 model, but includes some response shift effects. That is, 
the H1 model is defined by including differences in the pat-
tern of factor loadings, values of factor loadings and/or inter-
cepts across time. The choice on the type, number, and size 
of possible response shift effects to include in H1 is greatly 
facilitated when there exist a-priori hypotheses on the poten-
tial occurrence of response shift. Based on theory or prior 
research one may have an idea of what type (i.e., recalibra-
tion, reprioritization or reconceptualization), what number, 
and how large the possible response shift effects may be. For 
example, previous studies on response shift with the SF-36 
indicated the presence of reconceptualization (GH subscale 

Fig. 5   Screenshot of the RMSEA-based power calculation result for the hypothesis of close-fit of the measurement model with power4SEM

1  This is also known as uniform recalibration, where non-uniform 
recalibration refers to a change in residual factor variances. How-
ever, the detection of non-uniform recalibration is not relevant for the 
investigation of mean change in the common factor [16] and therefore 
rarely considered in the literature. Therefore, here we focus on uni-
form recalibration only, and for reasons of conciseness refer to it as 
simply ‘recalibration’.
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[30]), reprioritization (SF subscale [30], RP subscale [24]) 
and recalibration response shift (PF subscale [31], RP and 
BP subscales [30]). When there is no a-priori information 
available, the specification of a plausible H1 is more difficult. 
As a general recommendation, one could include the mini-
mum number of response shift effects that would be of inter-
est. As the response shift effects refer to targeted parameters, 
general accepted rules of thumb for the size of the effects 
can be used to specify small, medium or large effects respec-
tively. The choice of H1 model specification in our illustra-
tive example is not based on previous findings of (size of) 
effects, as the lack of context complicates using substantive 
considerations in our model specification. Therefore, in our 

illustrative example H1 is specified as a model that includes 
a total of three response shift effects, i.e., one medium-sized 
recalibration, reprioritization and reconceptualization effect 
respectively (see Fig. 6 and Appendix II).

Step 2 chi‑square based power calculation with power4SEM

When both H0 and H1 models are specified, and plausible 
values for all model parameters of H1 are provided, we can 
use power4SEM to calculate the chance to correctly reject 
H0 of no response shift (see also Appendix II). First, the 
lavaan syntax of the H0 and H1 models are inserted into 
the designated input-boxes on the “lavaan input” page (see 

Fig. 6   Null-hypothesis (H0) model and alternative hypothesis (H1) 
model, including values for the H1 model parameters, used in power 
calculations for the chi-square test applied in step 2 of the SEM 
approach for response shift detection. Notes: The underlying latent 
variables general physical health (PHYS) and general mental health 
(MENT) are measured by the observed variables (X), i.e., the sub-
scale scores of the SF-36: physical functioning (PF); role physical 
(RP); bodily pain (BP); general health (GH); vitality (VT); social 
functioning (SF); role emotional (RE); mental health (MH). The 
arrows from the underlying latent variables to the observed variables 
represent factor loadings, including (for H1) parameter values. The 

arrows between the underlying latent variables represent latent factor 
correlations at the same occasion, including (for H1) parameter val-
ues. The single-headed arrows at the bottom of each observed vari-
able represent residual factor variances. The values at the bottom of 
the observed variables (with H1) represent intercept values, and the 
values next to the underlying latent factors (with H1) represent latent 
factor means. The red parameter values refer to the response shift 
effects present in H1. Note that the longitudinal relations between 
underlying latent factors and residual factors of the same observed 
variable are not depicted here for reasons of conciseness (but see 
Fig. 1)



1250	 Quality of Life Research (2024) 33:1241–1256

Fig. 7). The result is obtained by clicking on the green but-
ton “Obtain NCP”. Second, on the “Chi-square test” page 
the obtained NCP-value (36.688), the Df of the chi-square 
difference test (12), and the appropriate alpha (0.05) are pro-
vided as input to obtain the statistical power of the test. The 
result is shown on the right side of the page (see Fig. 8), 
where the power to correctly reject H0 of no response shift is 
0.994. Thus, when there exist three medium-sized response 
shifts in reality, the omnibus test for response shift is very 
likely to correctly reject the hypothesis of no response shift.

Step 3: chi‑square based power to detect specific 
response shift effects

The third step in the SEM approach for response shift detec-
tion includes specific tests for response shift effects. That is, 
the tenability of equality restrictions on model parameters 
associated with response shift are investigated one by one. 
Again, the chi-square difference test can be used to test the 
tenability of the equality restriction. The H0 of no response 

shift now refers to one specific response shift effect (see 
Table 1). When the p-value falls below the alpha-criterion 
the H0 of no response shift specific to the parameter is 
rejected. Sufficient statistical power is needed to ensure that 
when the specific response shift effect that is being evaluated 
exist, that there is a high chance that the chi-square differ-
ence test will detect it. If statistical power is low, there is 
high chance that response shift effects are missed.

Specification of H0 and H1 for the Step 3 chi‑square based 
power calculation

The H0 model that is used in power calculations for tests on 
specific response shift effects is—again—the ‘no response 
shift model’ in which all factor loadings and intercepts are 
restricted to be equal across baseline and follow-up (see 
Fig. 9 and Appendix III). The difference with the power 
calculations for the omnibus test for response shift is that 
the H1 model includes only one specific response shift effect. 
The degrees of freedom for the chi-square difference test 

Fig. 7   Screenshot of the first step in chi-square based power calculation for the test on overall presence of response shift with power4SEM: 
inserting the H0 and H1 model syntax
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that is used to test for the presence of a single response shift 
is 1 (instead of 12 for the omnibus test of response shift). 
Using the illustrative example, we specify three different 
H1 models for the detection of one medium-sized recalibra-
tion, reprioritization or reconceptualization response shift 
respectively (see Fig. 8). In this situation there are thus three 
different power calculations associated with the chi-square 
test for specific response shift. Here, we elaborate on the 
power to detect a specific indication of reconceptualization 
response shift (but see Appendix III for syntaxes of all three 
power calculations), which is defined as a medium-sized 
cross-loading of VT at follow-up measurement (H1 model 
A in Fig. 9).

Step 3 chi‑square based power calculation with power4SEM

We use power4SEM to calculate the chance to correctly 
reject H0 of no response shift, in favor of H1 with one indi-
cation of a medium-sized reconceptualization response shift 
(see also Appendix III). The NCP value that is derived by 
inserting the H0 and H1 model syntaxes in the “lavaan input” 
page is 9.013 (see Fig. 10). In combination with Df = 1 
and α = 0.05 this results in a power of 0.851 (see Fig. 11). 
That is, the chance that the H0 of no reconceptualization 
response shift of VT will be correctly rejected (when there 
is a medium-sized effect present in reality) is 85.1%. This is 
good news, as the calculated power falls above the desired 
power of 80%.

Note, that when the omnibus test of response shift is used 
in the same situation (i.e., when only one reconceptualiza-
tion response shift is present in reality), the power to detect 
such an effect is reduced to 45.4% (see Appendix III for 

details). That is, the power to detect a single response shift 
effect will be higher for the chi-square test on a specific 
parameter (i.e., Step 3 of the SEM approach) than it will 
be for the omnibus chi-square test (i.e., Step 2 of the SEM 
approach). However, as there are many specific parameters 
that can be tested for the presence of response shift the 
increasing number of statistical tests performed on the same 
data will generally lead to an increased Type I error rate (see 
Table 1). There is thus a balance to be found between the 
protection against Type I errors with the omnibus test and 
the higher power to detect single indications of response 
shift of the specific test.

Discussion

The current paper illustrated power calculations for the dif-
ferent steps of the SEM approach to investigate response 
shift. First, power calculations were illustrated for overall 
model fit evaluation of the measurement model (i.e., step 
1 of the SEM approach). Chi-square based power calcula-
tions require the specification of an alternative measurement 
model that defines the amount of misspecification that one 
wants to be able to detect (the effect-size value), includ-
ing all model parameter values. The resulting power can be 
interpreted as the probability that the hypothesis of exact fit 
of the measurement model will be rejected, when the alter-
native measurement model holds in the population. Next to 
chi-square based power, one can also use RMSEA-based 
power. One advantage of RMSEA-based power is that it does 
not require exact model specifications, but instead relies on 
the RMSEA-values associated with the two measurement 

Fig. 8   Screenshot of the of the chi-square based power calculation result for the test on overall presence of response shift with power4SEM
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Fig. 9   Null-hypothesis (H0) 
model and three alternative 
hypothesis (H1) models (A, B 
and C), including values for the 
H1 models’ parameters, used in 
power calculations for the chi-
square test applied in step 3 of 
the SEM approach for response 
shift detection. Notes: The 
underlying latent variables gen-
eral physical health (PHYS) and 
general mental health (MENT) 
are measured by the observed 
variables (X), i.e., the subscale 
scores of the SF-36: physical 
functioning (PF); role physical 
(RP); bodily pain (BP); general 
health (GH); vitality (VT); 
social functioning (SF); role 
emotional (RE); mental health 
(MH). The arrows from the 
underlying latent variables to 
the observed variables represent 
factor loadings, including (for 
all three H1 models) parameter 
values. The arrows between the 
underlying latent variables rep-
resent latent factor correlations 
at the same occasion, including 
(for H1 models) parameter val-
ues. The single-headed arrows 
at the bottom of each observed 
variable represent residual 
factor variances. The values 
at the bottom of the observed 
variables (with H1 models) 
represent intercept values, and 
the values next to the under-
lying latent factors (with H1 
models) represent latent factor 
means. The red parameter 
values refer to the response shift 
effects present in H1 models. 
Note that the longitudinal rela-
tions between underlying latent 
factors and residual factors of 
the same observed variable are 
not depicted here for reasons of 
conciseness (but see Fig. 1)
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Fig. 10   Screenshot of the first step in chi-square based power calculation for test on specific response shift with power4SEM: inserting the H0 
and H1 model syntax

Fig. 11   Screenshot of the of the chi-square based power calculation result for the test on specific response shift with power4SEM
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models. The resulting power can be interpreted as the prob-
ability to reject the hypothesis of close fit of the measure-
ment model, when in reality the measurement model shows 
not-close fit. Another advantage of RMSEA-based power 
is that you can flip the hypothesis, so to retrieve the power 
to reject the hypothesis of not-close fit of the measurement 
model when in reality the measurement model shows close 
fit. The latter type of power is most relevant in practice, 
as the hypothesis is usually that the specified measurement 
model is the correct model. A drawback, however, is that 
the amount of misfit in the measurement model as defined 
by RMSEA-values is hard to interpret. Although chi-square 
based power calculations are more complicated, it is also 
more intuitive to think about misfit in terms of specific 
parameters (e.g., additional factor loadings). Besides prac-
tical considerations, it is important to align the type of power 
calculation with the context and purpose of the study. For 
example, in a study where a misspecification the pattern of 
factor loadings is considered to be an important risk, chi-
square based power analysis may be most suitable. Or, in 
the context of competing theoretical models regarding the 
measurement structure, chi-square based power can be used 
to calculate the power to reject one theoretical model in favor 
of the other. RMSEA-based power is most appropriate when 
specific hypotheses about the measurement structure are 
absent, and the objective is to find a model that describes 
the data approximately well. It may informative to use and 
report the two types of power calculations, with several 
types of model misspecifications, to provide insight in the 
sensitivity of the study to detect misspecification.

Chi-square based power calculations were also illustrated 
for the detection of response shift (i.e., steps 2 and 3 of the 
SEM procedure). As the hypotheses about the presence of 
response shift do refer to specific parameters (and not just a 
general notion of model misfit), it is relatively easy to derive 
explicitly specified models. Also, as one generally expects 
that there is some indication of response shift, the resulting 
power in terms of probability to detect response shift when 
it is present in the population is directly relevant. However, a 
difficulty for power calculations and sample size planning for 
response shift detection with SEM is that it includes differ-
ent types of power, i.e., power to detect misspecification in 
the measurement model and power to detect response shift. 
The different types of power may require very different sam-
ple sizes, such that a SEM analysis may be well-powered to 
detect a model misspecification in the measurement model, 
but poorly powered to detect response shift, or vice versa. 
Moreover, although the test on overall presence of response 
shift (i.e., step 2) and the test for specific indications of 
response shift tests (i.e., step 3) share the aim to detect pos-
sible response shift effects, they do not share the same focus 
on power to detect effects. That is, the omnibus test may 
lack power to detect specific indications of response shift, 

but generally protects against false positives (Type I error). 
Finding a balance between confidence in the appropriate of 
the measurement model, desired statistical power to detect 
response shift, and protection against false positives, is chal-
lenging. The different power calculations do provide insight 
into this balancing act. Another possibility is to consider 
compromise power analyses, an alternative power analysis 
in which statistical power and risk of Type I errors are bal-
anced [14, 32, 33].

In general, the factors that affect power in SEM include 
well-known factors that affect power in any method, like 
sample size. Other, less well-known factors that influence 
power in SEM include the distribution of the data, the num-
ber and reliability of indicators, the number of latent varia-
bles, and the values of all the other parameters in the model. 
Arguably, the most difficult part of (chi-square based) power 
calculations is choosing values for all model parameters. 
That is, specifying the (alternative) measurement model, and 
to determine the number, type and size of response shift 
effects to specify. Generally, it is advised that such deci-
sions are based on existing knowledge from prior research. 
Statistical rules of thumb about the size of effects (i.e., 
small, medium, large) can also be used to choose appropri-
ate parameter values for effects of interest. Using the illus-
trative example, it was shown how relevant literature can be 
used to make a decision on the specification of an alternative 
measurement model, and inclusion of response shift effects. 
The parameter values used in the illustrative example were 
primarily chosen based on statistical rules of thumb of small, 
medium and large size. As the size of parameter values 
determine the computed effect-size relevant for the associ-
ated statistical power, different parameter values may lead to 
different conclusions about achieved power or required sam-
ple size. Therefore, I would like to note that some alterna-
tive recommendations exist for specifying the size of factor 
loadings. For example, Tabachnick and Fidell [34] argued 
that based on some general rules of thumb about sample size 
and alpha level, a factor loading of at least 0.32 should be 
considered statistically meaningful. Also, one could rely on 
the size of factor loadings in relation to explained variation. 
A factor loading of 0.32 would translate to approximately 10 
percent variation of the indicator explained by the underly-
ing factor, and the large-sized factor loadings of 0.50 that 
were used in our illustration translate to 25 percent explained 
variance. One could argue that for a relevant indicator at 
least half of the variance should be explained by the underly-
ing factor, and thus the factor loading must exceed 0.70. By 
relying on statistical rules of thumb for specifying the values 
of the factor loadings (and other model parameters) we have 
chosen to use conservative estimates of population values 
that may have lowered resulting power estimates (i.e., statis-
tical power is higher with stronger measurement structures 
and/or larger effects). We would thus like to emphasize the 
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importance of relying on previous research to make ecologi-
cally valid decisions regarding parameter values when power 
calculations are used in practice.

Another approach to power calculations is to use a Monte 
Carlo simulation study (e.g., [15, 35]). In this approach a 
large number of datasets is generated under the model cor-
responding to the alternative hypothesis (H1), and the null-
hypothesis model (H0) is fitted to the generated data. Model 
fit statistics (i.e., chi-square values) and model parameters 
can be extracted to calculate the proportion of statistically 
significant results. This results in an empirical estimate of 
power. It has the advantage that it can take into account pos-
sible nonconvergence of models, and is flexible in handling 
violated assumptions such as non-normally distributed data. 
However, it is not suited to include RMSEA-based power, 
is computationally intensive, and conducting simulations 
generally requires a substantial level of programming expe-
rience and statistical expertise.

Concluding, it is important to consider power of intended 
and performed statistical analyses in the field of response 
shift research. Recent developments have made power analy-
ses with SEM more feasible and accessible, and the current 
paper adds to this literature by providing detailed examples. 
Ideally, any response shift study with SEM should use power 
calculations when planning sample sizes, or report the power 
achieved for already performed analyses. Therefore, it is my 
hope that this paper advances the use of power analyses in 
applications of SEM for detection of response shift.
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