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Abstract
Purpose  Meaningful thresholds are needed to interpret patient-reported outcome measure (PROM) results. This paper 
introduces a new method, based on item response theory (IRT), to estimate such thresholds. The performance of the method 
is examined in simulated datasets and two real datasets, and compared with other methods.
Methods  The IRT method involves fitting an IRT model to the PROM items and an anchor item indicating the criterion state 
of interest. The difficulty parameter of the anchor item represents the meaningful threshold on the latent trait. The latent 
threshold is then linked to the corresponding expected PROM score. We simulated 4500 item response datasets to a 10-item 
PROM, and an anchor item. The datasets varied with respect to the mean and standard deviation of the latent trait, and the 
reliability of the anchor item. The real datasets consisted of a depression scale with a clinical depression diagnosis as anchor 
variable and a pain scale with a patient acceptable symptom state (PASS) question as anchor variable.
Results  The new IRT method recovered the true thresholds accurately across the simulated datasets. The other methods, 
except one, produced biased threshold estimates if the state prevalence was smaller or greater than 0.5. The adjusted predictive 
modeling method matched the new IRT method (also in the real datasets) but showed some residual bias if the prevalence 
was smaller than 0.3 or greater than 0.7.
Conclusions  The new IRT method perfectly recovers meaningful (interpretational) thresholds for multi-item questionnaires, 
provided that the data satisfy the assumptions for IRT analysis.

Keywords  Meaningful threshold · Cutoff point · Item response theory (IRT) · Adjusted predictive modeling · Receiver 
operating characteristic (ROC) · Patient acceptable symptom state (PASS)
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Introduction

The use of patient-reported outcome measures (PROMs) 
has become standard practice in clinical research and 
daily clinics due to the growing emphasis on patient-
centered and value-based care. PROMs typically consist 
of multi-item questionnaires used to measure constructs 
(or “traits”), such as “depression” or “pain.” However, 
because PROM scores are often continuous scores without 
intrinsic meaning, there is a need for (clinically) meaning-
ful thresholds or cutoff points to facilitate interpretation. 
Examples of meaningful thresholds include a diagnos-
tic cutoff point for depression, and a patient acceptable 
symptom state (PASS) threshold for pain. Determining a 
meaningful threshold on a questionnaire requires the com-
parison with an external criterion indicating the presence 
or absence of a meaningful trait level to define an inter-
pretable “state” (e.g., clinical depression, or an acceptable 
symptom state). For clarity, we provide some terminology 
in Box 1.

Given that depression represents a continuous trait in 
the general population [1], the state clinical depression can 
be conceptualized as a level of depression above a certain 
threshold on this trait. Then, making a diagnosis of clini-
cal depression can be seen as estimating a patient’s level 
of depression, based on their history, and to determine 
whether this level is above or below the threshold of clini-
cal depression [2]. In this example, the threshold is agreed 
upon by the psychiatric professional community.

The PASS represents a threshold of clinical importance 
beyond which patients consider their level of symptoms 
(e.g., pain) as acceptable [3]. A PASS threshold is typi-
cally determined using an “anchor” question like “Do 
you consider your current level of pain acceptable, yes 
or no?”. The question assumes that patients compare 
their perceived level of pain to a personal threshold (or 

benchmark) of acceptability. This PASS threshold prob-
ably differs across individuals. Thus, the best group-level 
PASS estimate would be the mean of the individual PASS 
thresholds in a group of patients.

Given a continuous “test” variable (i.e., a variable holding 
the PROM scores) and a dichotomous “state” variable (i.e., a 
variable holding the state scores), the traditional method to 
determine a meaningful threshold or cutoff point is receiver 
operating characteristic (ROC) analysis. ROC analysis 
examines the sensitivity and specificity of all possible test 
scores with respect to their ability to classify subjects with 
respect to the meaningful state [4]. As a cutoff point, a test 
score can be selected based on its desired sensitivity and/
or specificity, controlling the type and amount of misclas-
sification. Often a so-called “best” or “optimal” cutoff point 
is chosen of which the difference between sensitivity and 
specificity is minimized (top-left criterion) or the sum of 
sensitivity and specificity is maximized (Youden criterion 
[5]; in large samples with normally distributed test scores, 
both criteria identify the same threshold [6]). An optimal 
ROC threshold serves to classify subjects with the least 
amount of misclassification.

A problem with using ROC analysis for identifying mean-
ingful thresholds is that an optimal ROC cutoff point depends 
on the prevalence of the state. For any given cutoff point, an 
increase in the state prevalence results in an increase of the cut-
off point’s sensitivity and a decrease of its specificity, whereas 
a decrease in the prevalence has the opposite effect [7]. An 
optimal ROC-based cutoff point with a balanced sensitivity 
and specificity in one particular situation (with a certain preva-
lence) will, therefore, not be the optimal cutoff point with the 
same sensitivity–specificity balance in another situation. In 
other words, an optimal ROC cutoff point is context specific 
[8]. As a meaningful threshold is principally independent of 
the state prevalence, the optimal ROC cutoff point may not 
identify the meaningful threshold on a continuous construct 

Box 1   Terminology

Trait: The construct of interest (e.g., depression or pain) that is intended to be measured by a PROM, usually a multi-item questionnaire. The 
construct itself is not directly observable, hence “latent.” The latent trait is usually continuous. The PROM score provides an approximation 
of the true trait level. PROM scores are observed (i.e., manifest)

Perceived trait: The level of the latent trait as being perceived by the patient or by an observer (e.g., a clinician). The perceived trait is equal to 
the latent trait plus some random (measurement) error

State (of interest): A clinically meaningful condition that is characterized by a minimum level of a trait of interest. Examples of meaningful 
states are clinical depression and acceptable symptom state

Meaningful threshold: The minimum trait level above which a meaningful state is assumed to exist. The meaningful threshold can be thought 
of as a location on the latent trait (in which case the threshold is latent), or it can be thought of as a particular PROM score (in which case the 
threshold is manifest, and an approximation of the latent threshold). The term “cutoff point” can be used to indicate a manifest threshold of a 
PROM

State assessment: The procedure used to determine whether or not a state of interest is present. The procedure is independent of the PROM of 
interest. Examples of state assessments are the making of a diagnosis of clinical depression by a trained professional, and the patient response 
to a targeted question (often called an “anchor” question)

State scores: The results of state assessment. Typically, state scores are dichotomous: “1” for the state of interest is present, and “0” for the 
state is absent

State difficulty: The level of a trait (defining a state of interest) where the probability that a state assessment results in establishing that the 
state of interest is present, is 50%
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[2]. Only if the state prevalence is 50%, the optimal ROC cut-
off point will correspond to the meaningful threshold [2]. In 
other words, whereas the optimal ROC cutoff point performs 
excellently in classifying cases and non-cases with minimal 
misclassification in specific situations, it is not suitable to iden-
tify the (mean) threshold on a continuous trait, as defined by 
clinical or patient criteria.

An alternative to ROC analysis is predictive modeling, 
which involves logistic regression analysis using the state 
variable as the outcome and the test variable as the predictor 
variable [9]. The optimal cutoff point is the test score that is 
equally likely to occur in the state-positive group as in the 
state-negative group (i.e., the likelihood ratio is 1). Predic-
tive modeling identifies about the same cutoff point as ROC 
analysis, but with greater precision [9]. However, like the opti-
mal ROC cutoff point, the predictive modeling cutoff point 
depends on the state prevalence [10]. The prevalence-related 
bias in the predictive modeling cutoff point depends on the 
reliability of the state variable, the standard deviation (SD) 
of the test variable, and the point-biserial correlation between 
the test variable and the state variable. These parameters can 
be used to adjust the prevalence-related bias and recover the 
proper threshold across a wide range of state prevalences [11].

A third method, recently introduced, is based on item 
response theory (IRT) [2]. This method uses the state preva-
lence to estimate a meaningful threshold on the latent trait 
scale and subsequently determines the corresponding test score 
threshold. However, this method assumes perfect validity and 
reliability of the state scores, which is arguably questionable. 
It is currently unknown to which extent the reliability of the 
state scores affects the threshold estimate.

This paper presents an improved IRT-based method 
to estimate meaningful thresholds, which is based on 
the work of Bjorner et al. [12] in estimating meaningful 
within-individual change thresholds using longitudinal 
IRT. Like Bjorner et al. [12], the new method uses the 
IRT difficulty parameter of the state scores, instead of the 
state prevalence to find the latent trait threshold of inter-
est. We will demonstrate the performance of this method 
using simulation studies and two real datasets. We will 
compare the results with the ROC method, the predictive 
modeling method [9], the adjusted predictive modeling 
method [11], and the “old” state prevalence IRT method 
[2].

Method

Item response theory

IRT aims to explain observed item scores by invoking an 
unobservable variable underlying these item scores [13]. For 
instance, the responses to the items of a depression scale can 

be thought of as being driven by an unobservable continuous 
variable (i.e., a latent trait) called “depression”. A popular 
IRT model is the graded response model (GRM) [14] that 
defines the probability of scoring in category c or above the 
following way:

where, Xij is the response of person i to item j, �i is the score 
of person i on the latent trait. In principle, � can take values 
from −∞ to + ∞ . ln

(
P(Xij≥c|𝜃i)
P(Xij<c|𝜃i)

)
 is the natural logarithm of 

the odds of person i scoring c or higher on item j. aj is the 
discrimination parameter for item j. The discrimination 
parameter refers to the slope of the option characteristic 
curves, and is a measure of how well the item (categories) 
distinguishes respondents high and low on the trait. bjc is the 
difficulty parameter for category c on item j. The difficulty 
parameter represents the trait level where the probability of 
endorsing response category c or higher is 50%. The diffi-
culty parameter also indicates the level of the trait where the 
item response option is most informative.

For an item with 4 response options (i.e., 0, 1, 2 and 3), 
Fig. 1 shows the item–trait relationship graphically as mod-
eled using the GRM [14]. As a fitted IRT model mathemati-
cally describes the relationship between responses to the 
items of a scale and the � values of the underlying trait, the 

ln

(
P
(
Xij ≥ c|𝜃i

)

P
(
Xij < c|𝜃i

)

)
= aj

(
𝜃i − bjc

)
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Fig. 1   Option characteristic curves of an item with 4 ordered 
response options (0, 1, 2 and 3) based on the graded response model. 
Three curves are displayed showing, from left to right, the probabil-
ity of endorsing options 1, 2 or 3 instead of option 0 (labeled “1–3”), 
the probability of endorsing options 2 or 3 instead of options 0 or 1 
(labeled “2–3”), and the probability of endorsing option 3 instead of 
options 0, 1 or 2 (labeled “3”), respectively, as a function of the latent 
trait. The difficulty parameters (labeled “b1”, “b2” and “b3”) are indi-
cated by vertical dashed lines. The discrimination parameter (labeled 
“a”) reflects the slope of the option characteristic curves



1822	 Quality of Life Research (2023) 32:1819–1830

1 3

model is not only able to estimate the trait level ( � ) for a 
given set of responses to the items of a questionnaire, but it 
is also able to estimate the expected (i.e., mean) question-
naire score (i.e., the sum or test score) for a given trait level.

A meaningful threshold can be thought of as a threshold 
located somewhere on the latent trait. Such a threshold can 
be estimated by including the dichotomous state variable 
in the IRT model, effectively treating the state variable as 
an extra item (Fig. 2). The model for such a dichotomous 
item is:

where, ln
(

P(Xis=1|�i)
P(Xis=0|�i)

)
 is the natural logarithm of the odds 

that person i is assessed to be in the state of interest s, as is 
the discrimination parameter of the state variable s, bs is the 
difficulty parameter of the state variable s.

The logic behind this approach is that, like the question-
naire items, the state variable is an indicator of the latent 
trait. Adding the state variable to the IRT model yields a 
single option characteristic curve for the dichotomous state 
variable. Importantly, the model estimates a single difficulty 
parameter for the state variable, which represents the trait 

ln

(
P
(
Xis = 1|�i

)

P
(
Xis = 0|�i

)

)
= as

(
�i − bs

)

level where the probability of scoring 1 on the state variable 
is 50%. Interestingly, this point also represents the mean of 
the individual thresholds for endorsing the state item [12].1 
Once the meaningful threshold is identified in terms of the 
latent trait level, the fitted IRT model provides the corre-
sponding threshold in terms of the PROM score using the 
expected test score function.

Simulations

We simulated datasets with known individual meaningful 
thresholds to demonstrate how the new IRT method per-
forms, relative to the ROC method, the predictive modeling 
method [9], the adjusted predictive modeling method [11], 
and the old IRT method based on the state prevalence [2]. 
The beauty of simulations is that the true meaningful thresh-
old can be specified and simulated, and the results can be 
judged with respect to the extent to which the truth can be 
accurately recovered.

We simulated multiple datasets with 1000 subjects. We used 
GRM IRT to simulate item responses to a hypothetical 10-item 
questionnaire, each item having 4 response options, based on a 
prespecified set of item parameters (see Supplementary file 1, 
section 1) and varying distributions of the latent trait ( � ) (the 
simulation syntax is provided in Supplementary file 1, sec-
tion 2). We varied the mean of the normally distributed latent 
trait ( �sim ) across the values − 1.4, − 0.7, 0, 0.7 and 1.4 (thus 
simulating samples of low to high mean severity of the trait), 
and the standard deviation (SD) of �sim across 1, 1.5 and 2 
(thus simulating more and less heterogeneous samples). Fig-
ure 3 shows the distribution of the latent traits (A-panels) and 
the resulting distribution of the 10-item scale scores (B-panels) 
for three example datasets. If the mean �sim matches the mean 
simulated b-parameter (Fig. 3, dataset 1), the scale score was 
normally distributed. In case of a mismatch between the mean 
�sim and the mean b-parameter (Fig. 3, datasets 2 and 3), the 
scale score became skewed and might even demonstrate floor 
or ceiling effects, despite the underlying latent trait ( �sim ) being 
normally distributed. Figure 3 also shows the expected test 
function curves obtained from a fitted GRM model (C-panels). 
By default, a GRM model assumes an underlying latent trait 
(denoted “modeled theta” or �mod ) with a mean of zero and an 
SD of 1. Therefore, �mod is a linear transformation of �sim and 

Latent
trait

X1

X2

X3

X j

State

P(X1 = 0)        0
P(X1 = 1)        1
P(X1 = 2)        2
P(X1 = 3)        3

P(Xj = 0)        0
P(Xj = 1)        1
P(Xj = 2)        2
P(Xj = 3)        3

P(X3 = 0)        0
P(X3 = 1)        1
P(X3 = 2)        2
P(X3 = 3)        3

P(X2 = 0)        0
P(X2 = 1)        1
P(X2 = 2)        2
P(X2 = 3)        3

P(State = 0)        0
P(State = 1)        1

Fig. 2   IRT model to estimate a meaningful threshold on a question-
naire with j items. Rectangles represent observed variables: question-
naire items 1 through j, (X1–Xj), and the state scores (State). The oval 
represents the latent trait underlying the item scores (and the state 
scores). The latent trait determines the probabilities of scoring the 
item response options 0–3 (e.g., P(X1 = 0), etc.) and the state scores 
item, according to the item parameters difficulty and discrimination 
(not shown)

1  At the location of the mean of the individual thresholds (given a 
normal distribution of those thresholds) 50% of the individual thresh-
olds are smaller than the �-value at that location. Hence, for a ran-
dom sample of respondents who are sitting exactly at the location of 
the mean of the individual thresholds, the probability that they have 
passed their individual threshold is 50%. Therefore, the probability 
that they endorse the state variable at that location is 50%. In other 
words, the difficulty of the state variable represents the meaningful 
threshold of interest.
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a threshold on the simulated theta scale ( �T
sim

 ) corresponds to 
a threshold on the modeled theta scale ( �T

mod
 ) according to the 

following equation:

 
Note, however, that the expected test score correspond-

ing to �T
sim

 = 0 was independent of the distribution of �sim . 
For illustration, we consider dataset 3 in Fig. 3. After IRT 
modeling and fitting the dataset, the threshold �T

mod
 , follow-

ing the equation above, was (0–1.4)/2 = – 0.7. Panel C shows 
the expected test score function of the fitted model (i.e., the 
relationship between �mod and the test score). Based on the 

�
T

mod
= (�T

sim
− mean (�

sim
))∕SD(�

sim
)

expected test score function, the threshold �T
mod

 corresponded 
to an expected test score of 15.1.

The state scores were simulated as follows. We assumed 
that the state assessment was based on the comparison of a 
“perceived trait” with the relevant threshold. Professionals 
making a depression diagnosis compare the perceived level 
of depression with the professionally defined threshold of 
clinical depression. Patients answering a PASS anchor ques-
tion about pain compare their perceived level of pain with 
their personal thresholds of acceptability. The perceived trait 
was assumed to consist of the true trait (i.e., the latent trait 
�sim ) and some “measurement error” (Fig. 4) [15]. The meas-
urement error was simulated to have a normal distribution 
with a variance chosen in such a way as to obtain reliability 
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Fig. 3   Examples of 3 simulated datasets. A-panels: Density curves 
showing the simulated theta distributions (Mn = mean, SD = stand-
ard deviation). B-panels: Histograms showing the distribution of the 
corresponding test scores (i.e., scale scores; Mn = mean, SD stand-
ard deviation). C-panels: Expected test function curves showing the 

expected scale score as a function of the modeled theta. Meaningful 
thresholds defined by �

sim
 = 0 are indicated by vertical dashed lines 

(A-panels). The expected test scores corresponding to the meaningful 
thresholds are indicated by horizontal dashed lines (C-panels)
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values of the perceived trait of 0.5, 0.7, or 0.9. The mean-
ingful threshold ( �T

sim
 ) was arbitrarily set to be zero for all 

datasets. We did not simulate variability of the thresholds 
across subjects, as this would only add (a little) extra error to 
the perceived trait. The “observed” dichotomous state scores 
were then obtained by comparing the continuous perceived 
trait with the threshold ( �T

sim
 ). Thus, the state scores were 

a discretization of the underlying perceived trait variable. 
The observed state prevalence was the proportion of subjects 
who’s perceived trait exceeded the threshold.

The exact true (i.e., as simulated) meaningful threshold in 
terms of the expected scale score, corresponding to �T

sim
 = 0, 

based on the simulated item parameters (see Supplementary 
file 1, section 1) was 15.139 (see Supplementary file 1, sec-
tion 3 for details of the calculation).

Real dataset: diagnostic thresholds

The first real dataset consists of data from a trial involving 
primary care patients with emotional distress or minor men-
tal disorders [16]. At baseline, 307 patients completed the 
Hospital Anxiety Depression Scale (HADS), a self-report 
questionnaire measuring anxiety and depression [17]. In 
addition, standardized psychiatric diagnoses were obtained 
by trained interviewers using the Composite International 
Diagnostic Interview (CIDI) [18]. The original study was 
approved by the ethical committee of The Netherlands Insti-
tute of Mental Health and Addiction and all patients pro-
vided written informed consent. We used the HADS depres-
sion scale and the CIDI mild, moderate, and severe major 
depressive disorder (MDD) diagnoses (criteria according to 
the Diagnostic and Statistical Manual, Fourth Edition; DSM-
IV [19]). The HADS depression scale consists of 7 items 
with 4 response options. Hence, the HADS depression total 
score ranges from 0 to 21 (0 = no depression, 21 = severe 
depression). We aimed to establish the clinical thresholds 
for mild, moderate, and severe MDD. To that end, we con-
structed 3 dichotomous state variables to be used in separate 
analyses in conjunction with the HADS items. The first state 
variable was used to establish the threshold for mild MDD, 
contrasting mild, moderate, and severe MDD (coded “1”) to 
no MDD (coded “0”). The second state variable was used 
to establish the threshold for moderate MDD, contrasting 
moderate and severe MDD (coded “1”) to no and mild MDD 
(coded “0”). The third state variable was used to establish 
the threshold for severe MDD, contrasting severe MDD 
(coded “1”) to no, mild, and moderate MDD (coded “0”).2

Real dataset: patient acceptable symptom state 
(PASS)

The second real dataset was obtained from the Hand-Wrist 
Study Group cohort and comprised 3522 patients who 
underwent surgical trigger digit release [20, 21]. All patients 
were invited to complete the Michigan Hand outcomes 
Questionnaire (MHQ), a PROM covering six subdomains of 
hand function [22], three months postoperatively. The study 
was approved by the local medical ethical review board, and 
all patients provided written informed consent. We used the 
MHQ pain subscale, which has a score ranging from 0 to 
100 (0 = worst possible pain, 100 = no pain). This score is 
derived from 5 items, each having five response options. 

-6      -4     -2      0      2       4      6
Theta (θsim)

Mn = -0.7
SD = 1

True trait

θsim
T

-6      -4     -2      0      2       4      6
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SD = 0.7

Measurement error

-6      -4     -2      0      2       4      6
Theta (θsim)

Mn = -0.7
SD = 1.22

Perceived trait

θsim
T

500

250

0

State score
0         1

Fig. 4   Graphical representation of how the state scores were simu-
lated. The perceived trait is the true trait plus measurement error 
(all in the theta metric). In the perceived trait graph, the true trait is 
indicated by a dashed curve. The state scores (“1”: state of interest is 
present; “0”: state of interest is absent) are a discretization of the per-
ceived trait relative to the meaningful threshold ( �T

sim
)

2  The state variable with 4 diagnostic categories could also be pro-
cessed as a single-state variable with 4 categories in a single analysis 
in conjunction with the HADS items. In that case, the state variable 
provides 3 difficulty estimates representing the thresholds for mild, 
moderate, and severe MDD on the latent trait metric.
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To determine the PASS of the MHQ pain score, we asked 
patients to answer the following anchor question [23]: “How 
satisfied are you with your treatment results thus far?” with 
response options: “excellent,” “good,” “fair,” “moderate,” or 
“poor.” Considering that the PASS represents the threshold 
above which a patient is satisfied with his or her current state 
[3], we adopted the threshold between “fair” and “good” as 
the PASS and dichotomized the ratings accordingly.

Analysis

Simulated samples

We calculated thresholds using the ROC method (Youden 
criterion) [4, 5], the predictive modeling method [9], the 
adjusted predictive modeling method [11], the old state 
prevalence IRT method [2], and the new state difficulty 
IRT method. Bias was calculated as the mean residual (true 
threshold minus estimated threshold), and the mean square 
residual (MSR) as the mean of the squared residuals.

Real datasets

As unidimensionality is an important prerequisite for IRT, 
we checked unidimensionality of the datasets through con-
firmatory factor analysis. The items were treated as categori-
cal. The following scaled fit indices were taken as indicative 
of unidimensionality: comparative fit index (CFI) > 0.95, 
Tucker–Lewis index (TLI) > 0.95, root mean square error of 
approximation (RMSEA) < 0.06, and standardized root mean 
square residual (SRMR) < 0.08 [24]. As in the simulated 
samples, we calculated thresholds using the ROC method 
[4, 5], the predictive modeling method [9], the adjusted pre-
dictive modeling method [11], the old state prevalence IRT 
method [2], and the new state difficulty IRT method. 95% 
Confidence intervals were obtained through empirical boot-
strap (1000 samples) [25].

Software

We used the statistical program R, version 4.0.3 [26], to 
organize the data, calculate the predictive and adjusted 
thresholds, and perform bootstrapping. The pROC package, 
version 1.17.0.1 [27], was used to perform ROC analyses. 
The lavaan package, version 0.6–8 [28], was used to per-
form confirmatory factor analysis. The mirt package, version 
1.33.2 [29], was used to simulate datasets, fit GRMs, and 
calculate expected test scores.

Results

Simulations

The simulated datasets varied in means and standard devia-
tions of the test scores (Table 1). Because of the fixed mean-
ingful threshold ( �T

sim
 = 0), increasing or decreasing the 

mean �sim intentionally lead to increase or decrease of the 
state prevalence (i.e., the proportion of subjects exceeding 
the threshold). Moreover, as increasing or decreasing the 
mean �sim caused mismatch between the mean �sim and the 
mean item difficulty parameter, this inevitably caused vari-
able degrees of skewness (as illustrated in Fig. 3). Figure 5 
shows the estimated meaningful thresholds as a function of 
the state prevalence, by method and state scores reliability. 
The ROC-based thresholds and the predictive modeling-
based thresholds clearly varied with the state prevalence 
and the state scores reliability. The old state prevalence IRT 
method [2] also varied with the state prevalence and the state 
scores reliability, although to a lesser degree. The adjusted 
predictive modeling method performed significantly better, 
although some bias remained if the state prevalence was 
smaller than 0.3 or greater than 0.7. In contrast to the other 
methods, the new state difficulty IRT method perfectly 
recovered the true meaningful threshold with almost no bias 
and high precision (Table 2). Across all simulated samples, 
the ROC method yielded the most prevalence-related bias 
and the least precision, whereas the new IRT method yielded 
the least bias and the greatest precision.  

Real dataset: diagnostic thresholds

The sample characteristics are shown in Table  3. The 
prevalence of any MDD (i.e., mild, moderate, and severe 
MDD) was 49%. The mean HADS depression score was 
10.7. The fit indices showed some violation of the unidi-
mensionality assumption; however, none of the (absolute) 
residual correlations exceeded 0.2. The reliability of the 

Table 1   Sample characteristics of the 4500 simulated datasets (mean, 
range)

a State prevalence based on the proportion of persons passing the 
threshold on the perceived trait

Sample characteristic Mean Range

Mean test score 15.0 6.2; 23.9
SD test score 8.0 5.2; 10.5
Skewness test score − 0.01 − 1.19; 1.21
Kurtosis test score − 0.54 − 1.48; 1.25
Floor effects 0.06 0.00; 0.25
Ceiling effects 0.06 0.00; 0.26
State prevalencea 0.50 0.07; 0.93
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Fig. 5   Estimated meaningful thresholds across 4500 simulated data-
sets by state prevalence, state scores reliability, and method (row 1: 
ROC, row 2: predictive modeling, row 3: adjusted predictive mod-

eling, row 4: old IRT method using state prevalence, row 5: new 
IRT method using state difficulty parameter. The true threshold was 
15.139 in all datasets, indicated by horizontal dashed lines
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diagnostic variable, expressed as the variance of the diag-
nosis explained by the latent depression trait as measured 
by the HADS [30], was 0.34. The estimated thresholds for 
mild, moderate, and severe MDD, using different methods, 
are shown in Table 4. As the prevalence of any MDD was 
close to 50%, the threshold for mild MDD should be close 
to the mean score in the sample [10]. This was confirmed 
for most methods; only the estimated ROC threshold was 

lower than the mean sample score. For the other thresh-
olds, with state prevalences < 50%, the methods diverged 
as expected. The new IRT method identified 10.6, 15.4, and 
18.2 as the thresholds for mild, moderate, and severe MDD. 
The adjusted predictive modeling method identified prac-
tically the same thresholds for mild and moderate MDD, 
but, compared to the new IRT method, the adjusted method 
slightly underestimated the threshold for severe MDD while 
its precision was slightly less than the new IRT method.

Real dataset: patient acceptable symptom state 
(PASS)

Complete data at three months postoperatively were avail-
able for 2634 patients. The sample characteristics are 
depicted in Table 5. Sixty-three percent of patients were 
satisfied with the treatment result. The mean MHQ pain 
score was 71 with an SD of 23. The distribution of the 
pain scores was skewed to the left (skewness -0.45, ceil-
ing effect 0.17). Confirmatory factor analysis indicated 
an RMSEA of 0.109, while the other fit indices and the 
residual correlations indicated unidimensionality. There-
fore, we assumed essential unidimensionality of the scale. 
The estimated thresholds for the PASS, using different 
methods, are shown in Table 6. As expected, the state 
prevalence greater than 50% resulted in divergent PASS 
thresholds for the different methods. The new IRT method 
identified a PASS threshold for MHQ pain of 59.6 (95% 

Table 2   Bias and mean square residual (MSR) by method, state scores reliability, and state prevalence

Method Prevalence < 0.3 0.3 ≤ Prevalence < 0.5 0.5 ≤ Prevalence < 0.7 Prevalence ≥ 0.7

Reliability 0.5 Bias MSR Bias MSR Bias MSR Bias MSR

ROC − 6.69 47.65 − 3.02 16.63 2.94 16.30 6.59 45.84
Predictive modeling − 5.60 32.23 − 2.41 8.57 2.15 7.54 5.47 30.76
Adjusted predictive modeling − 0.96 1.42 − 0.23 0.34 0.04 0.24 0.95 1.37
Old IRT (state prevalence) − 2.89 8.86 − 1.35 3.26 1.28 3.10 2.95 9.09
New IRT (state difficulty) 0.10 0.54 0.02 0.40 − 0.06 0.34 0.05 0.49

Reliability 0.7 Bias MSR Bias MSR Bias MSR Bias MSR

ROC − 5.10 28.43 − 1.84 7.31 1.82 7.26 4.77 25.45
Predictive modeling − 4.20 18.65 − 1.45 3.60 1.31 3.13 4.02 17.13
Adjusted predictive modeling − 0.65 0.74 − 0.08 0.17 − 0.04 0.14 0.56 0.67
Old IRT (state prevalence) − 1.52 2.64 − 0.54 0.82 0.56 0.79 1.53 2.63
New IRT (state difficulty) 0.02 0.23 0.04 0.23 − 0.01 0.19 0.03 0.25

Reliability 0.9 Bias MSR Bias MSR Bias MSR Bias MSR

ROC − 3.39 13.09 − 1.10 2.91 0.92 2.59 3.26 12.21
Predictive modeling − 2.88 8.87 − 0.92 1.47 0.79 1.24 2.77 8.22
Adjusted predictive modeling − 0.12 0.25 0.13 0.10 − 0.21 0.13 0.03 0.21
Old IRT (state prevalence) − 0.49 0.37 − 0.13 0.16 0.15 0.16 0.50 0.38
New IRT (state difficulty) − 0.01 0.13 0.03 0.10 − 0.03 0.10 0.00 0.13

Table 3   Sample and scale characteristics of the HADS dataset 
(N = 295)

a HADS  Hospital Anxiety Depression Scale
b MDD  major depressive disorder (DSM-IV)

Characteristics Values

Gender (proportion females) 0.60
Age, mean (SD) 39.5 (9.2)
Prevalence mild MDDb 0.23
Prevalence moderate MDDb 0.12
Prevalence severe MDDb 0.14
HADSa depression score, mean (SD) 10.7 (4.3)
Scaled comparative fit index (CFI) 0.981
Scaled Tucker-Lewis index (TLI) 0.971
Scaled root mean square error of approximation 

(RMSEA)
0.089

Standardized root mean square residual (SRMR) 0.044
State reliability of the diagnostic variable 0.34
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CI 57.3; 61.7). Despite the non-normality of the MHQ 
pain scores, the threshold identified by the adjusted pre-
dictive modeling approach was not significantly different 
and of similar precision. Based on these results, it is safe 
to assume that the PASS threshold for the MHQ pain score 
(as anchored by good/excellent satisfaction with treatment 
results) three months after trigger finger release is around 
60 (58–62). All other methods overestimated the PASS 
threshold due to prevalence-related bias.

Discussion

As the use of PROMs has become standard practice in clini-
cal research and daily clinical practice, there is an increased 
incentive to develop meaningful thresholds to accurately 
interpret questionnaire scores and facilitate clinical deci-
sion making. In this article, we have introduced a new IRT 
approach to estimate meaningful thresholds. The method 
perfectly recovered the true (as simulated) meaningful 
threshold as a fixed value on the latent trait with practically 
no bias and high precision, regardless of the state prevalence 
or the state scores reliability. In contrast, most of the other 
methods examined produced biased threshold estimates if 
the state prevalence was ≠ 0.5.

Importantly, meaningful thresholds or cutoff points are 
used for two goals that are principally incompatible with 
each other: interpretation and classification. The first goal, 
the interpretation of test scores, relates to questions such 
as the cutoff point for clinical depression on a depression 
scale, or the minimum level of acceptability on a pain scale. 
Interpretational thresholds, especially if they are based on 
relatively subjective criteria, may depend on specific sample 
characteristics. For instance, more severe patients may be 
willing to accept higher levels of knee pain and dysfunction 
as acceptable than less severe patients [31]. If the thresh-
olds vary, they do so on the patient level, affecting the mean 
threshold in the sample. The thresholds do not vary with the 
prevalence of the state of interest. Our new state difficulty 
IRT method identifies these interpretational thresholds.

The second goal is classification of individual patients. 
For instance, for screening we often want thresholds that 
ensure the best balance between sensitivity and specificity, 
in order to minimize misclassification. To that end, clas-
sificational thresholds must be prevalence specific, because 
a cutoff point’s sensitivity and specificity change with prev-
alence [7]. ROC analysis identifies a test’s optimal cutoff 
point in a particular situation, which cannot be generalized 
to situations with differing prevalence and disease spectrum. 
Therefore, the ROC cutoff point does not identify the inter-
pretational threshold on the latent trait (unless the prevalence 
is 0.5) [2].

Table 4   Thresholds for mild, 
moderate, and severe MDD for 
the HADS depression scale

a MDD major depressive disorder (DSM-IV)
HADS  Hospital Anxiety Depression Scale

Method Mild MDDa Moderate MDDa Severe MDDa

Estimate 95% CI Estimate 95% CI Estimate 95% CI

ROC 9.5 9.5; 10.5 10.5 9.5; 13.5 11.5 10.5; 13.5
Predictive modeling 10.8 10.3; 11.2 11.6 11.1; 12.2 12.2 11.7; 12.8
Adjusted predictive modeling 10.8 10.0; 11.7 15.3 14.1; 16.9 17.6 15.8; 20.2
Old state prevalence IRT method 10.7 10.1; 11.3 13.3 12.6; 14.1 15.2 14.3; 16.1
New state difficulty IRT method 10.6 9.7; 11.6 15.4 14.2; 16.8 18.2 16.8; 19.5

Table 5   Sample and scale parameters of the Hand-Wrist Study Group 
dataset (N = 2634)

a MHQ  Michigan Hand outcomes Questionnaire

Characteristics Values

Gender (proportion females) 0.67
Age, mean (SD) 59 (10)
Satisfaction with treatment results (proportions)
 Poor 0.03
 Moderate 0.11
 Fair 0.23
 Good 0.40
 Excellent 0.23

MHQa pain score, mean (SD) 71 (23)
Scaled comparative fit index (CFI) 0.993
Scaled Tucker-Lewis index (TLI) 0.989
Scaled root mean square error of approximation (RMSEA) 0.109
Standardized root mean square residual (SRMR) 0.029
State reliability of the anchor question 0.40

Table 6   PASS thresholds for the MHQ pain scale

MHQ  Michigan Hand outcomes Questionnaire

Estimate 95% CI

ROC 77.5 72.5; 77.5
Predictive modeling 69.0 68.2; 69.9
Adjusted predictive modeling 60.1 58.4; 61.8
Old state prevalence IRT method 64.3 63.0; 65.8
New state difficulty IRT method 59.6 57.3; 61.7
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Apart from the new  state difficulty IRT method, the 
adjusted predictive modeling method also accurately identified 
the interpretational threshold with high precision, although 
some bias occurred with state prevalences smaller than 0.3 
or greater than 0.7. This bias is at least partly due to the low 
or high state prevalence [11], but skewness of the test scores 
might also play a role. However, the observation of highly 
similar threshold estimates obtained by the adjusted predic-
tive modeling method and the new IRT method, despite pro-
found skewness and ceiling effects in our second dataset, is 
a promising finding. Nevertheless, future (simulation) stud-
ies should determine to what extent non-normality of the test 
scores affects the results of the adjusted predictive modeling 
approach.

The new state difficulty IRT method assumes that the state 
of interest can be regarded as an effect indicator [32] of the 
latent trait and, therefore, can be included as an additional item 
in the IRT model. In some cases, states may alternatively be 
conceptualized as having a causal effect on the latent trait. Use 
of such causal indicators [32] is beyond the current paper but 
can be handled by fitting explanatory IRT models [33].

Both the new state difficulty IRT method and the adjusted 
predictive modeling method can be used to estimate meaning-
ful thresholds, but the methods come with different assump-
tions. For the new IRT method, the data should be unidimen-
sional enough to allow IRT analysis [34], and the questionnaire 
should fit an IRT model. Although any IRT model may be 
employed, the GRM usually provides good fit to PROM data. 
Furthermore, the IRT method assumes that the latent trait is 
normally distributed. Skewness of the observed test scores is 
no problem as long as the latent trait is assumably normal. 
On the other hand, the adjusted predictive modeling method 
assumes normality of the test scores [11].

Taking these assumptions into account, the choice of 
method may depend on the questionnaire’s dimensionality, 
the distribution of the test scores, and the fit of an IRT model. 
In case of normally distributed test scores, both the adjusted 
predictive modeling method and the new IRT method may 
be used. If the data show profound ceiling or floor effects, 
we recommend using the new state difficulty IRT method. 
The old state prevalence IRT method [2] is clearly inferior to 
the new IRT method because the state prevalence is affected 
by the (un)reliability of the state scores. Therefore, we rec-
ommend not to use the old state prevalence IRT method [2] 
anymore. Similarly, ROC analysis should no longer be used 
to identify interpretational thresholds.

Conclusion

We have introduced a new IRT approach to identify mean-
ingful thresholds for multi-item questionnaires through iden-
tifying the latent trait level of the threshold of interest and 

linking this to the corresponding meaningful threshold on 
the questionnaire scale. The new IRT method is superior to 
the adjusted predictive modeling method, especially if the 
prevalence is < 0.3 or > 0.7. Therefore, we recommend to 
use the new IRT method to estimate meaningful (interpre-
tational) thresholds whenever possible. The adjusted pre-
dictive modeling method is a feasible alternative in certain 
circumstances, for example when the PROM score is not 
unidimensional enough to allow IRT analysis. We provide 
the R-code for the new IRT method in Supplementary file 
1, section 4.
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